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Comparison of local spherical characters and the Ichino-Ikeda conjecture for unitary groups

In this paper, we prove a conjecture of Wei Zhang on comparison of certain local spherical characters from which we draw some consequences for the Ichino-Ikeda conjecture for unitary groups.

Introduction

Let E{F be a quadratic extension of number fields. Let V be a pn`1q-dimensional hermitian space over E and let W Ă V be a nondegenerate hyperplane. Set G " UpW q ˆUpV q and H " UpW q. We view H as a subgroup of G via the natural diagonal embedding. Let π be a cuspidal automorphic representation of GpAq. Define the H-period of π to be the linear form P H : π Ñ C given by P H pφq " ż HpF qzHpAq φphqdh, φ P π where dh stands for the Tamagawa Haar measure on HpAq (the integral is absolutely convergent by cuspidality of π). Let BCpπq be the base change of π to GL n pA E q ˆGL n`1 pA E q (known to exist thanks to the recent work of Mok [Mok] and Kaletha, Minguez, Shin and White [KMSW]). We may decompose π " π n b π n`1 with π n , π n`1 cuspidal automorphic representations of UpW q and UpV q respectively. We have a similar decomposition BCpπq " BCpπ n q b BCpπ n`1 q with BCpπ n q, BCpπ n`1 q two automorphic representations of GL n,E and GL n`1,E respectively. Let Lps, BCpπqq denote the L-function of pair Lps, BCpπ n q ˆBCpπ n`1 qq defined by Jacquet, Piatetskii-Shapiro and Shalika. If π is tempered everywhere (meaning that for all place v the local representation π v is tempered), a famous conjecture of Gan, Gross and Prasad links the nonvanishing of the period P H to the nonvanishing of the central value Lp1{2, BCpπqq (see [START_REF] Gan | Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups, in "Sur les conjectures de Gross et Prasad. I[END_REF]conjecture 24.1] for a precise statement). In the influential paper [II], Ichino and Ikeda have proposed a refinement of this conjecture for orthogonal groups in the form of an exact formula relating these two invariants. This conjecture has been suitably extended to unitary groups by N. Harris in his Ph.D. thesis ( [Ha]). These formulas are modeled on the celebrated work of Waldspurger ([Wald3]) on toric periods for GL 2 .

In two recent papers ([Zh1], [Zh2]), W.Zhang has proved both the Gan-Gross-Prasad and the Ichino-Ikeda conjectures for unitary groups under some local assumptions on π. More precisely, Zhang proves the Gan-Gross-Prasad conjecture under some mild local assumptions (mainly that π is supercuspidal at one place of F which splits in E, see [Zh1,Theorem 1.1]) but he only gets the Ichino-Ikeda conjecture under far more stringent assumptions (see [Zh2,Theorem 1.2]). This discrepancy is due to some local difficulties that we shall discuss shortly. In [Zh2], Zhang makes a series of conjectures (one for every place of F ) which if true would allow to considerably weaken the assumptions of [Zh2,Theorem 1.2]. The goal of this paper is to prove this conjecture at all nonarchimedean place of F . Thus, it will allow us to derive new cases of the Ichino-Ikeda conjecture.

Let us now formulate the Ichino-Ikeda conjecture in a form suitable to our purpose. We assume from now on that π is everywhere tempered. Set Lps, πq :" ∆ n`1

Lps, BCpπqq Lps `1 2 , π, Adq where ∆ n`1 is the following product of special values of Hecke L-functions

∆ n`1 :" n`1 ź i"1
Lpi, η i E{F q

η E{F being the idele class character associated to the extension E{F and where the adjoint L-function of π is defined by Lps, π, Adq :" Lps, BCpπ n q, As p´1q n qLps, BCpπ n`1 q, As p´1q n`1 q (see [START_REF] Gan | Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups, in "Sur les conjectures de Gross et Prasad. I[END_REF]§7] for the definition of the Asai L-functions). For all place v of F , we will denote by Lps, π v q the corresponding quotient of local L-functions. To the period P H we associate a global spherical character J π . It is a distribution on the Schwartz space SpGpAqq of GpAq given by J π pf q " ÿ φPBπ P H pπpf qφqP H pφq for all f P SpGpAqq and where B π is a (suitable) orthonormal basis of π for the Petersson inner product pφ, φ 1 q P et " ż GpF qzGpAq φpgqφpgqdg (where dg is the Tamagawa Haar measure on GpAq). We also define local spherical characters as follows. Fix factorizations dg " ś v dg v and dh " ś v dh v of the Tamagawa Haar measures on GpAq and HpAq respectively. For all place v of F , we define a local spherical character J πv : SpGpF v qq Ñ C (where SpGpF v qq denotes the Schwartz space of GpF v q) by J πv pf v q " ż HpFvq T racepπ v phqπ v pf v qqdh v , f v P SpGpF v qq (the integral is absolutely convergent by temperedness of π v ). For almost all place v of F , if f v is the characteristic function of GpO v q we have The main tool used by Zhang to attack conjecture 1.0.1 is a comparison of certain (simple) relative trace formulae that have been proposed by Jacquet and Rallis ([JR]). To carry this comparison, we need a fundamental lemma and the existence of smooth matching. The fundamental lemma for the case at hand has been proved by Yun ([Yu]) in positive characteristic and extended by J. Gordon to characteristic 0 in the appendix to [Yu]. The existence of smooth matching at nonarchimedean places is one of the main achievements of Zhang in [Zh1]. It has been recently extended in a weak form by Xue ([Xue]) to archimedean places. The comparison between the two trace formulae has been done by Zhang in [Zh1]. The output is an identity relating the spherical J π (under some mild local assumptions on π) to certain periods on the base-change of π. More precisely, there is a certain spherical character I BCpπq attached to these periods and we get an equality between J π pf q and I BCpπq pf 1 q up to an explicit factor for nice matching functions f and f 1 (see [Zh2,Theorem 4.3] and Theorem 3.5.1 below). Thanks to the work of Jacquet, Piatetskii-Shapiro and Shalika on Rankin-Selberg convolutions we know an explicit factorization for I BCpπq in terms of local (normalized) spherical characters I 6

BCpπv q (see [Zh2,Proposition 3.6]). As a consequence, we also get an explicit factorization of J π . However, this factorization is still in terms of the local spherical characters I 6

BCpπvq which are living on (products of) general linear groups. In order to get the Ichino-Ikeda conjecture we need to compare them with the our original local spherical characters J 6 πv . It is precisely the content of the following conjecture of Zhang (see [Zh2,conjecture 4.4] and conjecture 3.5.5 for precise statements):

Conjecture 1.0.2 (Zhang) Let v be a place of F . Then for all matching functions f v P SpGpF v qq and f 1 v P SpG 1 pF v qq we have

I 6
BCpπqv pf 1 v q " Cpπ v qJ 6 πv pf v q where Cpπ v q is some explicit constant.

Together with the above-mentioned comparison of relative trace formulae, this conjecture implies the Ichino-Ikeda conjecture under mild local assumptions (see [Zh2,Proposition 4.5]). Zhang was able to verify his conjecture in certain particular cases. More precisely,in [Zh2] the above conjecture is proved for split places or when the representation π v is unramified (and the residual characteristic is sufficiently large) or supercuspidal (see Theorem 4.6 of loc.cit). This explains the very strong conditions that are imposed on π in [Zh2, Theorem 1.2]. The main purpose of this paper is to prove conjecture 1.0.2 at every nonarchimedean place. Our main result thus reads as follows (see Theorem 3.5.7):

Theorem 1.0.3 For every nonarchimedean place v of F , conjecture 1.0.2 holds at v.

As a consequence of this theorem we obtain the following result towards conjecture 1.0.1 (see Theorem 3.5.8):

Theorem 1.0.4 Let π be cuspidal automorphic representation of GpAq which is everywhere tempered. Assume that all the archimedean places of F split in E and that there exists a nonarchimedean place v 0 of F such that BCpπ v 0 q is supercuspidal. Then conjecture 1.0.1 holds for π.

The main new ingredient in the proof of Theorem 1.0.3 is a group analog of the local relative trace formula for Lie algebras developed by Zhang in [Zh1,§4.1]. Actually, this local trace formula can be derived directly from results contained in [Zh1] and [Beu] so that the proof of it is rather brief (see §4.3). We then deduce Theorem 1.0.3 from a combination of this local trace formula with certain results of Zhang on truncated local expansion of spherical characters (see [Zh2, §8] and §4.1).

We now briefly describe the content of each section. In section 1, we set up the notations, fix the measures and recall a number of results (in particular concerning global and local basechange for unitary groups and the local Gan-Gross-Prasad conjecture) that will be needed in the sequel. In section 2 we mainly recall the work of Zhang on comparison of global relative trace formulae, we state precisely conjecture 1.0.2 as well as the main results (Theorem 3.5.7 and Theorem 3.5.8). Section 3 is devoted to the proofs of Theorem 1.0.3 and Theorem 1.0.4. In section 4, we explain how we can remove the temperedness assumption in Theorem 3.5.8. Finally, we have included an appendix to prove that the simple Jacquet-Rallis trace formulae are still absolutely convergent for test functions which are not necessarily compactly supported (but nevertheless rapidly decreasing). For this, we define certain norms on the automorphic quotient rGs :" GpF qzGpAq and establish their basic properties. This material is certainly classical but the author hasn't be able to find a convenient reference, hence we provide complete proofs. It has however interesting consequences e.g. for H a closed subgroup of G we can give a criterion under which every cuspidal form on rGs is integrable on rHs (see Proposition A.1.1 (ix), the criterion simply being that the variety HzG is quasiaffine).

Aknowledgement: I thank Volker Heiermann, Wee-Teck Gan and Hang Xue for useful comments on an earlier draft of this paper. This work has been done while the author was a Senior Research Fellow at the National University of Singapore and the author would like to thank this institution fo its warm hospitality.

Preliminaries

General notations and conventions

In this paper E{F will always be a quadratic extension of number fields or of local fields of characteristic zero. We will always denote by T r E{F the corresponding trace and by x Þ Ñ x the nontrivial F -automorphism of E. Moreover, we will fix a nonzero element τ P E such that T r E{F pτ q " 0. The notation R E{F will stand for the Weil restriction of scalars from E to F . For every finite dimensional hermitian space V over E we will denote by UpV q the corresponding unitary group and we will write upV q for its Lie algebra. The standard maximal unipotent subgroup of GL n will be denoted by N n . For all connected reductive group G over F we will write Z G for the center of G. For all n ě 1 we define a variety S n over F by S n :" ts P R E{F GL n ; ss " 1u and its "Lie algebra" s n by

s n :" tX P R E{F M n ; X `X " 0u
We have a surjective map ν : R E{F GL n {GL n Ñ S n given by νpgq " gg ´1 which, by Hilbert 90, is surjective at the level of k-points for any field k. We will denote by c the Cayley map c : X Þ Ñ pX `1qpX ´1q ´1 which realizes a birational isomorphism between s n and S n and also between upV q and UpV q for all finite dimensional hermitian space V over E.

Assume that the fields E and F are local. We will then denote by |.| F the normalized absolute value on F (and similarly for E) and by η E{F the quadratic character of F ˆassociated to the extension E{F . We will also fix an extension η 1 of η E{F to E ˆand a nontrivial additive character ψ : F Ñ C ˆ. We will set ψ E pzq " ψp 1 2 T r E{F pzqq for all z P E. Let G be a reductive connected group over F . By a representation of GpF q we will always mean a smooth representation if F is p-adic and an admissible smooth Fréchet representation of moderate growth if F is archimedean (see [BK], [Ca] and [START_REF] Wallach | Real reductive groups II[END_REF]section 11]). We will denote by IrrpGq, Irr unit pGq and T emppGq the set of isomorphism classes of irreducible, irreducible unitary, irreducible tempered representations of GpF q respectively. We will endow these sets with the Fell topology (see [Tad]). For any parabolic subgroup P " MU of G (U denoting the unipotent radical of P and M a Levi factor) and for any irreducible representation σ of MpF q we will denote by i G P pσq the normalized parabolic induction of σ. The notation Ψ unit pGq will stand for the group of unitary unramified characters of GpF q. The space of Schwartz functions SpGpF qq consists of locally constant compactly supported functions if F is p-adic oand functions rapidly decreasing with all their derivatives if F is archimedean (see [Beu,§1.4]). If F is p-adic and Ω is a finite union of Bernstein components of GpF q (see [BD]), we will denote by SpGpF qq Ω the corresponding summand of SpGpF qq (for the action by left translation). Finally, if π is an irreducible generic representation of GL n pEq we will denote by Wpπ, ψ E q the Whittaker model of π with respect to ψ E . It is a space of smooth functions W : GpF q Ñ C satisfying the relation

W pugq " ψ E p n´1 ÿ i"1 u i,i`1 qW pgq
for all u P N n pEq and such that π is isomorphic to Wpπ, ψ E q equipped with the GpF q-action by right translation.

In the number field case, we will denote by A and A E the adele rings of F and E respectively and by η E{F the idele class character associated to the extension E{F . We will fix an extension η 1 of η E{F to A Ê . For every place v of F we will denote by

F v the corresponding completion, O v Ă F v the ring of integers (if v is nonarchimdean) and we will set E v " Eb F F v , O E,v " O E b O F O v where O F , O E denote the ring of integers in F and E respectively. If S is a finite set of places of F , we define F S " ś vPS F v .
If Σ is a (usually infinite) set of places of F , we will write A Σ for the restricted product of the F v for v P Σ. We will also fix a nontrivial additive character ψ : A{F Ñ C ˆand we will set ψ E pzq " ψp 1 2 T r E{F pzqq for all z P A E . For all place v of F , will denote by ψ v , ψ E,v and η 1 v the local components at v of ψ, ψ E and η 1 respectively. Let G be a connected reductive group over F . We will set rGs " GpF qzGpAq and for all place v of F we will denote by G v the base-change of G to F v . The Schwartz space SpGpAqq of GpAq is by definition the restricted tensor product of the local Schwartz spaces SpGpF v qq. We will denote by Upg 8 q the enveloping algebra of the complexification of the Lie algebra g 8 of ś v|8 GpF v q and by C G P Upg 8 q the Casimir element. If a maximal compact subgroup K " ś v K v of GpAq has been fixed, we will also denote by C K P Upg 8 q the Casimir element of K 8 :"

ś v|8 K v . Finally if η : A ˆ{F ˆÑ C
îs an idele class character and g P GL n pAq we will usually abbreviate ηpdet gq by ηpgq.

Analytic families of distributions

Assume that F is a local field. Let G be a connected reductive group over F and let π Þ Ñ L π be a family of (continuous if F is archimedean) linear forms on SpGpF qq indexed by the set T emppGpF qq of all irreducible tempered representations of GpF q. Assume that the following condition is satisfied:

For all parabolic subgroup P " MU of G and for all square-integrable representation σ of MpF q there is at most one irreducible subrepresentation π of i G P pσq such that L π ‰ 0. This condition is for example automatically satisfied if G " GL n (as in this case the representation i G P pσq is always irreducible). If this condition is satisfied, we may extend the family of distributions π Þ Ñ L π to any induced representation i G P pσq as above by setting L i G P pσq " L π if π is the unique irreducible subrepresentation of i G P pσq such that L π ‰ 0 and L i G P pσq " 0 if no such subrepresentation exists. We then say that this family is analytic if for all f P SpGpF qq, all parabolic subgroup P " MU and all square-integrable representation σ of MpF q the function χ P Ψ unit pMq Þ Ñ L i G P pσbχq pf q is analytic (recall that Ψ unit pMq being a compact real torus has a natural structure of analytic variety).

Base Change for unitary groups

Let E{F be a quadratic extension of local fields of characteristic zero (either archimedean or p-adic). Let V be a n-dimensional hermitian space over E. Recall that the set of Langlands parameters for UpV q is in one-to-one correspondence with the set of p´1q n`1 -conjugate dual continuous semisimple representations ϕ of the Langlands group L E of E (see [START_REF] Gan | Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups, in "Sur les conjectures de Gross et Prasad. I[END_REF]§3] for a definition of ǫ-conjugate dual representations). In what follows, by a Langlands parameter for UpV q we shall mean a representation ϕ of this sort. By the recent results of Mok [Mok] and Kaletha-Minguez-Shin-White [KMSW] on the local Langlands correspondence for unitary groups together with the work of Langlands [Lan] for real groups, we know that there exists a canonical decomposition

IrrpUpV qq " ğ ϕ Π U pV q pϕq
indexed by the set of all Langlands parameters for UpV q. The sets Π U pV q pϕq are finite (some of them may be empty) and called L-packets. By the Langlands classification, the above decomposition boils down to an analog decomposition of the tempered dual

T emppUpV qq " ğ ϕ Π U pV q pϕq
where the union is over the set of tempered Langlands parameters for UpV q i.e. the parameters ϕ whose image is bounded. This last decomposition admits a characterization in terms of endoscopic relations (see [START_REF] Mok | Endoscopic Classification of representations of Quasi-Split Unitary Groups[END_REF]Theorem 3.2.1] and [START_REF] Kaletha | Endoscopic Classification of Representations: Inner Forms of Unitary Groups[END_REF]Theorem 1.6.1]) and of the (known) Langlands correspondence for GL d pEq ( [He], [HT], [S]). By this Langlands correspondence, every parameter ϕ of UpV q determines an irreducible representation πpϕq of GL n pEq. If π is in the L-packet corresponding to ϕ we will write BCpπq :" πpϕq. If π is tempered then so is BCpπq and conversely. However it might happen that π is supercuspidal or square-integrable but BCpπq is not. Aubert, Moussaoui and Solleveld [AMS] have recently proposed a very general conjecture on how to detect supercuspidal representations in L-packets. Moreover, Moussaoui [Mou] has been able to verify this conjecture for orthogonal and symplectic groups. Most probably his work will soon cover unitary groups too. We will need the following particular case of the Aubert-Moussaoui-Solleveld conjecture for which however we can give a direct proof.

Lemma 2.3.1 Assume that F is p-adic. Let π P IrrpUpV qq and assume that BCpπq is supercuspidal. Then so is π.

Proof: We will use the following characterization of supercuspidal representations

(1) π is supercuspidal if and only if the Harish-Chandra character Θ π of π is compactly supported modulo conjugation.

The necessity is an old result of Deligne ([De]). The sufficiency follows for example from Clozel's formula for the character ([Cl1, Proposition 1]).

Let ϕ be the Langlands parameter of π. Then by our assumption the L-packet Π U pV q pϕq is a singleton. Introduce the twisted group Č GL n pEq " GL n pEqθ n where θ n pgq " t g ´1. It is the set of F -points of the nonneutral connected component of the non-connected group G `" R E{F GL n ¸t1, θ n u. Since ϕ is a conjugate-dual representation of L E , it follows that BCpπq may be extended to a representation BCpπq `of G `pF q. Denote by Č BCpπq the restriction of BCpπq `to Č GL n pEq and denote by Θ Č BCpπq the Harish-Chandra character of Č BCpπq (the Harish-Chandra theory of characters has been extended to twisted groups by Clozel [Cl2]). Since BCpπq is supercuspidal, the character Θ Č BCpπq is compactly supported modulo conjugation (this follows for example from the equality up to a factor between Θ Č BCpπq and weighted orbital integrals of coefficients of Č BCpπq see [Wald2, théorème 7.1]). By the endoscopic characterization of the local Langlands correspondence for unitary groups, there is a relation between Θ π and Θ Č BCpπq . More precisely there is a correspondence between (stable) regular conjugacy classes in UpV qpF q and Č GL n pEq (see [Beu2, §3.2], in this particular case the correspondence takes the form of an injective map UpV q reg pF q{stab ãÑ Č GL n pEq reg {stab) and for all regular elements y P UpV qpF q, r x P Č GL n pEq that correspond to each other we have (see [START_REF] Mok | Endoscopic Classification of representations of Quasi-Split Unitary Groups[END_REF]Theorem 3.2.1] and [START_REF] Kaletha | Endoscopic Classification of Representations: Inner Forms of Unitary Groups[END_REF]Theorem 1.6.1])

Θ Č BCpπq pr xq " ∆py, r xqΘ π pyq
where ∆py, r xq is (up to a sign) a certain transfer factor. From this relation we easily infer that Θ π is compactly supported modulo conjugation and hence that π is supercuspidal by (1).

We now move on to a global setting. Thus E{F is a quadratic extension of number fields and V is a n-dimensional hermitian space over E. If v is a place of F which splits in E then we have isomorphisms UpV qpF v q » GL n pF v q and pR E{F GL n qpF v q » GL n pF v q ˆGL n pF v q and we define a base change map BC : IrrpUpV q v q Ñ IrrppR E{F GL n q v q by π Þ Ñ π b π _ . By Theorem 2.5.2 of [Mok] and Theorem 1.7.1/Corollary 3.3.2 of [KMSW] we may associate to any cuspidal automorphic representation π of UpV q an isobaric conjugate-dual automorphic representation BCpπq of GL n pEq, the base-change of π, satisfying the following properties:

(1) The Asai L-function Lps, BCpπq, As p´1q n`1 q has a pole at s " 1 and moreover if BCpπq is cuspidal this pole is simple (see [START_REF] Gan | Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups, in "Sur les conjectures de Gross et Prasad. I[END_REF]§7] for the definition of the Asai L-functions);

(2) Let v be a place of F . Then, if BCpπq is generic or v splits in E we have BCpπ v q " BCpπq v ;

(3) If BCpπq is generic then the multiplicity of π in L 2 prUpV qsq is one (see Theorem 2.5.2/Remark 2.5.3 of [Mok] and Theorem 5.0.5, Theorem 1.7.1 and the discussion thereafter of [KMSW]).

Let v be a place of F and π P IrrpUpV qpF v qq. Assume first that v is inert in E. By the Langlands classification there exist

• a parabolic subgroup P " MN of UpV q v with M » R Ev{Fv GL n 1 ˆ. . . ˆREv{Fv GL nr ˆUpV 1 q where V 1 Ă V v is a nondegenerate subspace;
• tempered representations π i P T emppGL n i pE v qq, 1 ď i ď r, and π 1 P T emppUpV 1 qq;

• real numbers λ 1 ą . . . ą λ r ą 0, such that π is the unique irreducible quotient of

i U pV qv P `|det| λ 1 Ev π 1 b . . . b |det| λr Ev π r b π 1
The r-uple pλ 1 , . . . , λ r q only depends on π and we will set cpπq " λ 1 if r ě 1, cpπq " 0 if r " 0 (i.e. if π is tempered). Assume now that v splits in E. Then, we have an isomorphism UpV q v » GL n,Fv and there exists a r-uple pn 1 , . . . , n r q of positive integers such that n 1 `. . . `nr " n, tempered representations π i P T emppGL n 1 pF v qq i " 1, . . . , r and real numbers λ 1 ą λ 2 ą . . . ą λ r such that π is the unique irreducible quotient of

i GLn P `|det| λ 1 Fv π 1 b . . . b |det| λr Fv π r
where P denotes the standard parabolic subgroup of GL n with Levi GL n 1 ˆ. . . ˆGL nr . In this case, we set cpπq " maxp|λ 1 |, |λ r |q. This depends only on π and in particular not on the choice of the isomorphism UpV q v » GL n,Fv (which is only defined up to an automorphism of GL n,Fv since it involves the choice of a place of E above v).

In any case, for c ą 0 we define Irr ďc pUpV q v q to be the set of irreducible representations π P IrrpUpV q v q such that cpπq ď c. Combining the above global results of Mok and Kaletha-Minguez-Shin-White with the bounds toward the Ramanujan conjecture for GL n of Luo-Rudnick-Sarnak [LRS] suitably extended to ramified places independently by Müller-Speh and Bergeron-Clozel ([MS], [BC]), we get the following:

Lemma 2.3.2 Set c " 1 2 ´1 n 2 `1 .
Let π be a cuspidal automorphic representation of UpV qpAq such that BCpπq is generic. Then, for all place v of F we have π v P Irr ďc pUpV q v q 2.4 The local Gan-Gross-Prasad conjecture for unitary groups

Let E{F be a quadratic extension of local fields of characteristic zero (either archimedean or p-adic). Let W be a n-dimensional hermitian space over E and define the hermitian space V by V " W ' K e where pe, eq " 1. Set H " UpW q and G " UpW q ˆUpV q. We view H as a subgroup of G via the diagonal embedding. We will say than an irreducible representation π of GpF q is H-distinguished if the space Hom H pπ, Cq of HpF q-invariant (continuous in the archimedean case) linear forms on π is nonzero. By multiplicity one results (see [AGRS], [JSZ]) we always have dim Hom H pπ, Cq ď 1. We will denote by Irr H pGq and T emp H pGq the subsets of H-distinguished representations in IrrpGq and T emppGq respectively. Let ϕ be a generic Langlands parameter for G. We have the following conjecture of Gan,Gross and Prasad ([GGP,conjecture 17.1]) Conjecture 2.4.1 The L-packet Π G pϕq contains at most one H-distinguished representation.

By [Beu,Theorem 12.4.1] and [START_REF] Gan | The Gross-Prasad conjecture and local theta correspondence[END_REF]Proposition 9.3], the following cases of this conjecture are known.

Theorem 2.4.2 (Beuzart-Plessis, Gan-Ichino) .

(i) Let ϕ be a tempered Langlands parameter for G. Then conjecture 2.4.1 holds for ϕ.

(ii) Assume that F is p-adic. Then conjecture 2.4.1 holds for any generic Lamglands parameter ϕ of G.

Measures

We will use the same normalization of measures as in [Zh2, §2]. Let us recall these choices. We actually define two sets of Haar measures: the normalized and the unnormalized. We will use the normalized Haar measures apart in section 4 where we will use the unnormalized one. From now on and until section 4, where we will switch to a local setting, we fix a quadratic extension E{F of number fields. We will denote by η E{F the idele class character corresponding to this extension. We will also fix a nonzero character ψ : A{F Ñ C ˆand a nonzero element τ P E such that T r E{F pτ q " 0. We will denote by ψ E the character of A E given by ψ E pzq " ψp 1 2 T r E{F pzqq. Let v be a place of F . We endow F v with the self-dual Haar measure for ψ v . Similarly, we endow E v with the self-dual Haar measure for ψ E,v . On F v , we define a normalized measure

d ˆxv " ζ Fv p1q dx v |x v |
Fv and an unnormalized one

d ˚xv " dx v |x v | Fv
More generally, for all n ě 1, we equip GL n pF v q with the following normalized Haar measure

dg v " ζ Fv p1q ś ij dg v,ij |det g v | n
Fv as well as with the following unnormalized one

d ˚gv " ś ij dg v,ij |det g v | n
Fv and similarly for GL n pE v q. Recall that N n denotes the standard maximal unipotent subgroup of GL n . We will give N n pF v q and N n pE v q the Haar measures

du v " ź 1ďiăjďn du v,ij
We equip A ˆ, N n pAq, N n pA E q, GL n pAq and GL n pA E q with the global Tamagawa Haar measures given by

d ˆx " ź v d ˆxv , du " ź v du v , dg " ź v dg v
Recall that S n " ts P R E{F GL n ; ss " 1u and its Lie algebra s n " tX P R E{F M n ; X `X " 0u.

Let V be a n-dimensional hermitian space over E and denote by upV q the Lie algebra of UpV q. Choosing a basis of V we get an embedding upV q ãÑ R E{F M n . Let us denote by x., y the GL n pE v q-invariant bilinear pairing on M n pE v q given by xX, Y y :" T racepXY q

Note that the restrictions of x., .y to s n pF v q and upV qpF v q are F v -valued and nondegenerate. We define a Haar measure dX on upV qpF v q such that the Fourier transform p ϕpY q " ż upV qpFv q ϕpXqψ v pxX, Y yqdX and its dual q ϕpXq " ż upV qpFv q ϕpY qψ v p´xY, XyqdX are inverse of each other. We define similarly a Haar measure and Fourier transforms ϕ Þ Ñ p ϕ, ϕ Þ Ñ q ϕ on s n pF v q.

The Cayley map c : X Þ Ñ cpXq " p1 `Xqp1 ´Xq ´1 induces birational isomorphisms from s n to S n and from upV q to UpV q. We define the unnormalized Haar measure d ˚gv on UpV qpF v q to be the unique Haar measure such that the Jacobian of c at the origin is 1. The normalized Haar measure on UpV qpF v q is defined by

dg v " Lp1, η Ev{Fv qd ˚gv
Similarly, we endow S n pF v q with an unnormalized measure d ˚sv which is the unique GL n pE v qinvariant measure for which the Jacobian of the Cayley map c at the origin is 1. The corresponding normalized measure is given by

ds v " Lp1, η Ev{Fv qd ˚sv
Note that d ˚sv (resp. ds v ) can also be identified with the quotient of the unnormalized (resp.normalized) Haar measures on GL n pE v q and GL n pF v q via the isomorphism ν : GL n pE v q{GL n pF v q » S n pF v q, νpgq " gg ´1. Finally, we equip UpV qpAq with the global Haar measure given by

dg " ź v dg v
It is not the Tamagawa measure since there is a factor Lp1, η E{F q ´1 missing. Note that the local normalized Haar measure dg v can be identified with the quotient of the normalized Haar measures on E v and

F v via the isomorphism E v {F v » Up1qpF v q, x Þ Ñ x{x.
Hence, as the Tamagawa number of Up1q is 2, we have

p1q vol `EˆAˆz A Ê ˘" volprUp1qsq " 2Lp1, η E{F q
3 Spherical characters, the Ichino-Ikeda conjecture and Zhang's conjecture

In this section E{F will be a quadratic extension of number fields and we will use normalized Haar measures (see §2.5). Let W be an hermitian space of dimension n over E. We will set V " W ' K Ee where pe, eq " 1, G " UpW q ˆUpV q and H " UpW q. We view H as a subgroup of G via the diagonal embedding. We will fix a maximal compact subgroup

K " ś v K v of GpAq. We will say that an irreducible representation π " b 1 v π v of GpAq is abstractly H-distinguished if for all place v of F the representation π v is H v -distinguished i.e. if Hom Hv pπ v , Cq ‰ 0. Set G 1 " R E{F pGL n ˆGL n`1 q. We define two subgroups H 1 1 " R E{F GL n and H 1 2 " GL n ˆGL n`1 of G 1 (H 1 1 is embedded diagonally).
We also define a character η of H 1 2 pAq by ηpg 1 , g 2 q " η E{F pg 1 q n`1 η E{F pg 2 q n for all pg 1 , g 2 q P H 1 2 pAq " GL n pAqˆGL n`1 pAq. We will also fix a maximal compact subgroup

K 1 " ś v K 1 v of G 1 pAq such that K 1 v " GL n pO E,v q ˆGL n`1 pO E,v
q for all nonarchimedean place v of F . Finally, if π and Π are cuspidal automorphic representations of GpAq and G 1 pAq respectively then we endow them with the following Petersson inner products pφ 1 , φ 2 q P et :"

ż rGs φ 1 pgqφ 2 pgqdg, φ 1 , φ 2 P π pφ 1 1 , φ 1 2 q P et :" ż rZ G 1 zG 1 s φ 1 1 pg 1 qφ 1 2 pg 1 qdg 1 , φ 1 1 , φ 1 2 P Π

Global spherical characters

For any cuspidal automorphic representation π of GpAq we define the H-period P H : π Ñ C by

P H pφq " ż rHs φphqdh, φ P π
The integral is absolutely convergent (see Proposition A.1.1(ix)). We will say that the cuspidal automorphic representation π is globally H-distinguished if the period P H is not identically zero on π. We may associate to this period a (global) spherical character J π : SpGpAqq Ñ C defined as follows. Let f P SpGpAqq and choose a compact-open subgroup

K f Ă GpA f q by which f is biinvariant. Let B K f π
be an orthonormal basis for the Petersson inner product of π K f whose elements are C G and C K eigenvectors. Then we set

J π pf q " ÿ φPB K f π P H pπpf qφqP H pφq
The sum is absolutely convergent and does not depend on the choice of the basis B

K f π (see Proposition A.1.2).
Let Π be a cuspidal automorphic representation of G 1 pAq whose central character is trivial on Z H 1 2 pAq " A ˆˆA ˆ. We define two periods λ : Π Ñ C and β : Π Ñ C by λpφq "

ż rH 1 1 s φph 1 qdh 1 βpφq " ż rZ H 1 2 zH 1 2 s φph 2 qηph 2 qdh 2
for all φ P Π. The two above integrals are absolutely convergent (see Proposition A.1.1(ix)).

We also define a (global) spherical character

I Π : SpG 1 pAqq Ñ C as follows. Let f 1 P SpG 1 pAqq and choose a compact-open subgroup K f 1 Ă GpA f q by which f 1 is biinvariant. Let B K f 1 Π
be an orthonormal basis for the Petersson inner product of Π K f 1 whose elements are C G 1 and C K 1 eigenvectors. Then we set

I Π pf 1 q " ÿ φPB K f 1 Π λpΠpf 1 qφqβpφq
The sum is absolutely convergent and does not depend on the choice of the basis B

K f 1 Π (see Proposition A.1.2).

Local spherical characters

Let v be a place of F . Let π v be a tempered representation of GpF v q. We define a distribution J πv : SpGpF v qq Ñ C (the local spherical character associated to π v ) by

J πv pf v q " ż HpFv q T racepπ v phqπ v pf v qqdh v , f v P CpGpF v qq
By [Beu, §8.2], the above integral is absolutely convergent. Choosing models for G and H over O F , for almost all v if f v " 1 Kv , we have

J πv pf v q " Lp 1 2 , π v qvolpHpO v qqvolpGpO v qq
(see the introduction for the definition of Lps, π v q). Hence, we define a normalized spherical character J 6 πv by

J 6 πv " 1 Lp 1 2 , π v q J πv By [Beu, Theorem 8.2.1] we have (1) π v is H v -distinguished if and only if J πv ‰ 0.
Moreover, by [Beu,Corollary 8.6.1], for all parabolic subgroup P " MU of G v and for all square-integrable representation σ of M there is at most one irreducible subrepresentation π Ă i G P pσq such that J π ‰ 0. Thus, we are in the situation of §2.2 and the family of distributions

π v P T emppG v q Þ Ñ J πv is analytic. Let Π v be a generic unitary representation of G 1 pF v q. We may write Π v " Π n,v b Π n`1,v
where Π n,v and Π n`1,v are generic and unitary representations of GL n pE v q and GL n`1 pE v q respectively. Let WpΠ n,v , ψ E q and WpΠ n`1,v , ψ E q be the Whittaker models of Π n,v and Π n`1,v corresponding to the characters ψ E and ψ E respectively. Set WpΠ v q " WpΠ n,v , ψ E q b WpΠ n`1,v , ψ E q. We define linear forms (the local Flicker-Rallis periods)

β n,v : WpΠ n,v , ψ E q Ñ C, β n`1,v : WpΠ n`1,v , ψ E q Ñ C
and scalar products

θ n,v : WpΠ n,v , ψ E q ˆWpΠ n,v , ψ E q Ñ C, θ n`1,v : WpΠ n`1,v , ψ E q ˆWpΠ n`1,v , ψ E q Ñ C by β k,v pW k q " ż N k´1 pFvqzGL k´1 pFvq W k pǫ k pτ qg k´1 qη Ev{Fv pdet g k´1 q k´1 dg k´1 θ k,v pW k , W 1 k q " ż N k´1 pEvqzGL k´1 pEvq W k pg k´1 qW 1 k pg k´1 qdg k´1 for all k " n, n `1, all W n , W 1 n P WpΠ n,v , ψ E q and all W n`1 , W 1 n`1 P WpΠ n`1,v
, ψ E q where ǫ k pτ q " diagpτ k´1 , τ k´2 , . . . , τ, 1q (recall that τ is a fixed nonzero element of E such that T r E{F pτ q " 0). The above integrals are absolutely convergent (see [JS] Propositions 1.3 and 3.16 for the absolute convergence of θ k,v , the proof for

β k,v is identical). Set β v " β n,v bβ n`1,v and θ v " θ n,v b θ n`1,v . If E v {F v , Π v , ψ E,v are unramified, τ is a unit in E v and W v P WpΠ v q is the unique K 1 v -invariant vector such that W v p1q " 1, we have (see [JS, Proposition 2.3] and [Zh2, §3.2]) β v pW v q " volpK 1 v qLp1, Π n,v , As p´1q n´1 qLp1, Π n`1,v , As p´1q n q and θ v pW v q " volpK 1 v qLp1, Π n,v ˆΠ_ n,v qLp1, Π n`1,v ˆΠ_ n`1,v
q Hence, we define normalized versions β 6 v and θ 6 v of β v and θ v by

β 6 v " β v Lp1, Π n,v , As p´1q n´1 qLp1, Π n`1,v , As p´1q n q , θ 6 v " θ v Lp1, Π n,v ˆΠ_ n,v qLp1, Π n`1,v ˆΠ_ n`1,v q
For all s P C, we also have the local Rankin-Selberg period λ v ps, .q : WpΠ v q Ñ C defined by

λ v ps, W n b W n`1 q " ż NnpEvqzGLnpEv q W n pg n qW n`1 pg n q|det g n | s Ev dg n
for all pW n , W n`1 q P WpΠ n,v , ψ E q ˆWpΠ n`1,v , ψ E q, and its normalization λ 6 v ps, .q given by λ 6 v ps, .q " λ v ps, .q Lps `1 2 , Π n,v ˆΠn`1,v q The integral defining λ v ps, .q is absolutely convergent for Repsq " 0 and λ 6 v ps, .q extends to an entire function on C (see [JPSS] and [Jac] for the archimedean case). We will set λ 6

v " λ 6 v p0, .q. Obviously λ 6 v defines a H 1 1 pF v q-invariant linear form on Π v . Moreover by [JPSS] and [Jac], there exists W P WpΠ v q such that λ 6 v pW q " 1. Hence λ 6 v defines a nonzero element in

Hom H 1 1 pΠ v , Cq. If Π v is tempered then λ v ps, .
q is absolutely convergent for Repsq ą ´1{2 and we will set λ v " λ v p0, .q.

We are now ready to define the (normalized) local spherical character I 6

Πv :

SpG 1 pF v qq Ñ C attached to Π v . Let f 1 v P SpG 1 pF v qq. If v is nonarchimedean then choose a compact-open subgroup K f 1 v of G 1 pF v q by which f 1 v is biinvariant and let B Πv be an orthonormal basis of Π K f 1 v v for the scalar product θ 6 v . If v is archimedean, we let B Πv be any orthonormal basis of Π v for the scalar product θ 6 v consisting of C K 1 v -eigenvectors.
Then we set

I 6 Πv pf 1 v q " ÿ W PB Πv λ 6 v pΠ v pf 1 v qW qβ 6 v pW q
The sum is absolutely convergent and does not depend on the choice of B Πv . If moreover Π v is tempered then we define an unnormalized local spherical character I Πv : SpG 1 pF v qq Ñ C by using θ v , β v and λ v instead of θ 6 v , β 6 v and λ 6 v . Finally, the proofs of [START_REF] Jacquet | On Euler products and the classification of automorphic representations I[END_REF]Proposition 1.3] and [START_REF] Jacquet | Rankin-Selberg convolutions[END_REF]Theorem 2.7] easily show that the family of distributions Π v P T emppG 1 v q Þ Ñ I Πv is analytic in the sense of §2.2.

Orbital integrals

Consider the action of H ˆH on G by left and right translations. Then, an element δ P G is said to be regular semisimple for this action if its orbit is closed and its stabilizer is trivial. Denote by G rs the open subset of regular semisimple element in G. Let v be a place of F and δ P G rs pF v q be regular semisimple. We define the (relative) orbital integral associated to δ as the distribution given by

Opδ, f v q " ż HpFvqˆHpFv q f v phδh 1 qdhdh 1 , f v P SpGpF v qq
There is another way to see these orbital integrals. For all f v P SpGpF v qq, we define a function r

f v P SpUpV qpF v qq by r f v pxq " ż HpFvq f v php1, xqqdh, x P UpV qpF v q
This defines a surjective linear map SpGpF v qq Ñ SpUpV qpF v qq. Let us say that an element x P UpV q is regular semisimple if it is so for the action of UpW q by conjugation i.e. if the UpW q-conjugacy class of x is closed and the stabilizer of x in UpW q is trivial. Denote by UpV q rs the open subset of regular semisimple element in UpV q. For all x P UpV q rs pF v q we define the orbital integral associated to x as the distribution Opx, ϕq "

ż U pW qpFvq ϕphxh ´1qdh, ϕ v P SpUpV qpF v qq
For all δ " pδ W , δ V q P G rs the element x " δ ´1 W δ V is regular semisimple in UpV q and this defines a surjection G rs ։ UpV q rs . Moreover, for all δ P G rs pF v q and all f P SpGpF v qq, we have the equality Opδ, f q " Opx, r f q where x " δ ´1 W δ V . We can also define orbital integrals on the space SpupV qpF v qq. Call an element X P upV q regular semisimple if it is so for the adjoint action of UpW q. Let us denote by upV q rs the open subset of regular semisimple elements. Then, for all X P upV q rs pF v q we can define an orbital integral by

OpX, ϕq " ż U pW qpFvq ϕph ´1X hqdh, ϕ P SpUpV qpF v qq
The Cayley map c : X Þ Ñ p1`Xqp1´Xq ´1 realizes a UpW q-equivariant isomorphism between the open subsets upV q ˝" tX P upV q; detp1´Xq ‰ 0u and UpV q 0 " tx P UpV q; detp1`xq ‰ 0u. Assume that v is nonarchimedean and let ω Ă upV q ˝pF v q and Ω Ă UpV q ˝pF v q be open and closed UpW qpF v q-invariant neighborhoods of 0 and 1 respectively such that the Cayley map restricts to an analytic isomorphism between ω and Ω preserving measures. For all ϕ P SpUpV qpF v qq, we define a function ϕ 6 by ϕ 6 pXq "

" ϕpcpXqq if X P ω 0 otherwise
Then for all X P ω rs " ω X upV q rs pF v q and all ϕ P SpUpV qpF v qq we have OpcpXq, ϕq " OpX, ϕ 6 q

Consider now the action of H 1 1 ˆH1 2 on G 1 by left and right translations. As before, an element γ P G 1 is said to be regular semisimple for this action if its orbit is closed and its stabilizer is trivial. Denote by G 1 rs the open subset of regular semisimple element in G 1 . Let v be a place of F and γ P G 1 rs pF v q be regular semisimple. We define the (relative) orbital integral associated to γ as the distribution given by

Opγ, f 1 v q " ż H 1 1 pFv qˆH 1 2 pFvq f 1 v ph ´1 1 γh 2 qηph 2 qdh 1 dh 2 , f 1 v P SpG 1 pF v qq
There is another way to see these orbital integrals. Recall that S n`1 pF v q " ts P GL n`1 pE v q; ss " 1u and that we have a surjective map ν : GL n`1 pE v q Ñ S n`1 pF v q, νpgq " gg ´1. For all f 1 v P SpG 1 pF v qq, we define a function r

f 1 v P SpS n`1 pF v qq by r f 1 v psq " ż H 1 1 pFvq ż GL n`1 pFvq f 1 v ph 1 p1, gh 2 qqdh 2 dh 1 , g P GL n`1 pE v q, s " νpgq if n is even and r f 1 v psq " ż H 1 1 pFvq ż GL n`1 pFvq f 1 v ph 1 p1, gh 2 qqη 1 v pgh 2 qdh 2 dh 1 , g P GL n`1 pE v q, s " νpgq
if n is odd. In any case, this defines a surjective linear map SpG 1 pF v qq Ñ SpS n`1 pF v qq.

The group GL n acts on S n`1 by conjugation and we shall say that an element s P S n`1 is regular semisimple if it is so for this action i.e. if the GL n -conjugacy class of s is closed and the stabilizer of s in GL n is trivial. We will denote by S n`1,rs the open subset of regular semisimple elements in S n`1 . For all s P S n`1,rs pF v q we define the orbital integral associated to s as the distribution

Ops, ϕ 1 q " ż GLnpFvq ϕ 1 ph ´1shqη Ev{Fv phqdh, ϕ 1 P SpS n`1 pF v qq
For γ " pγ 1 , γ 2 q P G 1 rs the element s " νpγ ´1 1 γ 2 q P S n`1 is regular semisimple and this defines a surjection G 1 rs ։ S n`1,rs . Moreover, for all γ P G 1 rs pF v q and all f 1 P SpG 1 pF v qq, we have the equality

Opγ, f 1 q " # Ops, r f 1 q if n is even, η 1 v pγ ´1 1 γ 2 qOps, r f 1 q if n is odd.
where s " νpγ ´1 1 γ 2 q. We can also define orbital integrals on the space Sps n`1 pF v qq. Call an element X P s n`1 regular semisimple if it is so for the adjoint action of GL n . Let us denote by s n`1,rs the open subset of regular semisimple elements. Then, for all X P s n`1,rs pF v q we can define an orbital integral by

OpX, ϕ 1 q " ż GLnpFvq ϕ 1 ph ´1X hqη Ev{Fv phqdh, ϕ 1 P Sps n`1 pF v qq
The Cayley map c " c n`1 : X Þ Ñ p1 `Xqp1 ´Xq ´1 realizes a GL n -equivariant isomorphism between the open subsets s n`1 " tX P s n`1 ; detp1 ´Xq ‰ 0u and S n`1 " ts P S n`1 ; detp1 sq ‰ 0u. Let ω 1 Ă s n`1 pF v q and Ω 1 Ă S n`1 pF v q be open and closed GL n pF v q-invariant neighborhoods of 0 and 1 respectively such that the Cayley map restricts to an analytic isomorphism between ω 1 and Ω 1 preserving measures. For all ϕ 1 P SpS n`1 pF v qq, we define a function ϕ 1 6 P Sps n`1 pF v qq by

ϕ 1 6 pXq " " ϕ 1 pcpXqq if X P ω 1 0 otherwise
Then for all X P ω 1 rs " ω 1 X s n`1,rs pF v q and all ϕ 1 P SpS n`1 pF v qq we have OpcpXq, ϕ 1 q " OpX, ϕ 1 6 q

Correspondence of orbits and transfer

We now recall the correspondence between orbits following [Zh1, §2.4]. We will denote by

H 1 1 zG 1 {H 1 2 , HzG{H, S n`1 {GL n and UpV q{UpW q the geometric quotients of G 1 , G, S n`1 and UpV q by H 1 1 ˆH1
2 , H ˆH, GL n and UpW q respectively (the last two actions being given by conjugation). We will also write pH 1 1 zG 1 {H 1 2 q rs , pHzG{Hq rs , pS n`1 {GL n q rs and pUpV q{UpW qq rs for the regular semisimple loci in these geometric quotients. These are the image of G 1 rs , G rs , S n`1,rs and UpV q rs by the natural projections. The maps pγ 1 , γ

2 q P G 1 Þ Ñ νpγ ´1 1 γ 2 q and pδ W , δ V q P G Þ Ñ δ ´1 W δ V induce isomorphisms H 1 1 zG 1 {H 1 2 » S n`1
{GL n and HzG{H » UpV q{UpW q and similarly for the regular semisimple loci. Moreover, there is a natural isomorphism (see [Zh1, §3.1])

p1q

H 1 1 zG 1 {H 1 2 » HzG{H which preserves the regular semisimple loci. For all field extension k of F we have pH 1 1 zG 1 {H 1 2 q rs pkq " H 1 1 pkqzG 1 rs pkq{H 1 2 pkq and HpkqzG rs pkq{Hpkq is a subset of pHzG{Hq rs pkq. The above isomorphism thus induces injections p2q

HpkqzG rs pkq{Hpkq ãÑ H 1 1 pkqzG 1 rs pkq{H 1 2 pkq and p3q

UpV q rs pkq{UpW qpkq ãÑ S n`1,rs pkq{GL n pkq

This last map admits the following explicit description. Choosing a basis of V whose last element is e we get an embedding UpV qpkq ãÑ GL n`1 pk b F Eq. By [Zh3, lemma 2.3] any regular semisimple element x P UpV q rs pkq is GL n pkb F Eq-conjugated to a regular semisimple element of S n`1 pkq which is unique up to GL n pkq-conjugation. The GL n pkq-conjugacy class of this element is exactly the image of x by the map (3).

We have a similar situation at the level of Lie algebras: we have a canonical isomorphism between geometric quotients p4q s n`1 {GL n » upV q{UpW q which preserves the regular semisimple loci ps n`1 {GL n q rs " s n`1,rs {GL n and pupV q{UpW qq rs " upV q rs {UpW q. For all field extension k of F this induces an injection p5q upV q rs pkq{UpW qpkq ãÑ s n`1,rs pkq{GL n pkq

We now define, following [Zh2, §4.1], two families of transfer factors

Ω v : G 1 rs pF v q Ñ C ˆand ω v : s n`1,rs pF v q Ñ C ˆ, v a place of F ,

satisfying the following conditions:

' For all v and all γ P G 1 rs pF v q (resp. all X P s n`1,rs pF v q) we have

Ω v ph 1 γh 2 q " η v ph 2 qΩ v pγq (resp. ω v ph ´1X hq " η Ev{Fv phqω v pXq) for all ph 1 , h 2 q P H 1 1 pF v q ˆH1
2 pF v q (resp. for all h P GL n pF v q); ' For all γ P G 1 rs pF q (resp. all X P s n`1,rs pF q), we have the product formula

ś v Ω v pγq " 1 (resp. ś v ω v pXq " 1)
where almost all terms in the product are equal to 1.

Let v be a place of F . For all s P S n`1,rs pF v q and all X P s n`1,rs pF v q, we set

p6q Ω v psq " η 1 v ´detpsq ´r n`1
2 s detpe n`1 , e n`1 s, . . . , e n`1 s n q p7q ω v pXq " η 1 v pdetpe n`1 , e n`1 X, . . . , e n`1 X n qq where e n`1 " p0, . . . , 0, 1q and η 1 v is the local component at v of the character η 1 : A Ê Ñ C êxtending η E{F that we fixed at the beginning. Note that (see the proof of [Zh1, lemma 3.5])

p8q Ω v pcpXqq " η v p2q npn`1q{2 ω v pXq
for all X P s n`1,rs pF v q sufficiently close to 0. Finally for all γ " pγ 1 , γ 2 q P G 1 rs pF v q, we set

Ω v pγq " " Ω v psq if n is even, η 1 v pγ ´1 1 γ 2 qΩ v psq if n is odd. where s " νpγ ´1 1 γ 2 q.
For future reference, we record the following formula

p9q Ω v pγqOpγ, f 1 q " Ω v psqOps, r f 1 q
for all f 1 P SpG 1 pF v qq, all γ P G 1 rs pF v q and where we have set s " νpγ ´1 1 γ 2 q.

Using the transfer factors we can define the notion of matching functions as follows. Let v be a place of F . We say that functions f 1 P SpG 1 pF v qq and f P SpGpF v qq match each other or that they are smooth transfer of each other if we have the equality Opδ, f q " Ω v pγqOpγ, f 1 q for every δ P G rs pF v q and γ P G 1 rs pF v q whose orbits correspond to each other via the embedding (2). Similarly, we say that functions ϕ 1 P Sps n`1 pF v qq and ϕ P SpupV qpF v qq match each other or that they are smooth transfer of each other if we have the equality OpX, ϕ W q " ω v pY qOpY, ϕ 1 q for every X P upV q rs pF v q and Y P s n`1,rs pF v q whose orbits correspond to each other via the embedding (5).

If the place v splits in E then the existence of smooth transfer is easy (see [Zh1, Proposition 2.5]). One of the main achievement of [Zh1] was to prove the existence of smooth transfer for nonarchimedean places. In other words, we have the following (see [Zh1, Theorem 2.6]):

Theorem 3.4.1 (Zhang) Let v be a nonarchimedean place of F .

(i) For every function f 1 P SpG 1 pF v qq there exists a function f P SpGpF v qq, matching f 1 and conversely for every function f P SpGpF v qq there exists a function f 1 P SpG 1 pF v qq which matches f .

(ii) For every function ϕ 1 P Sps n`1 pF v qq there exists a function ϕ P SpupV qpF v qq matching ϕ 1 and conversely for every function ϕ P SpupV qpF v qq there exists a function ϕ 1 P Sps n`1 pF v qq which matches ϕ.

One of the main ingredient in the proof of Zhang was the following (see [Zh1, Theorem 4.17])

Theorem 3.4.2 (Zhang) Let v be any place of F . If ϕ P SpupV qpF v qq and ϕ 1 P Sps n`1 pF v qq match then so do ǫp 1 2 , η Ev{Fv , ψq npn`1q{2 p ϕ and p ϕ 1 .

In a recent paper Xue ( [Xue]) was able to extend Zhang results to obtain a weak version of smooth transfer at archimedean places (which however is sufficient for many global applications). In order to state Xue's result in the generality that we need, we have to vary the hermitian space W . Let us denote momentarily the groups G and H by G W and H W . To every hermitian space W 1 of rank n over E we can associate similar groups G W 1 and H W 1 and replacing W by W 1 everywhere in the previous paragraphs we have a notion of matching between test functions in SpG 1 pF v qq and test functions in SpG W 1 pF v qq, v a place of F . Then, Xue's result reads as follows:

Theorem 3.4.3 (Xue) Let v be an archimedean place of F . Then, the space of functions f 1 P SpG 1 pF v qq admitting a smooth transfer to SpG W 1 pF v qq for all hermitian space W 1 of rank n over E is dense in SpG 1 pF v qq. Similarly, the space of functions f P SpG W pF v qq such that there exists a function f 1 P SpG 1 pF v qq matching f and with the property that for all hermitian space W 1 of rank n over E for which

W 1 v fi W v the function f 1 match 0 P SpG W 1 pF v qq, is dense in SpGpF v qq.
Parallel to the existence of smooth transfer there is also a fundamental lemma for the case at hand. This fundamental lemma has been proved by Yun in (sufficiently large) positive characteristic [Yu] and extended to the characteristic zero case by J.Gordon in the appendix to [Yu]. It can be stated as follows:

Theorem 3.4.4 (Yun-Gordon) There exists a constant cpnq depending only on n such that for every place v of F of residual characteristic greater than cpnq the following holds: If W v admits a self-dual lattice L v then the function

f 1 v " 1 K 1 v match the function f v " 1 GpOvq where we have defined a model of G over O v using the self-dual lattice L v , otherwise the function f 1 v " 1 K 1 v match the function f v " 0.
3.5 Transfer of spherical characters, Zhang's conjecture and Ichino-Ikeda conjecture

We shall say of a function f P SpGpAqq that it is nice if it satisfies the following conditions:

' f is factorizable: f " b v f v ;
' There exists a nonarchimedean place v 1 of F and a finite union

Ω 1 of cuspidal Bernstein components of GpF v 1 q such that f v 1 P SpGpF v 1 qq Ω 1 ;
We define the notion of nice function on G 1 pAq similarly. To state the next theorem, we will need to consider more than one pair of hermitian spaces pW, V q. Recall that we have an orthogonal decomposition V " W ' K Ee where pe, eq " 1. To any (isomorphism class of) ndimensional hermitian space W 1 over E we associate the pair pW

1 , V 1 q where V 1 " W 1 ' K Ee.
Using such a pair we may construct a new pair pH W 1 , G W 1 q of reductive groups over F where H W 1 " UpW 1 q and G W 1 " UpW 1 q ˆUpV 1 q. Note that if W 1 " W then pH W 1 , G W 1 q " pH, Gq.

The discussions of the previous paragraphs of course apply verbatim to pH W 1 , G W 1 q. In particular we have a notion of matching between functions in SpG W 1 pF v qq and SpG 1 pF v qq, v a place of F , and a notion of nice function on G W 1 pAq. We shall say that a nice function f 1 P SpG 1 pAqq match a tuple of nice functions pf W 1 q W 1 , f W 1 P SpG W 1 pAqq and W 1 running over all isomorphism classes of n-dimensional hermitian spaces over E, if for all W 1 and all place v of F the functions f 1 v and f W 1 v match. Comparing two (simple) global relative trace formulae that have been proposed by Jacquet and Rallis ([JR]), Zhang proves the following (see [Zh1, Proposition 2.10] and [Zh2, Theorem 4.3]):

Theorem 3.5.1 (Zhang) Let π be an abstractly H-distinguished cuspidal automorphic representation of GpAq such that BCpπq is cuspidal and for all non-split archimedean place v the representation π v is tempered. Let f P SpGpAqq and f 1 P SpG 1 pAqq be nice functions and assume that there exists a tuple pf W 1 q W 1 , f W 1 P SpG W 1 pAqq, of nice functions matching f 1 such that f W " f . Then, we have J π pf q " 2 ´2Lp1, η E{F q ´2I BCpπq pf 1 q Remark 3.5.2 The above theorem differs slightly from [Zh1, Proposition 2.10] and [Zh2, Theorem 4.3] for the following reasons:

• First we are not assuming that our test functions are supported in the regular semisimple locus (this is one of the requirement that Zhang imposes on his 'nice' functions);

• We are using test functions that are not necessarily compactly supported (since they are only rapidly decreasing, i.e. in the Schwartz space, at the archimedean places). This is necessary if we want to apply this theorem in conjunction with Xue's result (Theorem 3.4.3) as the dense subspace of 'transferable' test functions that he constructs has no reason to consists of compactly supported functions;

• We have drop the condition that π is supercuspidal at one split places but we add the assumption that π must be tempered at all non-split archimedean places.

This last point is only minor: dropping the condition of π being supercuspidal at one split place can be done by slightly modifying Zhang's original argument when he separates contributions in the spectral side of the simple trace formulas and using the recent extension by Ramakrishnan of his 'mild Tchebotarev theorem for GLpnq' [Ra]. Moreover, here we assume that π is tempered at all non-split archimedean places in order to have a result independent of the local Gan-Gross-Prasad conjecture for generic L-packets at archimedean places (this conjecture is currently only known for tempered L-packets at these places, see §2.4), this conjecture was granted as a working hypothesis in [Zh2]. The first point is more serious and to get rid of this assumption on the support we have to use the recent works of Zydor [Zy] on regularization of the geometric side of the Jacquet-Rallis trace formulae and Chaudouard-Zydor [CZ] on extending the transfer to singular orbital integrals. Finally, the extension to rapidly decreasing functions (at the archimedean places) is an easy matter using basic estimates on these functions. A convenient way to do this is to introduce some norms on the automorphic quotient rGs " GpF qzGpAq. We give definitions and basic properties of these norms in the appendix. Also, for convenience of the reader, we provide in appendix A a full proof of Theorem 3.5.1 using the aforementioned results of Zydor and Chaudouard-Zydor Thanks to the theory of Rankin-Selberg convolution due to Jacquet, Piatetski-Shapiro and Shalika ( [JPSS]), for every cuspidal automorphic representation π of GpAq whose base change is cuspidal we know a factorization of the global spherical character I BCpπq . More precisely, if f 1 P SpG 1 pAqq is completely factorizable, we have (see [Zh2, Proposition 3.6]) p1q I BCpπq pf 1 q " Lp1, η E{F q 2 Lp1{2, BCpπqq Lp1, π, Adq

ź v I 6 BCpπqv pf 1 v q
An immediate consequence of this factorization of Theorem 3.5.1 and of the multiplicity one theorems of Aizenbud-Gourevitch-Rallis-Schiffmann [AGRS] of of Jiang-Sun-Zhu [JSZ] is the following:

Corollary 3.5.3 Let π be a globally H-distinguished (i.e. such that J π ‰ 0) cuspidal automorphic representation of GpAq satisfying the two following conditions:

• For all non-split archimedean place v of F , the representation π v is tempered;

• There exists a split nonarchimedean place v 0 such that π v 0 is supercuspidal.

Then for all place v 1 of F different from v 0 where π is tempered, there exists a constant Cpπ v 1 q P C such that for all pair pf v 1 , f 1 v 1 q P SpGpF v 1 qq ˆSpG 1 pF v 1 qq of matching functions with the property that f 1 v 1 has a matching test function f W 1 v 1 P SpG W 1 pF v 1 qq for all hermitian space W 1 of rank n, we have

J πv 1 pf v 1 q " Cpπ v 1 qI BCpπv 1 q pf 1 v 1 q
Remark 3.5.4 Note that the condition of matching of the function f 1 v 1 is empty if v 1 is nonarchimedean (by Theorem 3.4.1) or splits in E.

Proof: Let A v 1 denote the adeles outside of v 1 and let f v 1 " ś v‰v 1 P SpGpA v 1 qq be a factorizable test function. By the multiplicity one results of [AGRS] and [JSZ] and 3.2 (1), there exists a constant C P C such that

J π pf v 1 b f v 1 q " CJ πv 1 pf v 1 q
for all f v 1 P SpGpF v 1 qq. Since J π ‰ 0 we may choose the function f v 1 so that C ‰ 0. Moreover, up to replacing f v 0 by its projection to SpGpF v 0 qq Ω 0 , where Ω 0 denotes the Bernstein component of π v 0 , we may assume that f v 0 P SpGpF v 0 qq Ω 0 . Then, for all f v 1 P SpGpF v 1 qq the function f " f v 1 b f v 1 is nice. By Theorem 3.4.3 of Xue we can also arrange f v 1 such that for all non-split archimedean place v the function f v admits a transfer f 1 v P SpG 1 pF v qq which itself admits a transfer to SpG W 1 pF v qq for all rank n hermitian space W 1 over E. By Theorem 3.4.1 of Zhang and our choice of f v 1 at non-split archimedean places, we can find a factorizable test function f 1 v 1 " ś v‰v 1 f 1 v P SpG 1 pA v 1 qq matching f v 1 and moreover admitting a matching to SpG W 1 pA v 1 qq for all W 1 . Since v 0 splits in E, there exists an isomorphism G 1 v 0 » G v 0 ˆGv 0 so that BCpπ v 0 q " π v 0 b π _ v 0 and then every function

ϕ 1 " ϕ 1 b ϕ 2 P SpG 1 pF v 0 qq » SpGpF v 0 qq b SpGpF v 0 qq match the function ϕ 1 ˚ϕ_ 2 P SpGpF v 0 qq
where ϕ _ 2 pgq :" ϕ 2 pg ´1q and ˚denotes the convolution product. From this we easily infer that we can choose f 1 v 0 P SpG 1 pF v 0 qq Ω 0 ˆΩ_ 0 , where Ω _ 0 is the Bernstein component dual to Ω 0 . Then, for all f 1 v 1 P SpG 1 pF v 1 qq the function f

1 :" f 1 v 1 b f 1 v 1 is nice. Now the result follows from Theorem 3.5.1 applied to f " f v 1 b f v 1 and f 1 " f 1 v 1 b f 1 v 1 where pf v 1 , f 1 v 1 q P SpGpF v 1 qq ˆSpG 1 pF v 1
qq is any pair of matching functions with f 1 v 1 satisfying the condition of the statement (Note that the assumption that π v 0 is supercuspidal implies that BCpπq is cuspidal).

In [Zh2, conjecture 4.4], Zhang makes the following conjecture Conjecture 3.5.5 Let v be a place of F and let π v " π n,v b π n`1,v be an irreducible tempered unitary H v -distinguished representation of GpF v q. Then, for all matching functions f P SpGpF v qq and f 1 P SpG 1 pF v qq, we have

I BCpπv q pf 1 v q " κ v pπ v qLp1, η Ev{Fv q ´1J πv pf v q the constant κ v pπ v q being given by κ v pπ v q " |τ | pdn`d n`1 q{2 Ev ˆǫp1{2, η Ev{Fv , ψ v q η 1 v p´2τ q ˙npn`1q{2 ω BCpπn,vq pτ q
where ω BCpπn,v q denotes the central character of BCpπ n,v q and d n " `n 3 ˘, d n`1 " `n`1 3 ˘.

Remark 3.5.6 The above conjecture actually differs slightly from [Zh2,conjecture 4.4]. Indeed, there is a discrepancy in the definition of the constant κ v pπ v q. In loc. cit. there is an extra factor η v pdiscpW qq and the factor η 1 v p´2τ q is replaced by η 1 v pτ q. This discrepancy seems to come from lemma 9.1 of [Zh2] on the compatibility between the transfer factors on the group and on the Lie algebra (see §3.4(8)). Of course, this difference has no impact for global applications since in any case if π is an automorphic representation then ś v κ v pπ v q " 1.

Obviously, we may deduce from the conjunction of the above conjecture, of Theorems 3.5.1, 3.4.1 and 3.4.3 and of the factorization (1) some instances of the Ichino-Ikeda conjecture (as stated in the introduction). In [Zh2], Zhang was able to verify conjecture 3.5.5 in certain particular cases (see [Zh2, Theorem 4.6]). More precisely, he proves the conjecture when either

• The place v splits in E;

• v is nonarchimedean, π v is unramified and the residue characteristic of v is sufficiently large;

• v is nonarchimedean and π v is supercuspidal.

The main goal of this paper is to prove conjecture 3.5.5 for all nonarchimedean places v.

Namely, we prove Theorem 3.5.7 Conjecture 3.5.5 holds for all nonarchimedean place v of F .

As in [Zh2], this theorem has consequences for the Ichino-Ikeda conjecture. Namely, we will deduce from it the following Theorem 3.5.8 Assume that all the archimedean places of F split in E and let π be a cuspidal automorphic representation of GpAq which is everywhere tempered and such that there exists a nonarchimedean place v of F with BCpπ v q is supercuspidal. Then conjecture 1.0.1 holds for π.

The proofs of Theorems 3.5.7 and 3.5.8 will be given in §4.4 and §4.6.

A globalization result

Until the end of this paragraph, we make the following assumption the hermitian space W is anisotropic This means that H " UpW q is an anisotropic group over F .

Let v 1 be a nonarchimedean place of F which is inert in E and let S be a finite set of nonarchimedean places of F which split in E. Let σ be a unitary supercuspidal representation of GpF S q. Recall that T emp H pG v 1 q denotes the set of (isomorphism classes of) tempered irreducible HpF v 1 q-distinguished representations π 1 of GpF v 1 q (see §2.4). Let Irr v 1 ,σ,H pGq be the set of irreducible representations π 1 P IrrpG v 1 q for which there exists a cuspidal automorphic representation π of GpAq which is globally H-distinguished (i.e. such that J π ‰ 0) such that π v 1 » π 1 and π S » σ b χ for some unramified character χ P Ψ unit pG S q. The goal of this section is to prove the following result:

Proposition 3.6.1 The set Irr v 1 ,σ,H pGq X T emppG v 1 q is dense in T emp H pG v 1 q.
The proof of this proposition follows closely that of Corollary A.8 in [ILM, appendix A]. We will need a lemma which is the analog of lemma A.2 of loc. cit. Before stating it we need to introduce some more notations.

Let P " MN be a parabolic subgroup of G v 1 and let σ be a square-integrable representation of MpF v 1 q. We will say that the tempered representation i

Gv 1 P σ of GpF v 1 q is regular if for all w P W pG v 1 , Mq we have wσ fi σ. Recall that this implies that the representation i Gv 1 M σ is irreducible. We will denote by T emp reg pG v 1 q the set of all regular tempered representations of GpF v 1 q. It is an open subset of T emppG v 1 q. Recall that in §2.3 for all c ą 0 we have defined subsets Irr ďc pUpW q v 1 q and Irr ďc pUpV q v 1 q of IrrpUpW q v 1 q and IrrpUpV q v 1 q respectively. In what follows, we set Irr ďc pG v 1 q " Irr ďc pUpW q v 1 q b Irr ďc pUpV q v 1 q and Irr unit,ďc pG v 1 q " Irr unit pG v 1 q X Irr ďc pG v 1 q. Lemma 3.6.2 Let 0 ă c ă 1 2 . Then, T emp reg pG v 1 q is open in Irr unit,ďc pG v 1 q (for the Fell topology).

Proof: The proof is the same as in [START_REF] Ichino | On the formal degrees of square-integrable representations of odd special orthogonal and metaplectic groups[END_REF]lemma A.2] the key fact being that the real exponents of tempered representations of unitary groups are all half integers. In loc. cit. the authors use the work of Muic on generic square-integrable representations of classical groups ( [Mui]) to deduce this fact for tempered generic representations. However, as already noted in [START_REF] Ichino | On the formal degrees of square-integrable representations of odd special orthogonal and metaplectic groups[END_REF]Remark A.3], the same result holds for all tempered representation thanks to the work of Moeglin and Moeglin-Tadic on classification of square-integrable representations of classical groups ([Moe1], [MT]). Note that the basic assumption made by Moeglin and Tadic (see [START_REF] Moeglin | Construction of discrete series for classical p-adic groups[END_REF]§2] for a precise statement) to prove their classification is now known since it follows from the canonical normalization of intertwining operators for unitary groups due to Mok ([Mok,Proposition 3.3.1]) and Kaletha-Minguez-Shin-White ([KMSW, lemma 2.2.3]) together with the classical reducibility criterion of §5.4], [Sil2, lemma 1.2; lemma 1.3]). For quasi-split unitary groups, a different proof has been given by Moeglin ([Moe2]) using twisted endoscopy. For a proof of the basic assumption for quasisplit symplectic and orthogonal groups using the normalization of intertwining operators see [START_REF] Xu | On the cuspidal support of discrete series for p-adic quasisplit SppNq and SOpNq[END_REF]Proposition 3.2].

Proof of Proposition 3.6.1: By [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case, prepublication 2015 [Beu2]--------: Endoscopie et conjecture locale raffinée de Gan-Gross-Prasad pour les groupes unitaires[END_REF]Corollary 8.6.1], the closure of T emp H pG v 1 q is an union of connected components of T emppG v 1 q. Hence T emp H,reg pG v 1 q :" T emp H pG v 1 q X T emp reg pG v 1 q is dense in T emp H pG v 1 q. Let π 1 P T emp H,reg pG v 1 q. It is sufficient to show that π 1 belongs to the closure of Irr v 1 ,σ,H pGq X T emppG v 1 q. Since σ is HpF S q-distinguished (see §3.2), by [SV] Theorem 6.2.1 and Theorem 6.4.1 we know that π 1 and σ belong to the support of the Plancherel measures for L 2 pHpF v 1 qzGpF v 1 qq and L 2 pHpF S qzGpF S qq respectively. From [START_REF] Sakellaridis | Periods and harmonic analysis on spherical varieties[END_REF]Theorem 16.3.2], it follows that there exists a sequence of globally H-distinguished automorphic representations π n of GpAq such that π n,v 1 Ñ π 1 and π n,S Ñ σ for the Fell topology. Since σ b Ψ unit pG S q is open in Irr unit pG S q we have π n,S P σ b Ψ unit pG S q for n sufficiently large. This implies that π n,v 1 belongs to Irr v 1 ,σ,H pGq and π n , BCpπ n q are cuspidal for n sufficiently large.

Set c " 1 2 ´1 pn`1q 2 `1 . By Lemma 2.3.2, π n,v 1 belongs to Irr unit,ďc pG v 1 q for n sufficiently large. Hence, by Lemma 3.6.2, π n,v 1 P T emp H,reg pG v 1 q for n sufficiently large and this ends the proof of the proposition.

Proof of Zhang's conjecture

In this section we will prove Theorem 3.5.7 and Theorem 3.5.8. As Theorem 3.5.7 has already been proved by Zhang at every split place v, we only need to prove it at every nonarchimedean place v of F which is inert in E. Fix such a place v. We will now drop all the index v: E{F "

E v {F v ,G " G v , H " H v , G 1 " G 1 v , H 1 1 " H 1 1,v , H 1 2 " H 1 2,v , ψ " ψ v , ψ E " ψ E,v
and so on. Also, to ease notation we will just write s " s n`1 . Finally, we will now use unnormalized Haar measures (see §2.5). In particular, Theorem 3.5.7 now takes the following form (see [Zh2,lemma 4.7]):

Theorem 4.0.1 Let π " π n b π n`1 be a H-distinguished irreducible tempered representation of GpF q. Then, for all matching functions f P SpGpF qq and f 1 P SpG 1 pF qq, we have

I BCpπq pf 1 q " κpπqJ π pf q where κpπq " |τ | pdn`d n`1 q{2 E ˆǫp1{2, η E{F , ψq η 1 p´2τ q ˙npn`1q{2
ω BCpπnq pτ q 4.1 A result of Zhang on truncated local expansion of the spherical character I Π

In this section we recall a result of Zhang [Zh2] on the existence of truncated local expansion for the spherical characters I Π . This result is the main ingredient in the proof by Zhang of some particular cases of conjecture 3.5.5. It will also play a crucial role in the proof of Theorem 3.5.7. It is a regular nilpotent element for the GL n pF q-action by conjugation (see [Zh2, lemma 6.1]). Zhang has defined a regularized orbital integral µ ξ ´over the orbit of ξ ´(see [Zh2, definition 6.10]). It is a GL n pF q-invariant linear form ϕ P SpspF qq Þ Ñ µ ξ ´pϕq which coincide with the usual orbital integral when the support of ϕ intersect the orbit of ξ ´in a compact set.

For all X " ˆA u v w ˙P s n`1 pF q, we define ∆ ´pX q :" det `v, vA, . . . , vA n´1 Note that (see §3.4 ( 7)) p1q ωpXq " ηp´1q n η 1 p∆ ´pX qq for all X P s rs pF q and p2q ∆ ´pξ ´q " p´1q npn´1q{2 τ npn`1q{2

Let r ą m 1 ą m ą 0 be positive integers. In [Zh2, definition 8.1], Zhang defines a notion of pm, m 1 , rq-admissible test functions on G 1 pF q. They span a finite dimensional subspace of SpG 1 pF qq. In what follows when we say that pm, m 1 , rq is sufficiently large, we shall mean that m is sufficiently large, that m 1 is sufficiently large depending on m and that r is sufficiently large depending on pm, m 1 q. Recall that in §3.3 we have, using a Cayley map, associated to any function f 1 P SpG 1 pF qq a function f 1 6 on spF q. Also, in §2.5 we have defined a certain Fourier transform ϕ Þ Ñ p ϕ on SpspF qq. We extract from [Zh2] the two following results (see Lemma 8.8, Theorem 8.5 of [Zh2] and their proofs):

Proposition 4.1.1 (Zhang) Let U and Z be relatively compact neighborhood of 1 and 0 in G 1 pF q and ps{GL n qpF q respectively. Then, if pm, m 1 , rq is sufficiently large, for every pm, m 1 , rq-admissible function f 1 we have Supppf 1 q Ď U and the function X P Z rs Þ Ñ η 1 p∆ ´pX qqOpX, p f 1 6 q is constant and equal to η 1 p∆ ´pξ ´qqµ ξ ´p p f 1 6 q. Moreover, we can find a pm, m 1 , rq-admissible function f 1 such that µ ξ ´p p f 1 6 q ‰ 0.

Theorem 4.1.2 (Zhang) Let Π " Π n b Π n`1 be an irreducible tempered representation of G 1 pF q. Then, if pm, m 1 , rq is sufficiently large (depending on Π) we have the equality

I Π pf 1 q " |τ | pdn`d n`1 q{2 E
ω Πn pτ qµ ξ ´p p f 1 6 q for all pm, m 1 , rq-admissible function f 1 , where d n " `n 3 ˘and ω Πn denotes the central character of Π n .

A direct consequence of Proposition 4.1.1 and Theorem 4.1.2 is the following: Corollary 4.1.3 Let C Ď T emppG 1 q be a compact subset and let U and Z be relatively compact neighborhood of 1 and 0 in G 1 pF q and ps{GL n qpF q respectively.. Then, there exists a test function f 1 P SpG 1 pF qq satisfying the following conditions:

(i) Supppf 1 q Ď U and the function X P Z rs Þ Ñ η 1 p∆ ´pX qqOpX, p f 1 6 q is constant and equal to η 1 p∆ ´pξ ´qqµ ξ ´p p f 1 6 q;

(ii) µ ξ ´p p f 1 6 q ‰ 0; (iii) For all Π P C we have the equality

I Π pf 1 q " |τ | pdn`d n`1 q{2 E ω Πn pτ qµ ξ ´p p f 1 6 q
Proof: For all r ą m 1 ą m ą 0, let us denote by Crm, m 1 , rs the set of Π P C such that the equality

I Π pf 1 q " |τ | pdn`d n`1 q{2 E ω Πn pτ qµ ξ ´p p f 1 6 q
holds for all pm, m 1 , rq-admissible function f 1 . Note that Crm, m 1 , rs is a closed subset of C. Obviously, by Proposition 4.1.1, it suffices to show that if pm, m 1 , rq is sufficiently large then Crm, m 1 , rs " C and for that we may assume C to be connected. By Theorem 4.1.2 we have ď

m 0 ą0 č měm 0 ď m 1 0 ąm č m 1 ěm 1 0 ď r 0 ąm 1 č rěr 0 Crm, m 1 , rs " C
Now, by Baire category theorem, this implies that for pm, m 1 , rq sufficiently large the set Crm, m 1 , rs is not meager i.e. it has nonempty interior (since it is closed). By connectedness of C and analyticity of Π Þ Ñ I Π this implies Crm, m 1 , rs " C and this ends the proof.

Weak comparison of local spherical characters

Proposition 4.2.1 For all π P T emp H pGq there exists a nonzero constant Cpπq P C such that for all matching functions f P SpGpF qq and f 1 P SpG 1 pF qq we have

J π pf q " CpπqI BCpπq pf 1 q
Moreover, the function π P T emp H pGq Þ Ñ Cpπq is analytic.

Proof: Assume that we have proved the existence of a constant Cpπq as in the proposition for a dense set of π in T emp H pGq. We claim that the proposition can be deduced from this. Indeed, for all π P T emp H pGq we can define a constant Cpπq as follows: choose any set pf, f 1 q P SpGpF qqˆSpG 1 pF qq of matching functions such that I BCpπq pf 1 q ‰ 0 (the existence of such a pair follows from Theorem 3.4.1 and Theorem 4.1.2) and set Cpπq " J π pf qI BCpπq pf 1 q ´1. Of course this constant may a priori depend on the choice of f and f 1 but it follows from the analyticity of π Þ Ñ J π and Π Þ Ñ I Π and our assumption that in fact it is independent of such a choice. Still by analyticity of the spherical characters the equality of the proposition is true for all π P T emp H pGq and all pair of matching functions pf, f 1 q and the function π P T emp H pGq Þ Ñ Cpπq is analytic. Moreover it is nowhere zero since for all π P T emp H pGq there exists f P SpGpF qq such that J π pf q ‰ 0 and there exists a f 1 P SpG 1 pF qq matching f (by Theorem 3.4.1).

We now prove the existence of a dense subset of π satisfying the proposition. To this end we will use Proposition 3.6.1. We first need to globalize the situation at hand. Let

• E{F be a quadratic extension of number fields such that all archimedean places of F are nonsplit in E and v 1 be a place of

F such that E v 1 {F v 1 » E{F ;
• W a n-dimensional hermitian space over E such that for all archimedean place v of F the group UpWq v is anisotropic (in particular W is anisotropic);

-W v 0 » W .
We will set V " W ' K Ee where pe, eq " 1 (so that V v 1 » V ), H " UpWq and G " UpVq. Let v 0 be two nonarchimedean places of F which split in E and let σ be a supercuspidal representations of GpF v 0 q. Applying Proposition 3.6.1 to S " tv 0 u, we deduce the existence of a dense subset D Ă T emp H pGq such that for all π P D there exists a globally H-distinguished cuspidal automorphic representation Π of GpAq such that Π v 1 » π and Π v 0 is supercuspidal. Applying Corollary 3.5.3 to such representations Π, which we remark are necessarily tempered at all archimedean places since UpWq is anisotropic there, we deduce for all π P D there exists a constant Cpπq as in the proposition.

A local trace formula

Let f 1 , f 2 P SpGpF qq. Then

(1) The integral

Jpf 1 , f 2 q " ż HpF q ż HpF q ż GpF q f 1 ph 1 gh 2 qf 2 pgqdgdh 1 dh 2 is absolutely convergent.
This follows from [Zh1, Lemma A.4].

By [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case, prepublication 2015 [Beu2]--------: Endoscopie et conjecture locale raffinée de Gan-Gross-Prasad pour les groupes unitaires[END_REF]Proposition 8.2.1(v)], we have

p2q Jpf 1 , f 2 q " ż T emp H pGq J π pf 1 qJ π _ pf 2 qdµ G pπq
where dµ G pπq denotes the Harish-Chandra-Plancherel measure of GpF q. We also have (see §3.3 for the definition of r

f i ) Jpf 1 , f 2 q " ż U pW qpF q ż U pV qpF q r f 1 ph ´1xhq r f 2 pxqdxdh
Let us fix open and closed UpW qpF v q-invariant neighborhoods ω Ă upV qpF v q and Ω Ă UpV qpF v q of 0 and 1 as in §3.3. Assume that r f 2 is supported in Ω. Then, we have (see §3.3 for the definition of f i, 6)

Jpf 1 , f 2 q " ż U pW qpF q ż upV qpF q f 1,6 ph ´1X hqf 2,6 pXqdXdh
By Fourier transform, we also have

Jpf 1 , f 2 q " ż U pW qpF q ż upV qpF q q f 1,6 ph ´1X hq p f 2,6 pXqdXdh
By [Zh1, Corollary 4.5] this expression is absolutely convergent so that we can switch the two integrals and we finally get

p3q Jpf 1 , f 2 q " ż upV qpF q q f 1,6 pXqOpX, p f 2,6 qdX
Summing up, from ( 2) and ( 3) we deduce that

p4q ż T emp H pGq J π pf 1 qJ π _ pf 2 qdµ G pπq " ż upV qpF q q f 1,6 pXqOpX, p f 2,6 qdX
for all functions f 1 , f 2 P SpGpF qq with Suppp r f 2 q Ď Ω.

We will also need the following formula (see [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case, prepublication 2015 [Beu2]--------: Endoscopie et conjecture locale raffinée de Gan-Gross-Prasad pour les groupes unitaires[END_REF]Proposition 8.2.1(iv)]):

p5q r f p1q " ż T emp H pGq J π pf qdµ G pπq
for all f P SpGpF qq.

4.4 Proof of Theorem 4.0.1

We keep the notations of the previous paragraph. Let f P SpGpF qq. Denote by C Ď T emp H pGq the support of the function π Þ Ñ J π pf q. It is a compact set and so is its dual C _ . Let us denote by Y the image of Ω in pHzG{HqpF q " pUpV q{UpW qqpF q and by Z the image of the support of q f 6 in pupV q{UpW qqpF q. We will denote by the same letters the corresponding subsets in pH 1 1 zG 1 {H 1 2 qpF q and ps{GL n qpF q respectively (see §3.4 (1) and ( 4)). By Corollary 4.1.3, there exists a function f 1 P SpG 1 pF qq such that

• f 1 is supported in the inverse image of Y in G 1 pF q;
• The function Y P Z rs Þ Ñ η 1 p∆ ´pY qqOpY, p f 1 6 q is constant and equal η 1 p∆ ´pξ ´qqµ ξ ´p p f 1 6 q;

• µ ξ ´p p f 1 6 q ‰ 0;

• For all Π P BCpC _ q we have

I Π pf 1 q " |τ | pdn`d n`1 q{2 E ω Πn pτ qµ ξ ´p p f 1 6 q
Let f 2 P SpGpF qq be a function matching f 1 (whose existence is guaranteed by Theorem 3.4.1). Up to multiplying f 2 by the characteristic function of Y we may assume that r f 2 is supported in Ω. By §3.4(8) the functions ηp2q npn`1q{2 f 1 6 and f 2,6 match. Hence, by Theorem 3.4.2 so do ηp2q npn`1q{2 p f 1 6 and ǫp 1 2 , η E{F , ψq npn`1q{2 p f 2,6 . Thus, by 4.1(1) and 4.1(2), for all X P Ω rs , denoting by Y P Z rs the corresponding element, we have ǫp 1 2 , η E{F , ψq npn`1q{2 OpX, p f 2,6 q " ηp2q npn`1q{2 ηp´1q n η 1 p∆ ´pY qqOpY, p f 1 6 q " ηp2q npn`1q{2 ηp´1q n η 1 p∆ ´pξ ´qqµ ξ ´p p f 1 6 q " η 1 p´2τ q npn`1q{2 µ ξ ´p p f 1 6 q Consequently, we have

p1q ˆǫp 1 2 , η E{F , ψq η 1 p´2τ q ˙npn`1q{2 ż upV qpF q q f 6 pXqOpX, p f 2,6 qdX " µ ξ ´p p f 1 6 q ż upV qpF q q f 6 pXqdX " µ ξ ´p p f 1 6 qf 6 p0q " µ ξ ´p p f 1 6 q r f p1q " µ ξ ´p p f 1 6 q ż T emp H pGq J π pf qdµ G pπq
where the last equality follows from 4.3(5).

On the other hand, by Proposition 4.2.1, for all π P C we have

J π _ pf 2 q " Cpπ _ qI BCpπ _ q pf 1 q " Cpπ _ q|τ | pdn`d n`1 q{2 E ω BCpπ _ qn pτ qµ ξ ´p p f 1 6 q It follows that p2q ż T emp H pGq J π pf qJ π _ pf 2 qdµ G pπq " µ ξ ´p p f 1 6 q|τ | pdn`d n`1 q{2 E ż T emp H pGq J π pf qCpπ _ qω BCpπ _ qn pτ qdµ G pπq
Since µ ξ ´p p f 1 6 q ‰ 0, we deduce from (1), (2) and 4.3(4) that p3q ż

T emp H pGq J π pf q pκpπ _ qCpπ _ q ´1q dµ G pπq " 0 for all f P SpGpF qq and where

κpπq " |τ | pdn`d n`1 q{2 E ˆǫp 1 2 , η E{F , ψq η 1 p´2τ q ˙npn`1q{2 ω BCpπqn pτ q
Let ZpGq denotes the Bernstein center of G (see [BD]). We may see ZpGq as a unital subalgebra of the space of continuous functions on T emppGq which moreover acts on SpGpF qq with the property that J π pz ‹ f q " zpπqJ π pf q for all z P ZpGq, all f P SpGpF qq and all π P T emppGq. Thus by (3), we get p4q ż

T emp H pGq zpπqJ π pf q pκpπ _ qCpπ _ q ´1q dµ G pπq " 0 for all f P SpGpF qq and all z P ZpGq. For all π P T emppGq let us denote by χ π the 'infinitesimal character' of π, that is the algebra homomorphism χ π : ZpGq Ñ C given by χ π pzq :" zpπq for all z P ZpGq. Set Y :" SpecmaxZpGq. Then, the map J π pf q pκpπ _ qCpπ _ q ´1q dµ χ pπqdµ Y pχq " 0 for all f P SpGpF qq and all z P ZpGq where we have set T emp H,χ pGq :" T emp H pGq X T emp χ pGq. Since the restriction of ZpGq to Y temp is self-adjoint (i.e. for all z P ZpGq there exists z ˚P ZpGq such that z ˚pχq " zpχq for all χ P Y temp ), separates points and for all f P SpGpF qq the function π P T emppGq Þ Ñ J π pf q is compactly supported, by ( 6) and the Stone-Weierstrass theorem for µ Y -almost all χ P Y temp , we get ż

T emppGq Ñ Y , π Þ Ñ χ π is
T emp H,χ pGq J π pf q pκpπ _ qCpπ _ q ´1q dµ χ pπq " 0 for all f P SpGpF qq. Since T emp χ pGq is finite, we have

ż T emp H,χ pGq J π pf q pκpπ _ qCpπ _ q ´1q dµ χ pπq " ÿ πPT emp H,χ pGq J π pf q pκpπ _ qCpπ _ q ´1q µ χ pπq
for µ Y -almost all χ P Y temp and all f P SpGpF qq. Finally, as the spherical characters J π for π P T emp H,χ pGq are linearly independent, we get that pκpπ _ qCpπ _ q ´1q µ χ pπq " 0 for µ Y -almost all χ P Y temp and all π P T emp H,χ pGq which by (5) means that κpπqCpπq " 1 for µ G -almost all π P T emp H pGq. Since π P T emp H pGq Þ Ñ κpπqCpπq is analytic and the support of µ G is precisely T emppGq, it follows that κpπqCpπq " 1 for all π P T emp H pGq which is what we wanted.

A first corollary

In this paragraph we prove the following corollary to Theorem 4.0.1. It will be needed for the proof of Theorem 3.5.8.

Corollary 4.5.1 Let f P SpGpF qq and f 1 P SpG 1 pF qq. Then f and f 1 match if and only if we have I BCpπq pf 1 q " κpπqJ π pf q for all π P T emp H pGq and where as before we have set

κpπq " |τ | pdn`d n`1 q{2 E ˆǫp 1 2 , η E{F , ψq η 1 p´2τ q ˙npn`1q{2 ω BCpπqn pτ q
Proof: The necessity follows from Theorem 4.0.1. Let us prove the sufficiency. Thus, we assume that I BCpπq pf 1 q " κpπqJ π pf q for all π P T emp H pGq and we want to prove that f and f 1 match. Let f 2 P SpGpF qq be a function which matches f 1 (such a function exists by Theorem 3.4.1). Then, by Theorem 4.0.1 and the assumption, for all π P T emp H pGq we have J π pf q " J π pf 2 q. Thus, by 4.3(2), for all f 1 P SpGpF qq we have p1q

Jpf 1 , f q " Jpf 1 , f 2 q Let x 0 P UpV q rs pF q and choose f 1 so that r f 1 is supported in a small neighborhood of x 0 in UpV q rs pF q. Then a formal manipulation, which is justified since everything is absolutely convergent here, yields

p2q Jpf 1 , f q " ż U pV qpF q f 1 pxqOpx, f qdx and p3q Jpf 1 , f 2 q " ż U pV qpF q f 1 pxqOpx, f 2 qdx
Since the functions x P UpV q rs pF q Þ Ñ Opx, f q and x P UpV q rs pF q Þ Ñ Opx, f 2 q are locally constant (see [Zh1, Proposition 3.13]), we may choose f 1 such that

ż U pV qpF q f 1 pxqOpx, f qdx " Opx 0 , f q and ż U pV qpF q f 1 pxqOpx, f 2 qdx " Opx 0 , f 2 q.
For such a choice, it follows from (1), ( 2) and (3) that Opx 0 , f q " Opx 0 , f 2 q. As x 0 was arbitrary we see that f and f 2 have the same regular semisimple orbital integrals and hence f and f 1 match.

4.6 Proof of Theorem 3.5.8

We may assume that π is abstractly HpAq-distinguished (hence for all v, π v is H v -distinguished). By the multiplicity one theorems of Aizenbud-Gourevitch-Rallis-Schiffmann [AGRS] of of Jiang-Sun-Zhu [JSZ], there exists a constant C such that

J π pf q " C ź v J 6 πv pf v q
for all factorizable test function f " ś v f v P SpGpAqq and we only need to show that C " 4 ´1Lpπ, 1{2q. For this, it is sufficient to prove the existence of f P SpGpAqq with

J π pf q " 4 ´1Lpπ, 1 2 q ź v J 6 πv pf v q
and J 6 πv pf v q ‰ 0 for all place v. Let v 1 be a (nonarchimedean) place of F such that BCpπ v 1 q is supercuspidal (such a place exists by assumption). This implies in particular that BCpπq is cuspidal and π v 1 supercuspidal (by Lemma 2.3.1). By Theorem 3.5.1, Theorem 3.5.7 and identity 3.5 (1), it suffices to show that there exist a nice function f 1 P SpG 1 pAqq matching a tuple of nice functions pf

W 1 q W 1 , f W 1 P SpG W 1 pAqq, such that I BCpπvq pf 1 v q ‰ 0 for all v. Let Ω 1 be the Bernstein component of BCpπ v 1 q in G 1 pF v 1 q. Then, we can find a function f 1 v1 P SpG 1 pF v 1 qq Ω 1 such that I BCpπv 1 q pf 1 v1 q ‰ 0. Let f 1 " ś v f 1 v be a factorizable test function in SpG 1 pAqq such that f 1 v 1 " f 1 v1 and I BCpπvq pf 1 v q ‰ 0
for all other place v. By construction, the function f 1 is nice. Moreover, by the assumption on archimedean places, Theorem 3.4.1 and Theorem 3.4.4, we can find a tuple of functions pf W 1 q W 1 , f W 1 P SpG W 1 pAqq, matching f 1 . Of course, the functions f W 1 have no reason of being nice. However, by Lemma 2.3.1 for all W 1 there exists a finite union Ω W 1 1 of cuspidal Bernstein components of G W 1 pF v 1 q such that Ω W 1 1 contains all irreducible representation of G W 1 pF v 1 q whose base change belongs to Ω 1 and by Corollary 4.5.1 up to replacing

f W 1 v 1 by its projection f W 1 v 1 ,Ω W 1 1 onto SpG W 1 pF v 1 qq Ω W 1 1 we may assume that f W 1 v 1 " f W 1 v 1 ,Ω W 1 1 .
Then, for all W 1 the function f W 1 is nice and we are done.

A Compaison of relative trace formulae

The goal of this appendix is to provide a proof of Theorem 3.5.1. Inspired by [START_REF] Kottwitz | Harmonic analysis on reductive p-adic groups and Lie algebras[END_REF]§18], we start by introducing a convenient notion of norms on the adelic points of a variety over F .

A.1 Norms on adelic varieties

We will use the following convenient although not very precise notations. If f 1 , f 2 are positive valued functions on a set X we will write f 1 pxq ! f 2 pxq, for all x P X to mean that there exists a constant C ą 0 such that f 1 pxq ď Cf 2 pxq for all x P X. We will also write f 1 pxq ă f 2 pxq, for all x P X or just f 1 ă f 2 if there exist constants C, d ą 0 such that f 1 pxq ď Cf 2 pxq d for all x P X. Finally, we will write

f 1 pxq " f 2 pxq, for all x P X or simply f 1 " f 2 if f 1 ă f 2 and f 2 ă f 1 .
Let X be a set. By an abstract norm on X we will just mean a function . : X Ñ r1, `8r. Let . 1 and . 2 be two abstract norms on X. We will say that . 1 dominates . 2 if x 2 ă x 1 for all x P X and we will say that . 1 and . 2 are equivalent if . 1 dominates . 2 and . 2 dominates . 1 i.e. if . 1 " . 2 . Let f : X Ñ Y be a map between two sets and let . Y be an abstract norm on Y . Then, we define an abstract norm f ˚ . Y on X by

f ˚ x Y :" f pxq Y for all x P X.
Let F be a number field, A its ring of adeles and for every place v of F we will denote by F v the corresponding completion. For every finite extension F 1 of F , we will write A F 1 " Ab F F 1 for the adele ring of F 1 . We fix algebraic closures F of F and F v of F v . For every place v of F , we will denote by |.| v the normalized absolute value on F v . This absolute value extends uniquely to an absolute value on F v that we will also denote by |.| v . We define

A F " F b F A " lim Ý Ñ F 1 A F 1
where the limits is taken over all finite subextension of F {F . Let X be an algebraic variety over F (i.e. a reduced separated scheme of finite type over F ). Since X is of finite type we have XpA F q " lim Ý Ñ F 1

XpA F 1 q. We are going to define certain (equivalence classes of) abstract norms on XpA F q and XpF v q, v a place of F . The definition of these abstract norms in mainly inspired by [START_REF] Kottwitz | Harmonic analysis on reductive p-adic groups and Lie algebras[END_REF]§18]. First assume that X is affine and choose a set tP 1 , . . . , P k u of generators for the F -algebra F rXs. For every place v of F we define an abstract norm . Xv on XpF v q by

x Xv :" max p1, |P 1 pxq| v , . . . , |P k pxq| v q for all x P XpF v q. Choosing a different generating set tQ 1 , . . . , Q ℓ u would yield another family of abstract norms p . 1 Xv q v with the following properties:

• For all place v, . In particular, for all v the equivalence class of the abstract norm . Xv does not depend on the particular generating set chosen and by a norm on XpF v q we will mean any abstract norm in this equivalence class. Note that the norms p . Xv q v constructed above are Galois invariant in the sense that σ x Xv " x Xv for all x P XpF v q and all σ P GalpF v {F v q. This allows us to extend the norm . Xv to XpKq for any finite extension K of F v : choosing any embedding ι : K ãÑ F v we set

x Xv :" ιpxq Xv for any x P XpKq.

We now define an abstract norm . X on XpA F q as follows. Let x P XpA F q and choose a finite extension F 1 {F such that x P XpA F 1 q. Then, we may write x as a product ś w x w , x w P XpF 1 w q, indexed by the set of places of F 1 and we set

x X :" ź v ¨ź w|v x w rF 1 w :Fvs Xv '1{rF 1 :F s
where the first product is over the set of places v of F and the second product is over the set of places w of F 1 above v. Note that this definition does not depend on the choice of the finite extension F 1 {F such that x P XpA F 1 q. Moreover, choosing a different generating set would give an equivalent abstract norm. By a norm on XpA F q we will mean any abstract norm in this equivalence class. We will assume from now on that for any affine variety X over F we have fixed norms . X on XpA F q and norms . Xv on XpF v q, for all place v of F , as above (i.e. by choosing a finite generating set of F rXs). In the particular case X " A 1 (the affine line) we will even take

x A 1 v " maxp1, |x| v q
for all place v of F and for all x P XpF v q " F v . Note that by the product formula we then have

p1q x A 1 " x ´1 A 1
for every x P F ˆ.

We continue to assume that X is affine. Let U " pU i q iPI be a finite covering of X by affine open subsets. We can define another abstract norm . Xv,U on XpF v q by

x Xv ,U :" mint x U i,v ; i P I such that x P U i pF v qu, x P XpF v q

Then we have (see [START_REF] Kottwitz | Harmonic analysis on reductive p-adic groups and Lie algebras[END_REF]Proposition 18.1(6)])

• For all place v, . Xv,U " . Xv ;

• There exists d ą 0 such that for almost all place v, we have . 1{d

Xv ď . Xv,U ď . d

Xv

• For all place v, . Xv,U is Galois invariant.

We can also define an abstract norm . X,U on XpA F q by sending x P XpA F 1 q, F 1 {F a finite extension, to

x X,U :" ź v ¨ź w|v

x w rF 1 w :Fvs Xv,U '1{rF 1 :F s Then . X,U is a norm on XpA F q (i.e. . X,U " . X ). This allows us to extend the definition of the abstract norms . X and . Xv to any algebraic variety X over F as follows. Let X be such a variety and choose a finite covering U " pU i q iPI of X by affine open subsets. Then the definitions of the abstract norms . X,U and . Xv,U as above still make sense and we will set . X :" . X,U , . Xv :" . Xv,U . Choosing a different covering V of X would give abstract norms p . 1

Xv q v and . 1 X satisfying the following • For all v, . 1

Xv " . Xv and there exists d ą 0 such that for almost all v we have .

1{d Xv ď . 1 Xv ď . d Xv • . 1 X " . X .
In particular the equivalence class of . X (resp. of . Xv for v a place of F ) doesn't depend on the particular choice of U and by a norm on XpA F q (resp. on XpF v q) we will mean any abstract norm in this equivalence class. From now on we assume that every algebraic variety over F has been equipped with a family of norms as above (i.e. by choosing a finite covering U by affine open subsets). If X is affine we also assume that these norms have been defined using the trivial covering U " tXu so that they coincide with the ones we already fixed. If G is an affine algebraic group over F we also define a norm . rGs on rGs " GpF qzGpAq by x rGs :" inf γPGpF q γx G for all x P rGs.

Proposition A.1.1 Let X and Y be algebraic varieties over F and let G be an affine algebraic group over F .

(i) The function x Þ Ñ x X is locally bounded on XpAq.

(ii) Let f : X Ñ Y be a morphism of algebraic varieties. Then f ˚ . Y ă . X . In particular we have gg 1 G ă g G g 1 G and g ´1 G " g G for all g, g 1 P GpA F q. If moreover f is a finite morphism (in particular if it is a closed embedding) then f ˚ . Y " . X .

(iii) Let f P F rXs and let X f " Dpf q be the principal open subset of X defined by the nonvanishing of f . Then, we have

x X f " x X f pxq ´1 A 1
for all x P X f pA F q.

(iv) Let U Ă X be an open subset and assume that X is quasi-affine. Then, we have

x U " x X for all x P UpF q. More generally if p : X Ñ Y is a regular map and Y is quasi-affine then for all open subset V Ă Y we have

x p ´1pV q " x X for all x P p ´1pV qpA F q such that ppxq P V pF q.

(v) If X is quasi-affine then there exists d ą 0 such that ÿ xPXpF q

x ´d X converges. (viii) Assume that G is connected and reductive and let S Ă GpAq be a Siegel domain (see [START_REF] Moeglin | Spectral decomposition and Eisenstein series. Une paraphrase de l'Écriture[END_REF]§I.2.1]). Then, we have g G " g rGs for all g P S.

(ix) Let H ă G be a closed subgroup such that G{H is quasi-affine (this is the case if for example H is reductive or if there is no nontrivial morphism H Ñ G m ). Then, we have

x rHs " x rGs for all x P rHs. In particular, by (vi) there exists d ą 0 such that the integral ż rHs

x ´d rGs dx converges.

Proof:

(i) This follows from the fact that for all v the function x P XpF v q Þ Ñ x Xv is locally bounded and the fact that for almost all v we have x v Xv " 1 for all x v P XpO v q.

(ii) It suffices to prove the following

• For all place v, we have f ˚ . Yv ă . Xv and if f is finite . Xv ă f ˚ . Yv ;

• There exists d ą 0 such that for almost all place v, we have f ˚ . Yv ď . d Xv and if f is finite .

1{d Xv ď f ˚ . Yv .
Assume that the norms p . Xv q v have been defined using the finite affine open covering U " pU i q iPI of X and that the norms p . Yv q v have been defined using the finite affine open covering V " pV j q jPJ of Y . Up to refining U, we may assume that for all j P J there exists a subset Ipjq Ă I such that f ´1pV j q " Ť iPIpjq U i . If moreover f is finite then for all j P J, the open subset f ´1pV j q is affine so that we may assume that U " pf ´1pV j qq jPJ . This allows us to reduce to the case where both X and Y are affine in which case the statement can be proved much the same way as [START_REF] Kottwitz | Harmonic analysis on reductive p-adic groups and Lie algebras[END_REF]Proposition 18.1(1)].

(iii) Assume that the family of norms p . Xv q v has been defined using the finite affine open covering U " pU i q iPI of X. Set U i,f " U i X X f for all i P I. Obviously, we may assume that the family of norms p . X f,v q v has been defined using the affine open covering U f " pU i,f q iPI of X f and that

x U i,f,v " max ` x U i,v , |f pxq| ´1 v for
all place v of F and all x P U i,f pF v q. Then we have

b x U i,v maxp1, |f pxq| ´1 v q ď x U i,f,v ď x U i,v maxp1, |f pxq| ´1 v q
for all place v of F and all x P U i,f pF v q. It follows that

a x Xv maxp1, |f pxq| ´1 v q ď x X f,v ď x Xv maxp1, |f pxq| ´1 v q
for all place v of F and all x P X f pF v q. Taking the product we get

a x X f pxq ´1 A 1 ď x X f ď x X f pxq ´1 A 1
for all x P X f pA F q.

(iv) We prove the second claim which is more general than the first. Let p : X Ñ Y be a regular map, V Ă Y an open subset and assume that Y is quasi-affine. It already follows from (ii) that we have

x X ă x p ´1pV q for all x P XpA F q. Hence, it suffices to prove the reverse inequality for all x P p ´1pV qpA F q such that ppxq P V pF q. As Y is quasi-affine, up to replacing V by a finite affine open cover we may assume that V " Y f for some f P F rY s. Still denoting by f its image in F rXs we then have p ´1pV q " X f . Then by (ii), (iii) and (1) we have

x X f " x X f pxq ´1 A 1 " x X f pxq A 1 ă x X
for all x P X f pA F q such that f pxq P F ˆ. This implies the desired inequality.

(v) As there exists an open embedding of X into an affine variety, by (iv) we immediately reduce to the case where X itself is affine. Then, we can find a closed embedding ι : X ãÑ A n for some integer n ą 0 and by (ii) we are reduced to prove the statement for X " A n and then eventually for X " A 1 in which case the statement is easily checked.

( gh G for all 9 g P GpAq{HpAq. Consequently, the convergence of the last integral above for d 1 sufficiently large follows from the assumption on G{H.

Let P 0 be a minimal parabolic subgroup of G over F . Then, by the Iwasawa decomposition there exists a compact subgroup K Ă GpAq such that GpAq " P 0 pAqK. As K is compact, by (i) the norm . G is bounded on K. Moreover, we have

ż GpAq g ´d G d r g " ż P 0 pAq ż K kp 0 ´d G dkd r p 0
for suitable (right) Haar measures d r p 0 and dk on P 0 pAq and K respectively. By (i) and (ii), it follows that we may assume G " P 0 . Let P 0 " M 0 N 0 be a Levi decomposition. Then the Haar measure d r p 0 decomposes as d r p 0 " dn 0 dm 0 according to the decomposition P 0 pAq " N 0 pAqM 0 pAq. Moreover we have n 0 m 0 P 0 " m 0 M 0 n 0 N 0 for all pm 0 , n 0 q P M 0 pAq ˆN0 pAq. This allows us to reduce to the case where G " M 0 or G " N 0 . If G " N 0 then it admits a composition series whose successive quotients are isomorphic to G a and we are reduced to the case G " G a where the statement can be checked directly. Assume now that G " M 0 and denote by A 0 the maximal split torus in the center of G. Then A 0 is isomorphic to a product of G m and M 0 {A 0 is anisotropic. Thus, we only need to treat the cases G " G m and G anisotropic. Once again if G " G m the statement can be checked directly. Now if G is anisotropic we write

p2q ż GpAq g ´d G dg " ż GpF qzGpAq ÿ γPGpF q γg ´d G dg By (i), (ii) and (v) if d is sufficiently large the function g P GpAq Þ Ñ ÿ γPGpF q γg ´d G
is locally bounded. Moreover by [BHC] the quotient GpF qzGpAq is compact. The result then follows from (2).

(vii) Let d ą 0. As p is a G-torsor and Y is separated, the action of G on X is free i.e. the regular map

G ˆX Ñ X ˆX pg, xq Þ Ñ pgx, xq
is a closed embedding. By (ii), it follows that there exists c ą 0 such that g G ! gx c X x c X for all pg, xq P GpAq ˆXpAq. Let d 0 , d 1 ą 0. Using the same trick as in the first part of the proof of (vi), we show that for d 1 " d 0 `d1 we have

ż GpAq gx ´d1 X d r g ! ˆinf gPGpAq gx X ˙d1 ´d0 ż GpAq g ´d1 {c G d r g
for all x P XpAq. By (vi), the last integral above is convergent for d 1 sufficiently large. Moreover, by (ii) we have ppxq Y ă inf gPGpAq gx X for all x P XpAq. Thus, the statement follows by choosing d 0 sufficiently large (depending on d 1 ).

(viii) Let T 0 be a maximal split torus in R F {Q G. Then, up to conjugating S by an element of GpF q, there exists a compact subset Ω Ă GpAq such that S Ď T 0 pRqΩ Hence, by (i) and (ii) it is sufficient to show that a G " a rGs for all a P T 0 pRq. The inequality a rGs ď a G is obvious so that we only need to show that a G ă a rGs for all a P T 0 pRq. Let χ 1 , . . . , χ n be a basis of X ˚pT 0 q. Then we have

a G " max `|χ 1 paq|, |χ 1 paq| ´1, . . . , |χ n paq|, |χ n paq| ´1f
or all a P T 0 pRq. Thus, it suffices to show that for all character χ P X ˚pT 0 q we have |χpaq| ă a rGs for all a P T 0 pRq. Let χ be such a character and let V be a rational representation of R F {Q G containing a nonzero vector v 0 such that a.v 0 " χpaqv 0 for all a P T 0 . Let v 1 , . . . , v r be a basis of

V . Set V A " V b Q A and define a nonnegative function |.| V on V A by |λ 1 v 1 `. . . `λr v r | V " ź v maxp|λ 1,v | v , . . . , |λ r,v | v q
for all λ 1 , . . . , λ r P A. Note that there exist nonzero vectors v P V A such that |v| V " 0 but that, however, if

v P V F " V b Q F is nonzero then |v| V ě 1. We have |v| V ă v V F for all v P V A
, where V F is considered as an algebraic variety over F . Note that G acts on V F via the natural embedding G ãÑ pR F {Q Gq F . Hence, by (ii) we have

|χpaq| d ď |χpaq| d |γv 0 | V " |γav 0 | V ă γav 0 V F ă γa G
for all a P T 0 pRq, γ P GpF q and where we have set d " rF : Qs. Taking the infimum over γ yields the desired inequality.

(ix) By (ii), the inequality x rGs ă x rHs is obvious so that we only need to show that x rHs ă x rGs for all x P rHs. We will need the following fact (which is where the assumption G{H quasi-affine is crucial):

(3) There exists a (set-theoretic) section s : pHzGq pF q Ñ GpF q such that spxq G ă x HzG for all x P pHzGq pF q.

Proof of (3): Let p : G Ñ HzG be the natural surjection. Since HzG is quasiaffine, by (iv), it suffices to find an open covering pU i q iPI of HzG and sections s i : U i pF q Ñ p ´1pU i qpF q such that s i pxq p ´1pU i q ă x U i for all i P I and all x P U i pF q. It is even sufficient to construct one non-empty open subset U Ď HzG and a section s U : UpF q Ñ p ´1pU qpF q such that s U pxq p ´1pU q ă x U for all x P UpF q. Indeed, if such a pair pU, s U q exists, we can find a finite number of translates U i :" Uγ i , γ i P GpF q, i P I, covering HzG and then the sections s i : U i pF q Ñ p ´1pU i qpF q given by s i pxq :" spxγ ´1 i qγ i , for all i P I and x P U i pF q, satisfy the desired condition. As p : G Ñ HzG is a torsor for the étale topology, we can find a non-empty open subset U Ď HzG and a finite étale map U 1 Ñ U such that U 1 ˆU G is the trivial G-torsor over U 1 . In particular there exists a regular section s U 1 : U 1 Ñ U 1 ˆU G. Let s 0 : UpF q Ñ U 1 pF q be any set-theoretic section. Then, by (ii) and since U 1 Ñ U is finite, the section s U :" pr 2 ˝sU 1 ˝s0 : UpF q Ñ p ´1pU qpF q, where pr 2 denotes the projection U 1 ˆU G Ñ G, satisfies the desired condition.

Let s : pG{HqpF q Ñ GpF q be a section as in (3). We have γ G{H ă γh G , for all pγ, hq P GpF q ˆHpAq (by (ii)) and thus

inf γ 1 PHpF q γ 1 h H ď spγq ´1γh H ă spγq G γh G ă γ G{H γh G ă γh G
for all pγ, hq P GpF q ˆHpAq. Taking the infimum over γ it follows that inf γ 1 PHpF q γ 1 h H ă inf γPGpF q γh G " h rGs for all h P HpAq. Hence, it suffices to show p4q h rHs ă inf γPHpF q γh H for all h P HpAq. Denote by N H the unipotent radical of H and let L H be a Levi component of H (so that H " L H ˙NH ). As rN H s is compact we are easily infer from (i) and (ii) that ℓn rHs " ℓ rL H s and inf γPHpF q γℓn H " inf γ L PL H pF q γ L ℓ L H for all ℓ P L H pAq and all n P N H pAq. We are thus reduced to prove (4) in the case where H is reductive. Denote by H 0 the connected component of the identity in H. Since HpF q{H 0 pF q, HpF q{H 0 pF q are finite and HpAq{H 0 pAq is compact we may assume that H " H 0 . Let T 0 be a maximal split torus of R F {Q H and let χ P X ˚pT 0 q. By (viii), it is sufficient to show that p5q |χpaq| ă γa H for all g P rGs (see [START_REF] Moeglin | Spectral decomposition and Eisenstein series. Une paraphrase de l'Écriture[END_REF]Corollary I.2.12]). By the open mapping theorem, for all compactopen subgroup K of GpA f q the topology on A cusp prGsq K is also induced by the family of seminorms φ d,u " sup gPrGs |pRpuqφqpgq| g d rGs , d ą 0, u P Upg 8 q

There is another natural family of seminorms inducing the given topology on A cusp prGsq K . Let C G P Upg 8 q and C K P Upk 8 q denote the Casimir elements of GpA 8 q and K 8 respectively and set ∆ " C 2 G `C2 K . Then the family of Sobolev seminorms φ k " Rp1 `∆q k φ L 2 prGsq , k ě 0, φ P A cusp prGsq where . L 2 prGsq denotes the L 2 -norm on L 2 prGsq, induce on A cusp prGsq K its LF topology (this follows essentially from strong approximation together with the Sobolev lemma). We will denote L 2 cusp prGsq the completion of A cusp prGsq in L 2 prGsq. It is a unitary representation of GpAq which decomposes discretely.

Let now f P SpGpAqq be a Schwartz function on GpAq. We denote as usual by K f px, yq " ÿ γPGpF q f px ´1γyq, x, y P rGs the automorphic kernel of f . Note that the sum is absolutely convergent by Proposition A.1.1. Let π Ă A cusp prGsq be a cuspidal automorphic representation and let B π be an orthonormal basis of (the completion of) π for the L 2 scalar product. We define K f,π px, yq " ÿ φPBπ pRpf qφqpxqφpyq, x, y P rGs Then K f,π is the orthogonal projection of K f , seen as a function in x, onto π or, what amounts to the same, the orthogonal projection of K f , seen as a function of y, onto π. Finally, letting B Ă A cusp prGsq be an orthonormal basis of L 2 cusp prGsq, we set K f,cusp px, yq " ÿ φPB pRpf qφqpxqφpyq, x, y P rGs Note that

K f,cusp " ÿ π K f,π
where the sum is over a complete family of orthogonal cuspidal automorphic representations π Ă A cusp prGsq (all of them if there is multiplicity one).

Proposition A.1.2 Let H 1 , H 2 Ă G be closed algebraic subgroups such that the quotients G{H 1 and G{H 2 are quasi-affine. Then the integral where the left sum is absolutely convergent and the right sum is over the set of cuspidal automorphic representations π of GpAq.

(ii) Assume that f 1 P SpG 1 pAqq is a nice function (see §3.5). Then the expressions defining Ipf 1 q and Opγ, f 1 q, γ P B 1 pF q, are absolutely convergent and we have the equalities ÿ γPB 1 pF q Opγ, f 1 q " Ipf 1 q " ÿ Π 2 ´2Lp1, η E{F q ´2I Π pf 1 q where the left sum is absolutely convergent and the right sum is over the set of cuspidal automorphic representations Π of G 1 pAq whose central character is trivial on Z H 1 2 pAq.

Proof: We only prove (ii) the proof of (i) being similar.

Set r G 1 " G 1 {Z H 1 2 and define r f 1 P Sp r G 1 pAqq by r f 1 pr gq "

ż Z 1 H 2 pAq f 1 pzr gqdz
Then we have, at least formally,

Ipf 1 q " ż rH 1 1 s ż rH 1 2 {Z H 1 2 s K r f 1 ph 1 , h 2 qηph 2 qdh 2 dh 1
As f 1 is a nice function we have K r f 1 " K r f 1 ,cusp . Thus, by Proposition A.1.2, it follows that the expression defining Ipf 1 q is absolutely convergent and that

Ipf 1 q " ÿ Π ż rH 1 1 s ż rH 1 2 {Z H 1 2 s K r f 1 ,Π ph 1 , h 2 qηph 2 qdh 2 dh 1
where the sum is over the set of all cuspidal automorphic representations Π of G 1 pAq with a central character trivial on Z H 1 2 pAq. We would like to identify the term indexed by Π above with the global spherical character I Π pf 1 q. However, we don't have equality on the nose because the scalar products used to define I Π pf 1 q and K r f 1 ,Π are not the same. More precisely, I Π pf 1 q is defined using the Petersson scalar product p., .q P et of section 3 whereas in the definition of K r f 1 ,Π we have used the scalar product pφ, φ 1 q L 2 pr r G 1 sq " ż r r G 1 s φpr gqφ 1 pr gqdr g " vol `ZG 1 pF qZ H 1 2 pAqzZ G 1 pAq ˘pφ, φ 1 q P et Thus, we get and the second equality of (ii) follows.

ż rH 1 1 s ż rH 1 2 {Z H 1 2 s K r f 1 ,Π
The first equality follows from standard formal manipulations. To justify these manipulations, we need to establish that the following expression is absolutely convergent (as a triple integral)

ż rH 1 1 s ż rH 1 2 s ÿ γPB 1 pF q K f 1 ,γ ph 1 , h 2 qηph 2 qdh 2 dh 1 " ż rH 1 1 s ż rH 1 2 {Z H 1 2 s ÿ γPB 1 pF q K r f 1 ,γ ph 1 , h 2 qηph 2 qdh 2 dh 1
where for all γ P B 1 pF q, K r f 1 ,γ is defined the same way as K f 1 ,γ . For this, by Proposition A.1.1 (v) and (ix), it suffices to show that for all d ą 0 we have an inequality

p1q K r f 1 ,γ ph 1 , h 2 q ! γ ´d B 1 h 1 ´d r r G 1 s h 2 ´d r r G 1 s
for all γ P B 1 pF q and all h 1 P rH 1 1 s, h 2 P rH 1 2 {Z H 1 2 s. Since f 1 is factorizable, we may write f 1 " f 1 8 b f 1 8 with f 1 8 P SpG 1 pF 8 qq and f 1 8 P SpG 1 pA 8 F qq. Let B 1 ãÑ V " A r be a closed embedding of B 1 into some affine space. For all ϕ P C 8 c pV pF 8 qq, we define f 1 ϕ :" pϕf 1 8 q b f 1 8 where we identify ϕ with a function on G 1 pF 8 q by composition with the projection G 1 pF 8 q Ñ B 1 pF 8 q and the embedding B 1 pF 8 q ãÑ V pF 8 q. Then, f 1 ϕ is again a nice function so that K r f 1 ϕ " K r f 1 ϕ ,cusp and, by A.1(8), for all d ą 0 there exists a continuous semi-norm ν d on SpG 1 pF 8 qq such that p2q K r f 1 ϕ px, yq ď ν d pϕf 1 8 q x ´d r r G 1 s y ´d r r G 1 s for all ϕ P C 8 c pV pF 8 qq and all x, y P rGs. Let Γ denote the intersection of B 1 pF q with the projection of the support of f 1 8 (a compact subset of B 1 pA 8 F q). Note that for all ϕ P C 8 c pV pF 8 qq, all γ P B 1 pF q and all ph 1 , h 2 q P H 1 1 pA F q ˆH1 2 pA F q, we have K r f 1 ϕ ,γ ph 1 , h 2 q " ϕpγqK r f 1 ,γ ph 1 , h 2 q and K r f 1 ,γ ph 1 , h 2 q " 0 if γ R Γ. Hence, by (2), to show (1) it suffices to construct a family pϕ γ q γPΓ of functions in C 8 c pV pF 8 qq satisfying the following two conditions

• For all γ P Γ, we have Supppϕ γ q X Γ " tγu and ϕ γ pγq " 1;

• For all d ą 0, the function γ P Γ Þ Ñ γ d B 1 ν d pϕ γ f 1 8 q is bounded.

There exists a lattice L Ă V pF 8 q containing Γ. Fix a function ϕ 0 P C 8 c pV pF 8 qq with the property that Supppϕ 0 q X L " t0u and ϕ 0 p0q " 1. For all v P L, define ϕ v P C 8 c pV pF 8 qq by ϕ v pxq " ϕ 0 px ´vq. We claim that the family pϕ γ q γPΓ satisfies the two conditions above. Indeed, the first condition is clear and for all d ą 0, there exist k ą 0 and two finite families pu i q iPI and pv i q iPI of elements of Upg 1 8 q such that ν d pϕf for all ϕ P C 8 c pV pF 8 qq. Thus, it suffices to show that for all u P Upg 1 8 q there exists ℓ ą 0 so that the function

γ P Γ Þ Ñ γ d B 1 sup gPG 1 pF8q
|pRpuqϕ γ qpgq| g ´ℓ G 1 is bounded. Fix u P Upg 1 8 q. Then, we can find a finite family pr j q jPJ of regular functions in C " R F {Q G 1 ‰ and a finite family pX j q jPJ of elements of the symmetric algebra of V pF 8 q such that, denoting by BpX j q the corresponding constant coefficients differential operators on V pF 8 q, we have Rpuqϕ " ÿ jPJ r j BpX j qϕ for all ϕ P C 8 c pV pF 8 qq. Since for each j P J the absolute value of r j is bounded by a constant times a power of the norm . G 1 , we are reduced to prove that for all X in the symmetric algebra of V pF 8 q there exists ℓ ą 0 such that

γ d B 1 sup gPG 1 pF8q
|BpXqϕ γ pgq| g ´ℓ G 1 ! 1 for all γ P Γ. By our choice of the functions pϕ γ q γPΓ and Proposition A.1.1(ii) we have γ B 1 ă g G 1 for all γ P Γ and all g P G 1 pF 8 q with ϕ γ pgq ‰ 0. Hence, we just need to show that for all X in the symmetric algebra of V pF 8 q the function γ P Γ Þ Ñ sup gPG 1 pF8q |BpXqϕ γ pgq| " sup vPB 1 pF8q |BpXqϕ γ pvq| is bounded. But this is obvious by the way we have defined the functions pϕ γ q γPΓ .

  continuous and proper. Let Y temp Ď Y be the image of this map and µ Y be the push-forward of the Plancherel measure µ G to Y temp . Then, by the disintegration of measures there exists a measurable mapping χ Þ Ñ µ χ from Y temp to the space of measures on T emppGq such that χ pπqdµ Y pχq for all continuous compactly-supported function ϕ : T emppGq Ñ C and such that for all χ P Y temp , µ χ is supported on T emp χ pGq :" tπ P T emppGq | χ π " χu. By (4), we get

(

  vi) Let d r g be a right Haar measure on GpAq. Then there exists d ą 0 such that the two integrals ż GpAq g ´d G d r g, ż rGs x ´d rGs dx converge. (vii) Assume that X carries a G-action and that we have a regular map p : X Ñ Y making X into a G-torsor over Y . Fix a right Haar measure d r g on GpAq. Then for all d ą 0 there exists d 1 ą 0 such that ż GpAq gx ´d1 X d r g ! ppxq ´d Y for all x P XpAq.

1

  Xv " . Xv ; • There exists d ą 0 such that for almost all place v, we have .

1{d Xv ď . 1 Xv ď . d Xv

  Hence it suffices to show that for d sufficiently large the last integral above is convergent. Assume that H is a closed distinguished subgroup of G isomorphic to G m or G a . We first show that if the statement is true for both H and G{H then it is true for G. For this we write for all d ą 0 and where d r h, d r 9g are suitable right Haar measures on HpAq and pG{HqpAq respectively (Note that pG{HqpAq " GpAq{HpAq). Let d 0 , d 1 ą 0. Setting d " d 0 `d1 , we get ż HpAq gh ´d G d r h ď ˆinf GpAq. By (ii), there exists c ą 0 such that h H ! gh c G g c G for all ph, gq P HpAq ˆGpAq. Hence, HpAq gh ´d G d r h ! ˆinf By assumption for d 1 sufficiently large the last integral above is convergent. Thus, it only remains to show that for d 1 ą 0 sufficiently large the integral
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	converges. By (ii), we have 9 g G{H ă inf hPHpAq 9
	vi) Note that							
	ż	rGs	x ´d rGs dx ď	ż	rGs	γPGpF q ÿ	γx ´d G dx "	ż

GpAq g ´d G d r g for all d ą 0. H d r h for all g P GpAq. As the left hand side above is, as a function of g, invariant by right translation by HpAq we also get ż HpAq gh ´d G d r h ! ˆinf H d r h for all g P GpAq.

  ph 1 , h 2 qηph 2 qdh 2 dh 1 " vol `ZG 1 pF qZ H 1 2 pAqzZ G 1 pAq ˘´1 I Π pf 1 qBy 2.5(1), we havevol `ZG 1 pF qZ H 1 2 pAqzZ G 1 pAq ˘" vol `EˆAˆz A Lp1, η E{F q 2
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for all a P T 0 pRq and all γ P HpF q. Let V be a rational representation of R F {Q H containing a nonzero vector v 0 such that a.v 0 " χpaqv 0 for all a P T 0 . Fix a basis v 1 , . . . , v n of V and let |.| V be the nonnegative function on V A F " V b Q A F defined by

. . , |λ r,w | v q rF 1 w :Fvs '1{rF 1 :F s for all λ 1 , . . . , λ r P A F 1 , F 1 {F a finite extension. Note that |v| V ě 1 for all nonzero vector v P V F " V b Q F and |v| V ă v V F for all v P V A F . It follows that

for all pa, γq P T 0 pRq ˆHpF q. Taking the infimum over γ we get (5) and this ends the proof of (ix).

Let G be a connected reductive group over F . Fix a maximal compact subgroup K 8 of GpA 8 q and a Haar measure dg on GpAq. We will denote by Upg 8 q the universal enveloping algebra of (the complexification of) the Lie algebra of GpA 8 q. For simplicity we will assume that the split center of G is trivial. Denote by AprGsq the space of automorphic functions on rGs by which we mean functions φ : rGs Ñ C satisfying the following conditions

• φ is smooth: there exists a compact-open subgroup K of GpA f q such that φ is right K-invariant and for all g f P GpA f q the function g 8 P GpA 8 q Þ Ñ φpg 8 g f q is C 8 ;

• φ is uniformly of moderate growth: there exists d ą 0 such that for all u P Upg 8 q we have |pRpuqφqpgq| ! g d rGs for all g P GpAq.

Note that we don't impose any condition of K 8 -finiteness or z 8 -finiteness (where z 8 denotes the center of Upg 8 q). The space AprGsq is naturally equipped with a LF topology (see [START_REF] Beuzart-Plessis | A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case, prepublication 2015 [Beu2]--------: Endoscopie et conjecture locale raffinée de Gan-Gross-Prasad pour les groupes unitaires[END_REF]appendix A] for basic facts about LF vector spaces). As usual, we define A cusp prGsq to be the subspace of cuspidal functions in the following sense: φ P AprGsq is cuspidal if for all proper parabolic subgroup P " MN of G we have ż rN s

φpngqdn " 0 for all g P GpAq. The space A cusp prGsq is a closed subspace of AprGsq from which it inherits a LF topology and moreover every cuspidal function φ P A cusp prGsq is of rapid decay in the following sense: for all u P Upg 8 q and for all d ą 0 we have

the sum running over a complete family of orthogonal cuspidal automorphic representations, converges. We even have the stronger following result: let K 0 be a compact-open subgroup of GpA f q such that f is right K 0 -invariant and let B Ă A cusp prGsq K 0 be an orthonormal basis of L 2 cusp prGsq K 0 consisting of functions which are C K and C G eigenvectors, then the integral ż

Proof: The second statement is obviously stronger than the first since for every cuspidal automorphic representation π we can find an orthonormal basis of π K 0 consisting of C K ánd C G ´eigenvectors. Let B be an orthonormal basis of L 2 cusp prGsq K 0 as in the proposition. By Proposition A.1.1(ix) it suffices to prove that for all d ą 0 we have p7q ÿ φPB |pRpf qφqpxq||φpyq| ! x ´d rGs y ´d rGs for all x, y P rGs. Let d ą 0. Since the family of norms p . k q k generates the topology on A cusp prGsq K 0 , there exists k ą 0 such that |φpxq| ! φ k x ´d rGs for all φ P A cusp prGsq K 0 and all x P rGs.

For all φ P B, let us denote by λ K pφq, λ G pφq P R the eigenvalues of C K and C G acting on φ.

Let N be a positive integer. For all φ P B, we have

Rpf qφ " p1 `λG pφq 2 `λK pφq 2 q ´N Rpf pN q qφ where f pN q " p1 `∆q N f . Hence, we have

for all x, y P rGs and where . L 1 denotes the L 1 -norm on L 1 prGsq. By [Mu], for N " 1 the last sum above converges. This proves (7) and ends the proof of the proposition.

Remark A.1.3

• Fix f 8 P SpGpA 8 qq. Then, the proof of the proposition actually shows that for all d ą 0 there exists a continuous seminorm ν d on SpGpF 8 qq so that p8q

|K f8bf 8 ,cusp px, yq| ď ν d pf 8 q x ´d rGs y ´d rGs for all f 8 P SpGpF 8 qq and all x, y P rGs.

• We can prove the first part of the proposition directly by using the Selberg trick. Indeed, it suffices to show that the series

converges absolutely in A cusp prG ˆGsq or, what amounts to the same, that it converges absolutely in AprG ˆGsq. To prove this, we only need to show that the sum

converges absolutely for all x, y P rGs and is bounded uniformly in x, y. By a theorem of Dixmier-Malliavin ( [DM]), we may write f as a finite sum of convolutions f 1,i ‹ f 2,i , f 1,i , f 2,i P SpGpAqq, i " 1, . . . , k. By the Cauchy-Schwarz inequality, we have

for all π, all x, y P rGs and where we have set h j,i " f j,i ‹ f j,i where by definition f j,i pgq " f j,i pg ´1q. Thus, by another application of Cauchy-Schwarz, we get

for all x, y P rGs and the right hand side is uniformly bounded (even of rapid decay).

A.2 Relative trace formulae

We now return to the situation considered in section 3. We will use the same notations and normalization of measures as there (in particular our global Haar measures are Tamagawa measures). We define the following 'bases' (geometric quotients): B :" HzG{H and B 1 :" H 1 1 zG 1 {H 1 2 . These are affine varieties (as H, H 1 1 and H 1 2 are reductive). We set p : G Ñ B and p 1 : G 1 Ñ B 1 for the natural projections and p F , p 1 F for the corresponding maps at the level of F -points. For all test function f P SpGpAqq, f 1 P SpG 1 pAqq, δ P BpF q, γ P B 1 pF q, we set

Note that these sums are absolutely convergent by Proposition A.1.1 (v) and that

Whenever convergent, we define the following 'global orbital integrals'

and the following two expressions

Proposition A.2.1 (i) Assume that f P SpGpAqq is a nice function (see §3.5). Then the expressions defining Jpf q and Opδ, f q, δ P BpF q, are absolutely convergent and we have the equalities

Opδ, f q " Jpf q " ÿ π J π pf q

A.3 Proof of Theorem 3.5.1

Let f P SpGpAqq and f 1 P SpG 1 pAqq be nice functions and assume that there exists a tuple pf W 1 q W 1 , f W 1 P SpG W 1 pAqq, matching f 1 and such that f W " f . By Theorem 3.4.4, we may assume that f W 1 " 0 for almost all W 1 . There are natural isomorphisms H W 1 zG W 1 {H W 1 » B » B 1 for all W 1 (see §3.4). In order to compare the trace formulas of Proposition A.2.1, we need to know that for all δ P BpF q and all γ P B 1 pF q corresponding to each other via the previous bijection we have

Note that for γ regular semi-simple (i.e. such that the fiber over γ in G 1 pF q consists of regular semi-simple elements), this is a direct consequence of the fact that pf W 1 q W 1 matches f 1 (in this case there is at most one nonzero contribution in the left sum). To treat the general case, we need to use recent results of Zydor and Chaudouard-Zydor. More precisely, in [Zy] Zydor has defined, for δ P BpF q and γ P B 1 pF q, certain distributions

The definition of O Z pγ, .q is (roughly) as follows. let A be the standard maximal split torus in GL n and set a :" X ˚pAq b R. Then for T P a, g 1 P SpG 1 pAqq and γ P B 1 pF q, Zydor defines a certain 'truncated' kernel K T g 1 ,γ on rH 1 1 s ˆrH 1 2 s (see [Zy] §5.5, note that the o of loc. cit. corresponds to our γ and that the function f of loc. cit. corresponds not to g 1 but rather to its descent r g 1 to S n`1 pAq as in §3.3) and he shows that for T in a certain cone the integral O Z,T pγ, g 1 q :"

converges absolutely (see [START_REF] Zydor | Les formules des traces relatives de Jacquet-Rallis grossières[END_REF]Theorem 5.9]). The definition of K T g 1 ,γ is as a sum the main term being K g 1 ,γ and the remaining terms depending only on g 1 P for certain proper parabolic subgroup P " MU of G 1 where g 1 P pxq :"

Since f 1 is a nice function, we have f 1 P " 0 for all proper parabolic subgroup and thus K T f 1 ,γ " K f 1 ,γ and O Z,T pγ, f 1 q " Opγ, f 1 q for all T (remark that this also reproves the absolute convergence of Opγ, f 1 q of Proposition A.2.1). Finally, still for T in a certain cone, Zydor shows that the function T Þ Ñ O Z,T pγ, g 1 q is an exponential-polynomial whose purely polynomial term is constant ([Zy, Theorem 5.9]) and he defines O Z pγ, g 1 q to be this constant. Since O Z,T pγ, f 1 q " Opγ, f 1 q for all T , we also have O Z pγ, f 1 q " Opγ, f 1 q. The definition of O Z pδ, .q is similar and since the functions f W 1 are nice the same argument shows that O Z pδ, f W 1 q " Opδ, f W 1 q for all W 1 and all δ P BpF q. Finally, the main result of [CZ] is that if g 1 P SpG 1 pAqq match a tuple of functions pg W 1 q W 1 , g W 1 P SpG W 1 pAqq, then we have

for all δ P BpF q and all γ P B 1 pF q corresponding to each other (strictly speaking [CZ] only considers compactly supported functions but the proofs applies verbatim to Schwartz functions). Together with the previous equalities this shows (1). Now (1) together with Proposition A.2.1 leads to the identity

where π W 1 runs over the set of all cuspidal automorphic representations of G W 1 pAq and Π runs over the set of all cuspidal automorphic representations of G 1 pAq whose central character is trivial on Z H 1 2 pAq. Fix a maximal compact subgroup K W 1 "

of G W 1 pAq for all W 1 and let Σ be the infinite set of places v of F which split in E and where π, f and f 1 are unramified. By Theorem 3.4.4, we may assume that for all W 1 and all v P Σ the function

Then, in the equality (2) only the π W 1 and the Π which are unramified at all places in Σ contribute. Define the Hecke algebra H G,Σ " C c pGpA Σ q{{K Σ q of compactly supported and K Σ -biinvariant functions on GpA Σ q. This is the restricted tensor product over v P Σ of the local Hecke algebras H G,v " C c pGpF v q{{K v q. We define similarly the Hecke algebra H G 1 ,Σ " C c pG 1 pA Σ q{{K 1 Σ q and the local Hecke algebras H G 1 ,v " C c pG 1 pF v q{{K 1 v q. Note that for all n-dimensional hermitian space W 1 over E we have an isomorphism GpA Σ q » G W 1 pA Σ q canonical up to conjugation which induces a canonical isomorphism H G,Σ » C c pG W 1 pA Σ q{{K W 1 Σ q. There is a base change homomorphism H G 1 ,Σ Ñ H G,Σ , h Þ Ñ h bc and for all v P Σ, all W 1 and all

match each other (see [Zh1, Proposition 2.5]). For all irreducible unitary representation Π of G 1 pAq which is unramified at all places in Σ let us denote by h Þ Ñ p hpΠq the corresponding character of the Hecke algebra H G 1 ,Σ . Then, for all W 1 , all cuspidal automorphic representation π W 1 which is unramified at all places in Σ and all h P H G 1 ,Σ the element h bc P H G,Σ acts on π

are nice and match each other we can apply equality (2) to these functions to get

Let Irr unit,Σ pG 1 pAqq be the set of all irreducible unitary representations of G 1 pAq which are unramified at all places in Σ. Then the functions Π P Irr unit,Σ pG 1 pAqq Þ Ñ p hpΠq, h P H G 1 ,Σ , are bounded and we have x h ˚" p h where h ˚pgq " hpg ´1q. Hence by the Stone-Weierstrass theorem, from (3) we deduce

where this time π W 1 and Π run over the sets of cuspidal automorphic representations of G W 1 pAq and G 1 pAq such that BCpπ W 1 ,v q " Π v " BCpπ v q for all v P Σ. Recall the following automorphic-Cebotarev-density theorem due to Ramakrishnan ([Ra]):

Theorem A.3.1 (Ramakrishnan) Let Π 1 , Π 2 be two isobaric automorphic representations of GL d pA E q such that Π 1,v » Π 2,v for almost all places v of F that are split in E.

Then, Π 1 " Π 2 .

As BCpπ W 1 q is always isobaric it follows from this theorem that the right hand side of (4) reduces to 2 ´2Lp1, η E{F q ´2I BCpπq pf 1 q and that if π W 1 contributes to the left hand side then BCpπ W 1 q " BCpπq. In particular, π W 1 and π belong to the same (global) Vogan L-packet.

By the local Gan-Gross-Prasad conjecture (see §2.4), and since by assumption π is tempered at all archimedean places, we know that there is at most one abstractly H W 1 -distinguished representation in this L-packet. By assumption, π is such a representation. Hence, the left hand side of (4) reduces to J π pf q and this ends the proof of Theorem 3.5.1.