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Abstract

We prove an integral formula computing multiplicities of square-integrable repre-

sentations relative to Galois pairs over p-adic fields and we apply this formula to verify

two consequences of a conjecture of Dipendra Prasad. One concerns the exact compu-

tation of the multiplicity of the Steinberg representation and the other the invariance

of multiplicities by transfer among inner forms.
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Introduction

Let F' be a p-adic field (that is a finite extension of Q, for a certain prime number p)
and H be a connected reductive group over F. Let E/F be a quadratic extension and set
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G := Rg/pHp where Rg/r denotes Weil’s restriction of scalars (so that G(F) = H(E)). To
every complex smooth irreducible representation 7 of G(F') and every continuous character
x of H(F') we associate a multiplicity m(m, x) (which is always finite by [18] Theorem 4.5)
defined by

m(m, x) := dim Homg (7, x)

where Hompg (7, x) stands for the space of (H(F'), x)-equivariant linear forms on (the space
of) m. Recently, Dipendra Prasad [43] has proposed very general conjectures describing this
multiplicity in terms of the Langlands parameterization of 7, at least for representations
belonging to the so-called ‘generic’ L-packets. These predictions, which generalize earlier
conjectures of Jacquet (|27], [28]), are part of a larger stream that has come to be called the
‘local relative Langlands program’ and whose main aim is roughly to describe the ‘spectrum’
of general homogeneous spherical varieties X = H\G over local fields in terms of Langlands
dual picture and correspondence. In the paper [44], and under the assumption that G is split,
Sakellaridis and Venkatesh set up a very general framework to deal with these questions
by introducing a certain complex reductive group Gy associated to the variety X, which
generalizes Langlands construction of a dual group, together with a morphism Gy — G
(actually, in the most general case, this should also include an extra SL, factor) which,
according to them, should govern a great part of the spectral decomposition of L?(H\G)
(see [44] Conjecture 16.2.2). In a similar way, in the case where G = Rp/pHp as above
(note that such a group is never split) Prasad introduces a certain L-group ©H°P (further
explanations on this notation are given below) and a morphism *H° — LG which should
govern, on the dual side, the behavior of the multiplicities m(m, x) for a very particular
quadratic character x (denoted by wy g below) that has also been defined by Prasad. The
main goal of this paper is to present some coarse results supporting Prasad’s very precise
conjectures in the particular case of stable (essentially) square-integrable representations.
In the rest of this introduction we will recall the part of Prasad’s conjecture that we are
interested in as well as the two consequences of it that we have been able to verify. We will
also say some words on the proofs which are based on a certain simple local trace formula
adapted to the situation and which takes its roots in Arthur’s local trace formula ([4]) as
well as in Waldspurger’s work on the Gross-Prasad conjecture for orthogonal groups ([46],

[47)).
Prasad associates a number of invariants to the situation at hand. First, he constructs a
certain quadratic character wy g : H(F) — {+1} as well as a certain quasi-split group H°?

over F' which is an E/F form of the quasi-split inner form of H. We refer the reader to
[43]8§7-8 for precise constructions of those and content ourself to give three examples here:

o If H =GL,, then H® = U(n),s (quasi-split form) and wy g = (ng/r o det)" ™ where
ng/r is the quadratic character associated to £/F;

o If H =U(n) (a unitary group of rank n), then H® = GL,, and wy g = 1;



o If H = SO(2n + 1) (any odd special orthogonal group), then H® = SO(2n + 1),
(the quasi-split inner form) and wy g = Ng/p © Nepin Where Ny 0 SO(2n + 1)(F) —
F*/(F*)? denotes the spin norm.

To continue we need to restrict slightly the generality by only considering characters y that
are of ‘Galois type’ i.e. which are in the image of a map constructed by Langlands

H'(Wp, Z(H)) — Homgon (H(F),C*)

This map is always injective (because F' is p-adic) but not always surjective (although it is
most of the time, e.g. if H is quasi-split). We refer the reader to [37] for further discussion
on these matters. The character wy g is always of Galois type and, to every character x of
Galois type of H(F), Prasad associates a certain ‘Langlands dual group” H which sits in a
short exact sequence

1— HP > HP - Wp —1

together with a group embedding ¢ : HP — LG (where LG denotes the L-group of G)

compatible with the projections to Wy and algebraic when restricted to H°. In the partic-
ular case where x = wpy g, we have HP = LH°p and ¢ is the homomorphism of quadratic
base-change.

Remark 1 Although the short exact sequence above always splits, there does not necessarily
exist a splitting preserving a pinning of H® and hence HP is not always an L-group in the
usual sense.

Let WDp := Wg x SLy(C) be the Weil-Deligne group of F. An ‘L-parameter’ taking
values in HJP is defined as usual: a continuous Frobenius semi-simple morphism WDgr — HP
which commutes with the projections to Wy and is algebraic when restricted to SLs(C). We
are now ready to state (a slight generalization of) the stable version of Prasad’s conjecture
for square-integrable representations:

Conjecture 1 Let ¢ : WDp — LG be a discrete L-parameter, 11(¢) < Irr(G) the corre-

sponding L-packet and 11y = Z d(m)m the stable representation associated to ¢. Then,

mell€ ()
we have

m(Ily, x) = |ker' (F; H,G)| 2(7
7 1Z(0)]
where

e The sum is over the set of ‘L-parameters’ ¢ : WDp — HSP (taken up to H°P-conj)
making the following diagram commute up to G-conj, i.e. there exists g € G such that

Lot = gog T,



HP
p

WDy -2 LG

e ker'(F; H,G) := Ker (H'(F, H) — H'(F,G)) (corresponds to certain twists of the pa-
rameter v that become trivial in G );

o Z(¢) := Centy(¢)/Z(G)Vr and Z(vp) := Cent jop (1)) Z(HP)WF

As we said, this is only part of Prasad’s general conjectures which aim to describe (almost) all
the multiplicities m(m, x) explicitly. This version of the conjecture (and far more) is known
in few particular cases: for H = GL(n) by Kable and Anandavardhanan-Rajan ([29], [1]),
for H = U(n) by Feigon-Lapid-Offen (|21]) and for H = GSp(4) by Hengfei Lu ([39]). The
following theorems are both formal consequences of Conjecture [Il and are the main results

of this paper (see Theorem [5.3.T] and Theorem [5.7.1)):

Theorem 1 Let H, H' be inner forms over I', G := RgypH, G' := Rg/pH' and x, X'
characters of Galois type of H(F') and H'(F') corresponding to each other (i.e. coming from
the same element in H'(Wp, Z(H)) = H'(Wg, Z(H'))). Let T1, T be (essentially) square-
integrable representations of G(F') and G'(F) respectively which are stable (but not necessarily
irreducible) and transfer of each other (i.e. On(x) = O (y) for all stably conjugate regular
elements ¥ € Greg(F) and y € G, (F) where O, O denote the Harish-Chandra characters

of IT and 11" respectively). Then, we have
m(IL, x) = m(I', X')

Theorem 2 For m = St(G) the generalized Steinberg representation of G(F') and x a char-
acter of Galois type we have

m(St(G), ) = { L ifx =g

0 otherwise

Theorem [2] also confirms an older conjecture of Prasad ([42], Conjecture 3) which was al-
ready known for split groups and tamely ramified extensions by work of Broussous-Courteés
and Courtes ([12], [15], [16]) and for inner forms of GL,, by work of Matringe ([40]). The
proof of Broussous and Courtés is mainly based on a careful study of the geometry of the
building whereas Matringe’s work uses some Mackey machinery. Our approach is completely
orthogonal to theirs and is based on a certain integral formula computing the multiplicity
m(m, x) in terms of the Harish-Chandra character of w. This formula is reminiscent and
inspired by a similar result of Waldspurger in the context of the so-called Gross-Prasad con-
jecture ([46], [47]). It can also be seen as a ‘twisted’ version (‘twisted’ with respect to the

non-split extension E/F') of the orthogonality relations between characters of discrete series
due Harish-Chandra ([I4], Theorem 3). It can be stated as follows (see Theorem [B.1.1)):
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Theorem 3 Let m be a square-integrable representation of G(F') and x be a continuous
character of H(F'). Assume that x and the central character of m coincide on Ag(F') (the
maximal split central torus in H(F')). Then, we have

m(m,x) = f D ()0, (2)x () dz

Ten(H)

where O, denotes the Harish-Chandra character of w (a locally constant function on Gyeg(F)),
D s the usual Weyl discriminant and U (H) stands for the set of reqular elliptic conjugacy
classes in H(F) := H(F)/Ap(F) equipped with a suitable measure dx.

Theorem [I] is an easy consequence of this formula and Theorem 2] also follows from it with
some extra work. Let us give an outline of the proof of Theorem 2] assuming Theorem [3l For
notational simplicity we will assume that H is semi-simple. We have the following explicit
formula for the character of the Steinberg representation (see §5.5 for a reminder)

D ()" POsyey () = ), (1) > DM (y)25p(y)"*

PocP=MU {yeM (F); y~conjr}/M—conj

where Py is a minimal parabolic subgroup of G and we refer the reader to the core of the
paper for other unexplained notations which are however pretty standard. Plugging this
explicit formula in Theorem [3] and rearranging somewhat the terms we get

mSE) ) = Y <—1>“P-“Pof DM(2)x () \da
(M, P)/conj Ten(M)

where the sum runs over the H(F')-conjugacy classes of pairs (M, P) with

e M an elliptic twisted Levi subgroup of H by which we mean an algebraic subgroup of
H with trivial split center such that Rg/rMp is a Levi subgroup of G

e P a parabolic subgroup of G with Levi component Rg/pMg.

Using a particular case of Harish-Chandra orthogonality relations between characters of
discrete series (|[14] Theorem 3), we can show that (see §5.6))

| M) e = (e
Fen(M)

where xja denotes the restriction of x to M(F'), 1 the trivial character of M(F') and (.,.)
denotes the natural scalar product on the space of virtual characters of M(F). Then, in
the above expression for m(St(G), x), we can group together pairs (M, P) according to their
stable conjugacy classes ending up with an equality

m(St(G),x) = >, (=1 "olker' (F; M, H)|(xm,1)
(M, P)/stab



where ker'(F; M, H) := Ker (H'(F, M) — H'(F, H)), a set which naturally parametrizes
conjugacy classes inside the stable conjugacy class of (M, P). Set H,, for the quotient of
H(F) by the common kernel of all the characters of Galois type (in case H is quasi-split it
is just the abelianization of H(F)) and let M, denote, for all elliptic twisted Levi M, the
image of M(F) in H,,. Then, using Frobenius reciprocity, the last identity above can be
rewritten as the equality between m(St(G), x) and

oD, (=) |ker' (F; M, H)| Indj®, (1)
(M, P)/stab

and thus Theorem [2] is now equivalent to the following identity in the Grothendieck group
of H ab-

(0.0.1) D (=) fker' (F; M, H)| Ind)s® (1) = wi g
(M, P)/stab

The proof of this identity in general is rather long and technical (see Proposition [5.4.1), so
we content ourself (again) with giving two examples here:

o If H =GL,, we have Hy, = F* and wy p = 7]%7} If nis odd, M = H is the only
elliptic twisted Levi and then [[.0 1 reduces to 1 = 1. On the other hand, if n is even
there are two (stable) conjugacy classes of pairs (M, P):

GL,;(E *
Mo=PFy=H and My = GL,p(E) S P, = ( o GL"/2(E))

we have Mg o = Hap = F* D My o = N(E*) and [0.0.1] reduces to the identity

]nd]}\rszx)l —1= nE/F

e For H = U(n) (a unitary group of rank n) we have H,, = Ker Ng/p and wy,p = 1.
In this case, stable conjugacy classes of pairs (M, P) are parametrized by (ordered)

partitions (nq,...,nx) of n as follows:
GLo(E) + =
(ny,...,ng) > M=U(ny) x...xU(n,) € P = .
GLy, (B)

Moreover, |ker'(F; M, H)| = 2¥=! and M, = H,, for all M as above. Thus, in this
case [0.0.1] reduces to the following combinatorial identity



Z (_l)n—k2k—1 —1
(n1,...yng)
ni+...+np=n

As we said, for its part, Theorem [3lis a consequence of a certain simple local trace formula
adapted to the situation and to the proof of which most of the paper is devoted. Let us
state briefly the content of this formula by assuming again, for simplicity, that the group H
is semi-simple. Starting with a function f € CP(G(F)), we consider the following expression
in two variables

K (,y) = L(F) fathy)x(h)"\dh, .y € G(F)

This function is precisely the kernel of the operator on L?*(H(F)\G(F), x) given by convo-
lution by f. Formally, the trace of such an operator should be given by the integral of this
kernel over the diagonal that is

JX(f) = K¥(x,x)dx

JH(F)\G(F) !

Unfortunately, in general the convolution operator given by f isn’t of trace-class and the
above expression diverges. Nevertheless, we can still restrict our attention to some ‘good’
space of test functions for which the above integral is absolutely convergent. Recall, following
Waldspurger [46], that the function f is said to be strongly cuspidal if for all proper parabolic
subgroups P = MU < G we have

J f(zu)du =0
U(F)

for all z € M(F). We also say, following Harish-Chandra [23], that f is a cusp form if
the above kind of integrals vanish for all x € G(F) (thus, and contrary to what we might
guess, being a cusp form is stronger than being strongly cuspidal). Actually, it will be
more convenient for us to work with functions that are not necessarily compactly supported:
we will take f in the so-called Harish-Chandra-Schwartz space (see §I.3] for a reminder)
denoted by C(G(F')). The notions of strong cuspidality and of cusp forms extend verbatim
to this bigger space. The following theorem, whose proof is scattered all over this paper (see

Theorem 2.1.1] Theorem B.1.1] and Theorem [A.1.T]), is our main technical result:

Theorem 4 Let f € C(G(F)) be a strongly cuspidal function. Then, the expression defining
JX(f) is absolutely convergent (see Theorem [21.1) and we have:

(i) (see Theorem[{.1.1]) A geometric expansion

P =] D)
Len(H)
where the function Oy is defined using weighted orbital integrals of Arthur (see §1.6));
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(i1) (see Theorem[311) If f is moreover a cusp form, a spectral expansion

JX(f) = Z m(m, x) Trace " (f)

welrrsqr (G)

where Irry, (G) denotes the set of (equivalence classes of ) irreducible square-integrable
representations of G(F') and for all m € Irry (G), 7Y is the smooth contragredient of .

We prove this theorem by following closely the general method laid down by [46], [47]
and [IT]. In particular, a crucial point to get the spectral expansion in the above theorem is
to show that for 7 square-integrable the abstract multiplicity m(m, x) is also the multiplicity
of 7 in the discrete spectrum of L*(H(F)\G(F')). This fact is established in the course
of the proof of Proposition B.2.1] using the simple adaptation of an idea that goes back to
Sakellaridis-Venkatesh ([44] Theorem 6.4.1) and Waldspurger ([47] Proposition 5.6).

Here is an outline of the contents of the different parts of the paper. In the first part,
we set up the main notations and conventions as well as collect different results that will
be needed in the subsequent sections. It includes in particular a discussion of a natural
generalization of Arthur’s (G, M)-families to symmetric pairs that we call (G, M, #)-families.
The second part contains the proof of the absolute convergence of JX( f) for strongly cuspidal
functions f and in the third part we establish a spectral expansion of this distribution when f
is a cusp form. These two parts are actually written in the more general setting of tempered
symmetric pairs (G, H) (which were called strongly discrete in [22]) to which the proofs
extend verbatim. The fourth part deals with the geometric expansion of JX(f). There we
really have to restrict ourself to the setting of Galois pairs (that is when G = Rp/pHp) since
a certain equality of Weyl discriminants (see [L.1.1]), which is only true in this particular
case, plays a crucial role in allowing to control the uniform convergence of certain integrals.
Finally, in the last part of this paper we prove the formula for the multiplicity (Theorem [3))
and give two applications of it towards Prasad’s conjecture (Theorem [l and Theorem [2I).

1 Preliminaries

1.1 Groups, measures, notations

Throughout this paper we will let F' be a p-adic field (i.e. a finite extension of Q, for a
certain prime number p) for which we will fix an algebraic closure F. We will denote by
|.| the canonical absolute value on F as well as its unique extension to F. Unless specified
otherwise, all groups and varieties that we consider in this paper will be tacitly assumed to
be defined over F and we will identify them with their points over F. Moreover for every
finite extension K of F' and every algebraic variety X defined over K we will denote by
Ry /X Weil’s restriction of scalars (so that in particular we have a canonical identification
(Ri/pX)(F) = X (K)).

Let G be a connected reductive group over F' and Ag be its maximal central split torus.
We set G := G/Ag and



Ag = X,.(Ag) ® R

where X, (Ag) denotes the abelian group of cocharacters of Ag. If V' is a real vector space
we will always denote by V* its dual. The space A} can naturally be identified with
X*(Ae) ® R = X*(G) ® R where X*(Ag) and X*(G) stand for the abelian groups of
algebraic characters of Ag and G respectively. More generally, for every extension K/F
we will denote by X7 (G) the group of characters of G defined over K. There is a natural
morphism H¢ : G(F) — Ag characterized by

06 He(g)) = log(Ix(9)])

for all x € X*(G). We set Ag p := Hg(Ag(F)). It is a lattice in Ag. The same notations
will be used for the Levi subgroups of G (i.e. the Levi components of parabolic subgroups
of G): if M is a Levi subgroup of G we define similarly Ay;, Ay, Hy and Ay p. We will
also use Arthur’s notations: P(M), F(M) and L£(M) will stand for the sets of parabolic
subgroups with Levi component M, parabolic subgroups containing M and Levi subgroups
containing M respectively. Let K be a maximal special compact subgroup of G(F'). Then,
for all parabolic subgroups P with Levi decomposition P = MU the Iwasawa decomposi-
tion G(F) = M(F)U(F)K allows to extend Hy to a map Hp : G(F) — Ay defined by
Hp(muk) := Hpy(m) for all me M(F), we U(F) and k € K. For all Levi subgroups M < L
there is a natural decomposition

A =-A§4®AL

where A% is generated by Hy (Ker(Hpnr))) and we will set af; := dim(A%;). The Lie
algebra of GG will be denoted by g and more generally for any algebraic group we will denote
its Lie algebra by the corresponding Gothic letter. We will write Ad for the adjoint action
of G on g. We denote by exp the exponential map which is an F-analytic map from an open
neighborhood of 0 in g(F) to G(F). For all subsets S < G, we write Cent(.S), Centg(r)(S)
and Normgp)(S) for the centralizer of S in G, resp. the centralizer of S in G(F), resp. the
normalizer of S in G(F). If S = {z} we will denote by G, the neutral connected component
of Centg(x) := Cente({z}). We define G,., as the open subset of regular semisimple elements
of G and for all subgroups H of G we will write H,es := H n Gyee. Recall that a regular
element x € Gyeq(F') is said to be elliptic if Ag, = Ag. We will denote by G(F)en the set of
regular elliptic elements in G(F). The Weyl discriminant D¢ is defined by

DY (x) := |det(1 — Ad(x)g/q,)

For every subtorus T" of G we will write

W(G,T) := Normgry(T)/ Centery(T')

for its Weyl group. If A < G is a split subtorus we will denote by R(A, G) the set of roots
of A in G i.e. the set of nontrivial characters of A appearing in the action of A on g. More



generally, if H is a subgroup of G and A c H is a split subtorus we will denote by R(A, H)
the set of roots of A in H.

In all this paper we will assume that all the groups that we encounter have been equipped
with Haar measures (left and right invariant as we will only consider measures on unimodular
groups). In the particular case of tori we normalize these Haar measure by requiring that
they give mass 1 to their maximal compact subgroups. For any Levi subgroup M of G we
equip Ay, with the unique Haar measure such that vol(Ay /Ay p) = 1. If M < L are two
Levi subgroups then we give A%, ~ A,/ A the quotient measure.

Finally, we will adopt the following slightly imprecise but convenient notations. If f and
g are positive functions on a set X, we will write
f(z) < g(x) for all z € X
and we will say that f is essentially bounded by g, if there exists a ¢ > 0 such that
f(x) < cg(x), for all x € X
We will also say that f and g are equivalent and we will write

f(z) ~ g(x) for all z € X

if both f is essentially bounded by ¢ and g is essentially bounded by f.

1.2 log-norms

All along this paper, we will assume that g(F') has been equipped with a (classical) norm
|.|g, that is a map |.|; : g(F) — Ry satisfying [AX|, = [A.|X]g, | X +Y|; < |X]|; + Y], and
| X|g = 0if and only if X =0 for all A\e F and X,Y € g(F). For any R > 0, we will denote
by B(0, R) the closed ball of radius R centered at the origin in g(F').

In this paper we will freely use the notion of log-norms on varieties over F'. The concept
of norm on varieties over local fields has been introduced by Kottwitz in [36] §18. A log-
norm is essentially just the logarithm of a Kottwitz’s norm and we refer to [11] §1.2 for the
basic properties of these log-norms. For convenience, we collect here the definition and basic
properties of these objects.

First, an abstract log-norm on a set X is just a real-valued function z — o(z) on X such
that o(z) = 1, for all x € X. For two abstract log-norms o; and g, on X, we will say that
0o dominates o; and we will write o1 « 09 if

01(z) < o9(x)
for all x € X. We will say that o, and o9 are equivalent if each of them dominates the other.

For an affine algebraic variety X over F, choosing a set of generators fi,..., f, of its F-
algebra of regular functions O(X), we can define an abstract log-norm ox on X by setting
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ox(x) =1 +log (maz{l,[fi(z)],.... [fm(z)[})

for all x € X. The equivalence class of ox doesn’t depend on the particular choice of
fi,--., fm and by a log-norm on X we will mean any abstract log-norm in this equivalence
class. Note that if U is the principal Zariski open subset of X defined by the non-vanishing
of @ € O(X), then we have

ou(x) ~ ox(x) +log (2 + |Q(x)| ™)

for all z € U. More generally, for X any algebraic variety over F, choosing a finite covering
(Ui),; of X by open affine subsets and fixing log-norms oy, on each U;, we can define an
abstract log-norm on X by setting

ox(z) = inf{oy,(x);i € I such that x € U;}

Once again, the equivalence class of ox doesn’t depend on the various choices and by a
log-norm on X we will mean any abstract log-norm in this equivalence class.

We will assume that all varieties that we consider in this paper are equipped with log-norms
and we will set 0 := 0 and 7 := o5.

Let p: X — y be a regular map between algebraic varieties then we have

oy(p(r)) « ox()

for all z € X. If p is a closed immersion or more generally if p is a finite morphism ([36]
Proposition 18.1(1)) we have

oy (p(x)) ~ ox(x)

for all z € X. We say that p has the norm descent property (with respect to F) if, denoting
by pr the induced map on F-points, we have

oy(y) ~ i{llf( )Ux(l’)
zepy (y

for all y € pr(X(F)). By Proposition 18.3 of [36], if 7" is a subtorus of G then the projection
G — T\G has the norm descent property i.e. we have

(1.2.1) ona(g) ~ ot o(tg)

for all g € G(F'). In section we will prove that for H an F-spherical subgroup of G (i.e. a
subgroup such that there exists a minimal parabolic subgroup Py of G with H P, open) the
projection G — H\G also has the norm descent property.

Let T ¢ G again be a maximal subtorus. As the regular map T\G X Ty — Gheg,
(g,t) — g 'tg is finite we get

11



(1.2.2) ora(g) < o(g'tg)log (2+ D))

for all g e G and all t € Tiqg.

For every variety X defined over F', equipped with a log-norm ox, and all M > 0 we
will denote by X[< M], resp. X[> M|, the set of all z € X (F') such that ox(z) < M, resp.
ox(z) = M. With this notation, if 7" is a torus over F' and k := dim(Ar) we have

(1.2.3) vol (T[< M]) « M*

for all M > 0.

1.3 Function spaces

Let w be a continuous character of Ag(F). We define S,(G(F)) := CP(Aq(F)\G(F),w)
as the space of functions f : G(F) — C which are smooth (i.e. locally constant), satisfy
flag) = w(a)f(g) for all (a, g) € Ag(F')x G(F') and are compactly supported modulo Ag(F).
Assume moreover that w is unitary and let 2 be Harish-Chandra Xi function associated
to a special maximal compact subgroup K of G(F) (see [45] §II.1). Then, we define the
Harish-Chandra-Schwartz space C,(G(F')) as the space of functions f : G(F) — C which
are biinvariant by an open subgroup of G(F), satisty f(ag) = w(a)f(g) for all (a,g) €
Ag(F) x G(F) and such that for all d > 0 we have |f(g)| « Z%(g)a(g)~ for all g € G(F).

1.4 Representations

In this paper all representations we will consider are smooth and we will always use the
slight abuse of notation of identifying a representation 7 with the space on which it acts.
We will denote by Irr(G) the set of equivalence classes of smooth irreducible representations
of G(F) and by Irreusy(G), It (G) the subsets of supercuspidal and essentially square-
integrable representations respectively. If w is a continuous unitary character of Ag(F) we
will also write Irr,, (G) (resp. Irry cusp(G), Ity i (G)) for the sets of all © € Irr(G) (resp.
7 € Iiteysp(G), ™ € Irrgy (G)) whose central character restricted to Ag(F') equals w. For all
7 € Irr(G) we will denote by 7V its contragredient and by {.,.): m x ¥ — C the canonical
pairing. For all 7 € Irr, 4, (G), d(m) will stand for the formal degree of 7. Recall that it
depends on the Haar measure on G(F') and that it is uniquely characterized by the following
identity (Schur orthogonality relations)

1

(m(g)vr, vy Y va, ™ (g)vy )dg = %@1, vy ){Va, vy )

for all v1, vy € m and all vy, vy € 7. From this, we easily infer that for every coeflicient f of
m we have

JAG(F)\G(F)
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(1.4.1) Trace(r" (f)) — ﬁ (1)

Let 7 € Irr(G) and let w be the inverse of the restriction of the central character of 7 to
Ag(F). Then, for all f e S,(G(F)) we can define an operator m(f) on 7 by

(o= | F(g)r(g)v, v >dg
Ac(F)\G(F)

for all (v,v¥)em x V. For all f e S,(G(F)) this operator is of finite rank and a very deep

theorem of Harish-Chandra ([25] Theorem 16.3) asserts that the distribution

feS,G(F)) — Trace(n(f))

is representable by a locally integrable function which is locally constant on Gyeg(F'). This
function, the Harish-Chandra character of 7, will be denoted ©,. It is characterized by

Trace(w(f)) = ©-(9)f(g)dg

JAG(F NG(F)
forall f € S,,(G(F')). If moreover the representation 7 is square-integrable (or more generally
tempered) with unitary central character, then the integral defining 7(f) still makes sense
for all f € C,(G(F)), the resulting operator is again of finite rank and the above equality
continues to hold.

1.5 Weighted orbital integrals

Let M be a Levi subgroup and fix a maximal special compact subgroup K of G(F'). Using
K we can define maps Hp : G(F') — Ay for all P e P(M) (cf §L.1). Let g € G(F'). The
family

{—Hp(g); P € P(M)}

is a positive (G, M )-orthogonal set in the sense of Arthur (see [2] §2). In particular, following
loc. cit. using this family we can define a weight v (g) for all Q € F(M). Concretely, v$(g)
is the volume of the convex hull of the set {Hp(g); P € P(M),P < @Q} (this convex hull
belongs to a certain affine subspace of Ay, with direction A%, where Q = LU with M < L
and we define the volume with respect to the fixed Haar measure on A%,). If Q = G we set
v (g) := v§;(g) for simplicity. For every character w of Ag(F), every function f € C,(G(F))
and all z € M(F) n Geg(F), we define, again following Arthur, a weighted orbital integral
by

Yz, f) = f f(g™ 202 (9)dg
Gz (F)\G(F)
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The integral is absolutely convergent by the following lemma which is an immediate conse-
quence of [.2.2] and Lemma [[.9.2] (which will be proved later).

Lemma 1.5.1 Let x € M(F) N Gyeg(F). Then, for all d > 0 there exists d' > 0 such that
the integral
| = gty e ol dg
G (F)\G(F)
converges.

Once again if Q = G, we will set ®y(x, f) := ®F,(x, f) for simplicity. If M = G (so that
necessarily @ = G), ®¢(x, f) reduces to the usual orbital integral.

1.6 Strongly cuspidal functions

Let w be a continuous unitary character of Ag(F'). Following [46], we say that a function
f € Cu(G(F)) is strongly cuspidal if for every proper parabolic subgroup P = MU of G we
have

J f(mu)du =0, Yme M(F)
U(F)

(the integral is absolutely convergent by [45] Proposition 11.4.5). By a standard change of
variable, f is strongly cuspidal if and only if for every proper parabolic subgroup P = MU
and for all m € M(F) N Gieg(F') we have

J fu™ 'mu)du =0
U(F)

We will denote by C, scusp(G(F)) the subspace of strongly cuspidal functions in C,(G(F))
and we will set S, scusp(G(F)) := Su(G(F)) N Cyseusp(G(F)). Let K be a maximal special
compact subgroup of G(F'). For x € G,eg(F) set M(z) := Centg(Ag,) (it is the smallest
Levi subgroup containing x). Then, by [46] Lemme 5.2, for all f € C, scusp(G(F)), all Levi
subgroups M, all Q € F(M) and all z € M(F) A Gyeg(F) we have ®%,(x, f) = 0 unless
Q =G and M = M(x). For all x € G,es(F') we set

O4(x) := (1) W@ Dy, (, f)

Then the function Oy is independent of the choice of K and invariant by conjugation (|46]
Lemme 5.2 and Lemme 5.3). Also by [46] Corollaire 5.9, the function (D%)Y20; is locally
bounded on G(F).

We say that a function f € C,(G(F)) is a cusp form if it satisfies one of the following
equivalent conditions (see [45] Théoréme VIII.4.2 and Lemme VIII.2.1 for the equivalence
between these two conditions):

14



e For every proper parabolic subgroup P = MU and all z € G(F') we have

J f(zu)du = 0;
U(F)

e fis a sum of matrix coefficients of representations in Irr,, s (G).

We will denote by °C,(G(F)) the space of cusp forms. Let f € °C,(G(F)) and set f,(g) :=
Trace(m¥ (¢~ )7V (f)) for all m € Irrysq(G(F)) and all g € G(F). Then, f, belongs to
0C,(G(F)) for all 7 € Irry s (G(F')) (J24] Theorem 29) and we have an equality

~— —

(1.6.1) f= > dmf

welrry sqr (G)

(This is a special case of Harish-Chandra-Plancherel formula, see [45] Theorem VIII1.4.2).

Let °S,(G(F)) := S,(G(F)) n °C,(G(F)) be the space of compactly supported cusp
forms. Similar to the characterization of °C,(G(F)), a function f € S,(G(F)) belongs to
0S,(G(F)) if and only if it satisfies one the the following equivalent conditions:

e For every proper parabolic subgroup P = MU and all x € G(F') we have

J f(zu)du = 0;
U(F)

e fis a sum of matrix coefficients of representations in Irr,, cusp(G).

Moreover, for f € °S,(G(F)), we have f, € °S,(G(F)) for all 7 € Irr,, cusp(G) and a spectral
decomposition

(1.6.2) f= >, dmf

welrry cusp (G)

Finally, we will need the following proposition.

Proposition 1.6.1 Let 7 € Irre, (G) and let f be a matriz coefficient of m. Then, we have

for all x € Gyeg(F).

Proof: Unfortunately, the author has been unable to find a suitable reference for this probably
well-known statement (however see [I4] Proposition 5 for the case where z is elliptic and
[2] for the case where 7 is supercuspidal). Let us say that it follows from a combination
of Arthur’s noninvariant local trace formula ([5], Proposition 4.1) applied to the case where
one of the test functions is our f and of Schur orthogonality relations. Note that Arthur’s
local trace formula was initially only proved for compactly supported test functions, but see
[6] Corollary 5.3 for the extension to Harish-Chandra Schwartz functions. H
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1.7 Tempered pairs

Let H be a unimodular algebraic subgroup of G (e.g. a reductive subgroup). We say that
the pair (G, H) is tempered if there exists d > 0 such that the integral

J =%(h)o(h)~4dh
H(F)

is convergent. This notion already appeared in [22] under the name of strongly discrete
pairs. Following the referee suggestion we have decided to call these pairs tempered instead
so that it is more in accordance with the notion of strongly tempered pairs introduced by
Sakellaridis-Venkatesh in [44] §6 (since the latter implies the former but not conversely).
This terminology is also justified by the fact that (G, H) is tempered if and only if the Haar
measure on H(F') defines a tempered distribution on G(F') i.e. it extends to a continuous
linear form on C(G(F')). Moreover, by a result of Benoist and Kobayashi [§], when H is
reductive and in the case where F' = R (which is not properly speaking included in this
paper) a pair (G, H) is tempered if and only if L?(H(F)\G(F)) is tempered as a unitary
representation of G(F'). Although the author has not checked all the details, the proof of
Benoist and Kobayashi seems to extend without difficulties to the p-adic case. However, we
propose here a quick proof of one of the implications (but we won’t use it in this paper).

Proposition 1.7.1 Assume that the pair (G, H) is tempered. Then, the unitary represen-
tation of G(F) on L*(H(F)\G(F)) given by right translation is tempered i.e. the Plancherel
measure of L*(H(F)\G(F)) is supported on tempered representations.

Proof: We will use the following criterion for temperedness due to Cowling-Haagerup-Howe

[17]:

(1.7.1) Let (IT, H) be a unitary representation of G(F'). Then (II, H) is tempered if and only
if there exists d > 0 and a dense subspace V < H such that for all u,v € V we have

|(T(g)u, v)| « Z%(g)o(g)’
for all g € G(F') where (.,.) denotes the scalar product on H.

We will check that this criterion is satisfied for V- = CX(H(F)\G(F)) ¢ H = L*(H(F)\G(F)).
Let 1, p2 € CP(H(F)\G(F)) and choose fi, fo € CP(G(F)) such that

wi(z) = JH(F) fi(hx)dh

fori=1,2and all x € H(F)\G(F). Then, denoting by R(g) the operator of right translation
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by g and by (.,.) the L%inner product on L*(H(F)\G(F)), we have

(R(g) o, 02) = L(F)\G(F) o1 (29)ea(@)da

= f f fl(hll'g)fg(hgl’)dhgdhldl’
H(F)\G(F) JH(F)xH(F)

= J J f1(h1zg) fa(hohiz)dhedh, dx
HPNG(F) JH(F)xH(F)

=J f f1(vg) f2(hy)dhd
G(F) JH(F)

for all g € G(F'). Let d > 0 that we will assume sufficiently large in what follows. As f; and
f2 are compactly supported, there obviously exist 'y > 0 and C5 > 0 such that

i) < CLEC (7)o ()7 and | fo(v)| < C2E% (7)o (7)™

for all v € G(F). It follows that for all g € G(F') we have

(R(g)¢n, ¢2)] < C1Co j j =6 (49)=% () () ~dho (vg) " dy
G(F) JH(F)

1

Since o(7172)"! « (1) to(ve) for all 71,79 € G(F), this last expression is essentially

bounded by
o(9)% f f =6 ()26 (hy)o () ~dho () dr
G(F) JH(F)

for all g € G(F). Let K be the special maximal compact subgroup used to define Z¢. Then
=% is invariant both on the left and on the right by K and since o (k;vks) ™t « o(y)~! for all
v € G(F) and ky, ke € K, we see that the last integral above is essentially bounded by

wof | || =0k ZO ke dhudiao () it ()
a(F) JH(F) JExK
for all g € G(F'). By the ‘doubling principle’ ([45] Lemme I1.1.3), it follows that
(Rlgker el « (0o | =00 at) “dyx | =0matn)“an
G(F) H(F)

for all g € G(F). By [45] Lemme II.1.5 and the assumption that (G, H) is tempered, for
d sufficiently large the two integrals above are absolutely convergent. Thus, the criterion
of Cowling-Haagerup-Howe is indeed satisfied for V' = CP(H (F)\G(F')) and consequently
L*(H(F)\G(F)) is tempered. B

Finally, we include the following easy lemma which gives an alternative characterization
of tempered pairs because it is how the tempered condition will be used in this paper.
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Lemma 1.7.1 Set AZ = (Ag n H)°. The pair (G, H) is tempered if and only if there exists
d > 0 such that the integral

f =%(h)a(h)~4dh
AB(F)\H(F)

converges.

Proof: As =% is Ag(F') invariant, it clearly suffices to show:

(1.7.2) For d > 0 sufficiently large, we have

7(h) ™ « J o(ah) 3 da <« a(h)™?

AG(F)
for all h e H(F).
For this, we need first to observe that
1.7.3 o(h) ~ inf h
(173) (1)~ _inio(ah)

for all h € H(F). Indeed, as AZ\H is a closed subgroup of A¢\G, this is equivalent to the
fact that the projection H — AH\H has the norm descent property and this can be easily
deduce from the existence of an algebraic subgroup H’ of H such that the multiplication
morphism AZ x H' — H is surjective and finite (so that in particular H'(F) has a finite
number of orbits in AZ(F)\H(F)).

By the inequalities o(h) « o(ah) and o(a) « o(ah)o(h) for all a € AEZ(F) and all
he H(F), for any d > 0 we have

J o(ah)da « T(h)™% J o(ah)™%da « o—(h)dﬁ(h)zdf o(a)"%da
AB(F) AB(F) AB(F)

for all h € H(F'). For d sufficiently large, the last integral above is absolutely convergent.
Moreover, as the left hand side of the above inequality is clearly invariant by h — ah for any
a€ AZ(F), by LT3 for d sufficiently large we get

Lgm o(ah)~*da « ( inf a(ah))dg(mad <5

acAE (F)

for all h € H(F) and this shows one half of On the other hand, by the inequality
o(ah) « o(a)o(h) for all a € AEZ(F) and h e H(F), for any d > 0 we have

a(h)?’df o(a)da « J o(ah)™da
AG(F) AG(F)
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for all h € H(F'). Once again, for d sufficiently large the two integrals above are absolutely
convergent and, as the right hand side of the inequality is invariant by h +— ah for any
a€ AZ(F), by LT3 for d sufficiently large we get

acAE(F)

~3d
7(h) ™ « < inf a(ah)) <<J o(ah) 3 da
AL (F)

for all h € H(F') and this proves the second half of [L7.2 W

1.8 Symmetric varieties
1.8.1 Basic definition, #-split subgroups

Let H be an algebraic subgroup of G. Recall that H is said to be symmetric if there exists
an involutive automorphism 6 of G (defined over F') such that

(G cHCG
where G? denotes the subgroup of #-fixed elements. If this is the case, we say that H and 6
are associated. The involution @ is not, in general, determined by H but by [26] Proposition
1.2, its restriction to the derived subgroup of G is. From now on and until the end of
§1.8.2] we fix a symmetric subgroup H of G and we will denote by # an associated involutive
automorphism.

Let T < G be a subtorus. We say that T is #-split if 6(t) = ¢! for all t € T and we
say that it is (0, F')-split if it is #-split as well as split as a torus over F. For every F-split
subtorus A ¢ G we will denote by Ay the maximal (6, F')-split subtorus of A. A parabolic
subgroup P < G is said to be 6-split if §(P) is a parabolic subgroup opposite to P. If this is
the case, H P is open, for the Zariski topology, in G (this is because b + p = g) and similarly
H(F)P(F) is open, for the analytic topology, in G(F'). If P is a #-split parabolic subgroup,
we will say that the Levi component M := P n 0(P) of P is a 6-split Levi subgroup. Note
that this terminology can be slightly confusing since a torus can be a 6-split Levi without
being #-split as a torus (e.g. for G = GL(2), T the standard maximal torus and 6 given by

0(g) = (1 1) g (1 L ). Nevertheless, the author believe that no confusion should arise

in this paper as the context will clarify which notion is being used.

Actually, a Levi subgroup M < G is 6-split (i.e. it is the 8-split Levi component of a #-split
parabolic) if and only if M is the centralizer of a (0, F')-split subtorus if and only if M is the
centralizer of Ayr9. We will adapt Arthur’s notation to #-split Levi and parabolic subgroups
as follows: if M is a @-split Levi subgroup we will denote by PY(M), resp. F°(M), resp.
L9(M) the set of all #-split parabolic subgroups with Levi component M, resp. containing
M, resp. the set of all #-split Levi subgroups containing M.

Let M < G be a 6-split Levi subgroup. We set
Aprg = Xu(App) QR
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and aprg := dim Ayz9. Note that we have

Ay = Ao @ A?\/[

where as before a @ superscript indicates the subset of 6-fixed points. This decomposition is
compatible with the decompositions

Ay = AL @ AL
for all L € L2(M). Hence, we also have

Anrg = Ahg D ALy

for all L e L°(M), where we have set A, := Ao N Afy. Also, we let af; o := dim Ay, =
amp — arg. We define an homomorphism Hyg : M(F) — Ape as the composition of
the homomorphism Hj; with the projection Ay, — Aprg. For all P e PY(M), the roots
R(Anp,Up) of App in the unipotent radical Up of P can be considered as elements of
the dual space A}, of Apg. There is a unique subset Apy < R(App,Up) such that
every element of (Aprp,Up) is in an unique way a nonnegative integral linear combination
of elements of Apy. The set Apy is the image of Ap by the natural projection A}, — A},
and it forms a basis of (Af}4)*. We call it the set of simple roots of Ay in P. Define

Apg = {X € Ay; (@, X) > 0Vae App}

Then, we have the decomposition

Awo= || Aby
QeF?(M)
More precisely the set R(Apz, G) of roots of Ayrg in G divides Ay g into certain facets which
are exactly the cones AZ?,G where Q € FY(M). In a similar way, the subspaces supporting

the facets of this decomposition are precisely the subspaces of the form Ay g, L € L(M),
whereas the chambers (i.e. the open facets) are precisely the cones Ap, for P € PU(M).

Fixing a maximal special compact subgroup K of G(F), for all P € P?(M), we define a map

Hpﬂ : G(F) - AM79

as the composition of Hp with the projection Ay, — Appie. we have Hpg(muk) = Hyrg(m)
for all me M(F), ue Up(F) and k € K.

Let Ay be a maximal (6, F')-split subtorus and let M be its centralizer in G. For simplicity
we set Ag := Apgy 0. It is known that the set of roots R( Ay, G) of Ay in G forms a root system
in the dual space (Af )* to AS (Proposition 5.9 of [26]). The Weyl group associated to this
root system is naturally isomorphic to

W(G, AQ) = NOI'IIlg(F) (AQ)/M()(F)
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and is called the little Weyl group (associated to Ay) (again Proposition 5.9 of [26]). Two
maximal (0, F')-split subtori are not necessarily H (F')-conjugate (e.g. for G = GL, and
H = O(n)) but they are always G(F')-conjugate 0]

Let M be a 6-split Levi subgroup and let a € R(Ap9,G). Then we define a ‘coroot’
a¥ € Af 4 as follows. First assume that « is a reduced root (i.e. § ¢ R(Anp, G)). Let M,
be the unique 6-split Levi containing M such that Ay, ¢ = Ker(a). Let @, be the unique
f-split parabolic subgroup of M, with #-split Levi M such that A, = {a}. Let P, be a
minimal 6-split parabolic subgroup of M, contained in @), and set M, := P(f\/[“ N Q(Pév‘[‘*),
Ap = Apgp. Let Ag/‘[“ be the set of simple roots of Ay in P(fv‘[‘*. Then there is an unique
simple root 3 € A)'™ whose projection to Al equals a. Let 3Y € Ay be the corresponding
coroot. Then we define o as the image of 3 by the projection Ay — Aprg. We easily check
that this construction does not depend on the choice of P since for another choice Pj™*
with M} := Py™* ~ (Py™M) and A := Ay o there exists m € M(F) with mAym™" = Ay
and mP(;’M‘*?’rf1 = P(fw“. If o is nonreduced, there exists ag € R(p, G) such that o = 2y
and we simply set a¥ = %

Let & € R(Ays, G) be aroot extending o and & € Aj, the corresponding coroot. Then, in
general the projection of & to Ay ¢ does not coincide with a* as defined above but, however,
the two are always positively proportional. Finally, we remark that when M is a minimal
g-split Levi subgroup, so that R(Au g, G) is a root system, then for all a« € R(Ayp, G), a¥
coincides with the usual coroot defined using this root system.

Let P be a 6-split parabolic subgroup. We set Apy := App and apy = apyg where
M := P~ 60(P) and we let Ay, = Af, be the set of simple coroots corresponding to
Apg = (Afj )" and Apg S (Af¢)* be the basis dual to A},. More generally, let Q > P be
another #-split Levi subgroup. We set -Ag,e = Ahg and ag’(, = aﬁ/w where L := Q n 0(Q)
and we let Ag,e c (Ag’g)* be the set of simple roots of Ay pin P n L, (Agg)v c -Ag,e be

the corresponding set of simple coroots and Ag,e c (Ag’g)* be the basis dual to (Agg)v. We
have decompositions

Apg = Ajg,g ®Agy, App= (Ag,e)* ® Aps

for which Ag,(, < Apy, (Ag,(,)v < Ay, and moreover Agy (resp. Ap,) is the image of
Apy — Ag’g (resp. Apy— (Ag’e)v) by the projection A}, — A 4 (tesp. Apy — Age). We
define the following functions:
) ngz characteristic function of the set of X € Ay, such that (a, X) > 0 forall a € Aige;
° ?gg: characteristic function of the set of X € Ay such that (w,, X) > 0 for all

X
W € Afp;

ndeed if Ag and Afj are two maximal (6, F)-split tori, My := Centg(Ag),M}, := Centg(A}), Py € P?(My)
and P} € PY(MY) then by [26] Proposition 4.9, Py and P} are conjugated by an element of g € G(F) n HPy
and it suffices to show that we can take g in G(F)n H My but this follows from the fact that H Py = H n M,
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° 51%79: characteristic function of the subset Ay of App.

We also define a function Fgg on Aprg x Aprpe, whose utility will be revealed in the next
section, by

Fg,e(}L X) = Z (—1)%’0_%’97'1}9%,0(}1)7}2 o(H — X)
ReF9(M);PSRCQ

Let M be a 6-split Levi subgroup. Then, for all P € P?(M) we set

po = e Aby @V, \) > 0Va” € Ay}

As for Ay, the set of coroots R(Ang, G)Y divides Al into facets which are exactly the
cones Aaz for Q € F%(M) and the chambers for this decomposition are the AP@ , PePl(M).
As usual, we say that two parabolics P, P’ € P?(M) are adjacent if the intersection of the
closure of their corresponding chambers contains a facet of codimension one. If this is the
case, the hyperplane generated by this intersection is called the wall separating the two
chambers.

1.8.2 (G, M,0)-families and orthogonal sets

As we have recalled in the previous section, the combinatorics of #-split Levi and parabolic
subgroups is entirely governed, as is the case for classical Levi and parabolic subgroups, by
a root system. As a consequence, for M a 6-split Levi subgroup of G the classical theory
of (G, M)-families due to Arthur extends without difficulty to a theory of (G, M, )-families
indexed by #-split parabolics that we now introduce. By definition, a (G, M, 6)-family is
a family (ppg)pepoar) of C* functions on @A}, , such that for any two adjacent parabolic
subgroups P, P’ € 739( ), the functions ppy and @p g coincide on the wall separating the
chambers iAIJS”;‘ and iA+}T9. To a (G, M, 0)-family (¢pg)pepo(rr) We can associate a scalar
©amp as follows: the function

Prro(A Z @Pe Nepo(A), AeiAyy
PePO(M

where we have set

epo(N) i=meas (AS o/Z[AYe]) [ \a)™

\2 N
« GAP,B

is C* and we define @y19 := @a,9(0). Note that we need a Haar measure on A§; , for the
definition of the functions epy (P € P?(M)) to make sense. We fix one as follows. Let Ay
be the image of Ay in G = G/Ag and let AM@ be the inverse image of ZM@ in G. Let
AS o5 S AS g denote the image of A’ o(F) by HAG“ It is a lattice of Afj 5 and we choose
our measure so that the quotient A§; Q/AMG 7 1s of measure one.
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We will actually only need (G, M, 0)-families of a very particular shape obtained as
follows. We say that a family of points Var9 = (Yre) pepo(ar) in Anro is a (G, M, )-orthogonal
set if for all adjacent P, P’ € P?(M) we have

YP,e - YP’,G = 7“P,P'OéV

where rppr € R and {a¥} = Ay, n =AY, ;. We say that the family is a positive (G, M, 0)-
orthogonal setif it is a (G, M, #)-orthogonal set and moreover rp pr = 0 for all adjacent P, P’ €
PY(M). Toa (G, M, 6)-orthogonal set Yarg = (Ypg) pepoar) we associate the (G, M, 0)-family
(epol., yMﬂ))PeP"(M) defined by

0po(\ Varg) 1= P N e ALy

and we let var9(Varo) := @are(0, Varg) be the scalar associated to this (G, M, #)-family. If
Ve is a positive (G, M, §)-orthogonal set then vy 9(Vase) is just the volume of the convex
hull of the elements in the family Yy (with respect to the fixed Haar measure on Af ).
For any (G, M, 6)-orthogonal set Va9 = (Ypg) pepo(ary and all Q € F?(M) we define Y4 to
be the projection of Ypy to Ag g for any P e PY(M) with P < @ (the result is independent
of the choice of P) and more generally for any Q, R € F(M) with Q = R we let Yéf(, be the
projection of Ypg to Af 4 for any P € P?(M) with P < Q. Then, for any L € L°(M) the
family Vi g := (Yg.0)gepo(r) forms a (G, L, )-orthogonal set.

Fixing a maximal special compact subgroup K of G(F) to define maps Hpy (P € P’(M)),
for all g € G(F) the family Varo(g) := (—Hpo(g)) pepo(ar) is a positive (G, M, 0)-orthogonal
set. Indeed, the family (—Hp(g))pep(mr) is a positive (G, M)-orthogonal set in the classical
sense of Arthur (see [2] §2) and thus for all P = MUp, P’ = MUp: € P?(M) we have

—Hp(g) +Hp/(g) S Z R+Oév.

OLER(AM,UP)G—R(AM,UP/)

As the projection of R(Axr, Up) (vesp. R(An, Upr)) to Ay 4 is R(Ang, Up) (vesp. R(Anrg, Upr))
and for all & € R(Ay;, G) the projection of the coroot a¥ to Ay g+ is positively proportional
to @, where @ € R(Axrp, G) denotes the projection of a to Aj; 4, it follows that

—Hpy(g) + Hpo(g) € 2 R.a”

aeR(An,0,Up)N—R(Ap0,Upr)

for all P, P' e PY(M) i.e. Yaro(g) is a positive (G, M, 0)-orthogonal set.
We define

vare(g) = vare(Vare(g))

There is another easier way to obtain (G, M, #)-orthogonal sets. It is as follows. Let My < M
be a minimal #-split Levi subgroup with little Weyl group Wy. Fix Py € P?(M,). Then, for
all X € Ay := Ao we define a (G, My, 0)-orthogonal set V[ X|o := (Y[X|p;0) prepoan) by
setting Y[ X|prg 1= wp X for all P € PY(M,) where wp; € Wy is the unique element such
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that wp, Py = Fy. By the general construction explained above this also yields a (G, M, 0)-
orthogonal set V[ X |0 = (Y[X]po) peptan)-

Let Vi = (Yro)pepo(ary be a (G, M, 0)-orthogonal set. For Q € F?(M) we define a
function FJ\Q/M(., Yurp) on Aprg by

FJ?/[,@(Hv V) = Z 51@,9(}[)1“%9(}[, Yro)
ReF(M);R<Q

where the functions 43}, and F?z,e have been defined in the previous section. Let L =

Q@ n 0(Q). Fixing a norm [.| on Aﬁw, we have the following basic property concerning the
support of this function (see [38] Corollaire 1.8.5):

(1.8.1) There exists ¢ > 0 independent of Yy g such that for all H € Ao with FJ\QM(H, V) #
0 we have |H?| < ¢Suppepoary.peq |YI§?9| where H% denotes the projection of H to Af; 4.

Moreover, if the (G, M, 6)-orthogonal set Yy ¢ is positive then FJ\QM(., Varp) is just the char-
acteristic function of the set of H € Ay such that H Q belongs to the convex hull of
(Yl%)pepe(M);ch ([38] Proposition 1.8.7). Without assuming the positivity of our (G, M, 0)-
orthogonal set, we have the identity (|38] Lemme 1.8.4(3))

(1.8.2) Z F?/[,@(H7 yM,e)Tgvg(H —Yoe) =1
QeFo(M)

for all H € Aprgp.
Let R be a free Z-module of finite type. Recall that a ezponential-polynomial on R is a
function on R of the following form

FOY) =D x(Y)p(Y)

xeR

where R denotes the group of complex (not necessarily unitary) characters of R and for all
X € ﬁ, Py, 1s a ‘complex polynomial’ function on R, i.e. an element of Sym((C®R)*),which
is zero for all but finitely many x € R. If f is an exponential-polynomial on R then a
decomposition as above is unique, the set of characters y € R such that Py # 0 is called the
set of exponents of f and p; (corresponding to x = 1 the trivial character) is called the purely
polynomial part of f. Finally, we define the degree of f as the maximum, over all y € 75,, of
the degree of the polynomials p,. We record the following lemma whose proof is elementary:

Lemma 1.8.1 Let R be a free Z-module of finite type, let f be a exponential-polynomial on
R and let C < R® R be an open cone (with a vertex possibly different from the origin).
Then,if the limit
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vigte /)
|Y|—0o0

exists it equals the constant term of the purely polynomaial part of f.

Let My © M be a minimal 6-split Levi subgroup, Ay := Ay and fix Py € P?(M).
For all X e Ay we dispose of the (G, M,6)-orthogonal set V[ X]|ae = (Y[X]ro)peronr)
defined above. We let Yasg + V[ X]ao := (Ypo + Y[X]a6) pepoar) be the sum of the two
(G, M, 0)-orthogonal sets YVarp and Y[ X 9. Obviously, it is also a (G M, #)-orthogonal set.
We let

Dnaaea + VX ]uia) = | 05,5 (Huro(a), Vasg + V[X]ng)da
AG(F)\A]M 9( )

where we recall that A’M’@ is the subtorus generated by Ag and Ajpsg. Let A r denote the

image of Ay, o(F) by Hpye- It is a lattice in Ag and we have the following lemma (combine

[41] Lemme 1.7(ii) with equalities 1.5(2) and 1.3(7) of loc.cit.):

Lemma 1.8.2 For every lattice R < Ag g r®Q the function X € R — Upr9(Varo+ V[ X ar0)
1s an exponential-polynomial whose degree and exponents belong to finite sets which are in-
dependent of Y. Moreover, if we denote by Unrpo0(Vue, R) the constant coefficient of the
purely polynomial part of this exponential-polynomial there exists ¢ > 0 depending only on R

such that for all k = 1 we have
aG
M.,0
< C]fil sup ‘Yp’9|
PeP?(M)

Let now Yy = (Yp)pepu) be a usual (G, M)-orthogonal set. This induces a (G, M, 0)-
orthogonal set Vy g := (vag) pepo(my Where, for all P e PY(M), we denote by Ypy the
rojection of Yp to Apg. The subspace Aprg + Ag of Ap being special in the sense of [3]§7

, we have a descent formula (Proposition 7.1 of loc.cit.)

1

17M,9,0(yM,9, ER) - UM,G(yM,G)

(1.8.3) varo(Vare) = Z d5io (L) (V)

LelL(M

where for all L € £L(M), @ is a parabolic with Levi component L which depends on the
choice of a generic point £ € Ay, and dfw(L) is a coefficient which is nonzero only if
AG = A5 @ AL Moreover if AS” = 0 then we have dS;9(G) = 1. Let K be a special
maximal compact subgroup of G(F') that we use to define the maps Hp for P € P(M)

2Indeed with the notations of loc.cit. we need to check that for every root 8 € R(An9,G) the sum
2iaes(p) Mot is trivial on A8, but this is trivial since for all a € %(8) we have ((a) := —0(a) € %(8) and
My(a) = Ma
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and Hpg for P € P’(M). Then, the formula [L83] applied to the particular case where
Yp = Hp(g) for all P € P(M) and for some g € G(F) yields

(1.8.4) vne(g) = Z dJ\G/[,G(L)U]?J(g>
Lel(M)

1.9 Estimates

In this section we collect some estimates that we will need in the core of the paper. We start
with four lemmas concerning maximal tori and integrals over regular orbits in G.

Lemma 1.9.1 Let T < G be a maximal torus . Then, we have

o(t) « a(g~'tg)
forallteT and all g € G.

Proof: Let W := W (G, TF) be the absolute Weyl group of 7" and set B := G//G — Ad (i.e.
the GIT quotient of G acting on itself by the adjoint action). Let p : G — B be the natural
projection. By Chevalley theorem, the inclusion T' < G induces an isomorphism 7'//W ~ B
and thus the restriction of p to 7" is a finite morphism. Hence, we have

o(t) ~ op(p(t))
for all t € T and it follows that

a(t) ~ os(p(t)) = os(p(9~'tg)) < o(g™'tg)
forallte T andallge G. R

Lemma 1.9.2 (Harish-Chandra, Clozel) Let T < G be a maximal torus. Then, for all
d > 0 there exists d > 0 such that

D(t)" ZJ =% (g~ tg)o(g tg) dg « o(t) ¢
T(ENG(F)

for all t € Tiee(F).

Proof: By Corollary 2 of [I4] there exists dy > 0 such that

sup DY (t)Y/? f
t€Treg (F) T(FN\G(F)

Thus by Lemma [[.9.], for all d > 0 we have

=%(g tg)o(g " tg) " ®dg < o0

DY ()Y QJ =997 tg)o(g "tg) " dg « o(t) ¢
T(F\G(F)

for all t € Tiee(F). A
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Lemma 1.9.3 Let ' < G be a subtorus such that Treg := T N Greg s nonempty (i.e. T
contains nonsingular elements). Then, for all k > 0, there exists d > 0 such that the integral

f log(2 + DE(#)~1)ro(t)~dt
T(F)

CONVETGES.

Proof: We denote by X%(T) the group of regular characters of T defined over F. There
exists a multiset  of nontrivial elements in X%(7T") such that

DE(t) = [ Jla(t) - 1

aeX

for all t € Tpes(F') where we have denoted by |.| the unique extension of the absolute value
over F to F. We have

log(2 + DY(t)™") « [ Jlog(2 + |a(t) — 1|7)

aeX

Thus, by Cauchy-Schwartz, it suffices to prove the following claim:
(1.9.1) For all @ € X2(T) — {1} and all k > 0 there exists d > 0 such that the integral

L(F) log (2 + Ja(t) — 1]7)" o (t) i

converges.

(T') — {1} and let ', < I'p be the stabilizer of « for the natural Galois action.

Write I, = Gal(F/F,) where F,/F is a finite extension. By the universal property of
restriction of scalars, v induces a morphism & : " — Rp,/rG,,. Denoting by Ker(&) the
kernel of &, for all £k > 0 and all d > 0 we have

f log (2 + |a(t) — 1|_1)k0(t)_kdt = f
T(F)

log (2 + |a(t) — 1|—1)’“f o(tt)~4dt dt
T(F)/ Ker(&)(F)

Ker(&)(F)

As there exists a subtorus 7" < T such that the multiplication map 7" x Ker(&) — T is an
isogeny (so that y/o(t)o(t') « o(tt') and o(t) ~ or/kex(a)(t) for all (t,t') € Ker(a) x T"), we
see that for all d sufficiently large (i.e. so that the integral below converges) we have

J o(tt) Ut < o7 Ken(a) (t) "V
Ker(a)(F)

for all t € T(F')/Ker(&)(F). Since T'(F')/Ker(a)(F') is an open subset of (T'/ Ker(&)) (F) we
are thus reduced to the case where & is an embedding.
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Define N(a) € X*(T) by

O'EFF/Fa

We distinguish two cases. First, if N(«a) # 1 then we have an inequality

log (2 + |a(t) — 1|7Y) < log (2 + [N(a)(t) — 1|7

for all t € T(F) with N(«)(t) # 1. Hence, up to replacing a by N(a) we may assume
that @ € X*(T') in which case by the previous reduction we are left to prove [L91]in the
particular case where T' = G,, and o = Id in which case it is easy to check. Assume now
that N(«) = 1. Since & is an embedding this implies that 7" is anisotropic and we just need
to prove that for all £ > 0 the function

teT(F)— log (2 + |a(t) —1|7})"

is locally integrable. Using the exponential map we are reduced to proving a similar statement
for vector spaces where we replace a(t) — 1 by a linear form which is easy to check directly.

|
Combining [[.2.2l with Lemma [[.9.2] and Lemma [[.9.3] we get the following:

Lemma 1.9.4 Let T < G be a subtorus such that Tieg := T' N Gireg 15 nonempty and let T¢
be the centralizer of T in G (a mazimal torus). Then, for all k > 0 there exists d > 0 such
that the integral

f DE(1)"” f =6(g tg)o (g tg) “orec(g)dgdt
T(F) TG (F)\G(F)

CONVETGES.

The following lemma will be needed in the proof of the next proposition. As it might be
of independent interest we present it separately.

Lemma 1.9.5 Let G be an anisotropic group over F and Y an affine G-variety. Set Y’ =
Y /G for the GIT quotient (it is an affine algebraic variety over F') and denote by p:Y — Y’
the natural projection. Then we have

ay (y) ~ oy (p(y))
for allye Y(F).

Proof: First, we have oy/(p(y)) « oy(y) for all y € Y since p is a morphism of algebraic
varieties. Let f € F[Y], we need to show that

log(2 + [ f(y)]) < av/(p(y))
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for all y € Y(F). Let W be the G-submodule of F[Y] generated by f and V be its dual.

There is a natural morphism ¢ : Y — V and we have a commutative diagram

Y —~Y' =Y/G

Pk
V—V:=V/G

By definition there is a function fi, € F[V] such that f = fi o ¢ and moreover oy (y') «
oy(y') for all 4 € Y’. Hence, we are reduced to the case where Y = V' and we may assume
that f is homogeneous. By Kempf’s extension of the stability criterion of Mumford over
any perfect field ([30], Corollary 5.1) and since G is anisotropic, for every v € V(F') the
G-orbit G.v < V is closed. It follows that there exist homogeneous polynomials P, ..., Py €
F[V'] = F[V]% whose only common zero in V(F) is 0. We only need to show that for some
R,C > 0 we have

(1.9.2) max(1, |f(v)]) < Cmax(1,|P(v)], ..., |Px(v))"

for all v € V(F). Up to replacing f, P, ..., Py by some powers, we may assume that they
are all of the same degree. Then, for every 1 < i < N, f/F; is a rational function on the
projective space P(V') and the map

[v] € P(V)(F) — min (|(f/P)([o])], -, [(f/Pr)([0])]) € Ry

is continuous for the analytic topology hence bounded (as P(V')(F) is compact) and this
proves that inequality [[.9.2] is true for R = 1 and some constant C'. B

Following [31] Definition 4.9, we say that a subgroup H < G is F'-spherical if there exists
a minimal parabolic subgroup F, of GG such that HF, is open, in the Zariski topology, in G.
For example symmetric subgroups (see §L.8.1]) are F-spherical. Recall that in §I.2] we have
defined a ‘norm descent property’ for regular maps between F-varieties.

Proposition 1.9.1 Let H < G be an F-spherical subgroup. Then, the natural projection
p: G — H\G has the norm descent property.

Proof: Set X := H\G. By [306] Proposition 18.2 (1), it suffices to show that X can be covered
by Zariski open subsets over which the projection p has the norm descent property. Since
G acts transitively on X it even suffices to construct only one such open subset (because its
G-translates will have the same property). By the local structure theorem ([|31] Corollary
4.12), there exists a parabolic subgroup @) = LU of G such that

e U = HQ is open in G,

e Hn(@Q = H n L and this subgroup contains the non-anisotropic factors of the derived
subgroup of L.
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Obviously, to show that the restriction of p to U has the norm descent property it is sufficient
to establish that L — H n L\L has the norm descent property. We are thus reduced to the
case where H contains all the non-anisotropic factors of the derived subgroup of G. Let G,
denote the derived subgroup of G, Ger e the product of the non-anisotropic factors of Gyey,
Gler.c the product of the anisotropic factors of Gy, and set G' = Gy, o Z(G)°, H = Hn G'.
Then, we have H = GerneH' and the multiplication map Ggerne X G — G is an isogeny. It
follows that there exists a finite set {7;;4 € I} of elements of G(F) such that

= UGder,nc(F)G/(F>%

el

and

)= JH'(P)\G'(F

iel

From these decompositions, we infer that we only need to prove the norm descent property
for G — H'\G' i.e. we may assume that Ggene = 1. Let G, be the product of G, . with
the maximal anisotropic subtorus of Z(G)® and consider the projection

p:X:=H\G—- X :=HG\G
We claim that

(1.9.3) ox(x) ~ ox/(p'(x))

for all z € X(F'). As H is reductive (since G(F') contains no unipotent element), X is affine
and the claim follows from the Lemma [1.9.5

Now because of [L9.3] we may replace X by X’ i.e. we may assume that H contains G.. As
the multiplication map G. x Ag — G is an isogeny, by a similar argument as before we are
reduced to the case where G is a split torus for which the proposition is easy to establish
directly. Il

2 Definition of a distribution for all symmetric pairs

2.1 The statement

Let G be a connected reductive group over F, H be a symmetric subgroup of G and 6
be the involution of G associated to H (see §L.81). Set AZ = (Ag n H)°, = G/Ag,
H = H/Ag, X := Ag(F)H(F)\G(F), X := HAG\G, ox := ox and 7 := 0g. Note that
X is an open subset of X(F'). Let x and w be continuous unitary characters of H(F') and
Ac(F) respectively such that x|aum) = wjan ). Then, for all f € S,(G(F)) we define a
function K} on X by
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Ki(v) = f(z ha)x(h)"dh

JAE(F)\H(F)

If the pair (G, H) is tempered then the expression defining K }‘ makes sense for all f €
Co(G(F)) (by Lemma [[L71). The goal of this chapter is to show that if f is strongly
cuspidal then the expression

JX(f) = J K5 (z)dz
b's
is convergent. More precisely we will prove the following

Theorem 2.1.1 For all f € S, scusp(G(F)), the expression defining JX(f) is absolutely con-
vergent. Moreover, if the pair (G, H) is tempered then the expression defining JX(f) is also
absolutely convergent for all f € Cy, scusp(G(F)).

2.2 Some estimates

Let A = G be a (0, F)-split subtorus, set M := Centg(A) and let Q = LUg € F?(M) where
L:=Qn0Q). Let Q = 0(Q) = LUz be the opposite parabolic subgroup and set

A= {ae A; |a(a) > 1 Yo e R(A, Ug)}

and
AL(0) == {ae A; |a(a)] = ¢ Ya € R(A, Ug)}

for all > 0. Recall that if Y is an algebraic variety over F' and M > 0 we denote by Y[< M|
the subset of y € Y/(F') with oy (y) < M. We also recall that we have fixed a (classical) norm
|.|; and that for any R > 0, B(0, R) denotes the closed ball of radius R centered at the origin
for this norm (see §1.2)).

Lemma 2.2.1 (i) Let e > 0 and 6 > 0. Then, we have

7(a) « sup(@(g),7(a”" ga))
for alla e /%(5) and all g € G(F)\ (Q(F)aUg[< €7 (a)]a™t);
(11) Let 0 < 0" <0 and ¢g > 0. Then, if € > 0 is sufficiently small we have
alUg[< €5 (a)]a™ < exp (B(O, coe 0 7@ A uQ(F))

forall a e /%(5).
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(iii) We have
7(h) <« 7(a ' ha)

and

a(h) +7(a) <« T(ha)
forallae A and all he H.

(iv) Set L :=Qn0(Q), Hy := Hn L and H? := Hy, x Ug where Ug denotes the unipotent
radical of Q. Then, we have
7(h%) « 7(a"'h%a)

foralla e /% and all h® e HC.

Proof: (fl) and () are essentially [I1] Lemma 1.3.1 (i) and (ii) applied to the group G :=
Ac\G. To prove (i), we first observe that

0(a"*ha) = aha™" and O(ha) ‘ha = a*
for all a e A, h € H. Hence, we have
sup(@(aha™'),7(a 'ha)) « @(a 'ha) and 7(a*) « 7(ha)

for alla € A, h € H. Since 7(a) ~ 7(a?) for all a € A and 7(h) « 7(ha) + 7(a), this already
suffices to establish the second inequality. To prove the first one, it only remains to show
the following

(2.2.1) We have
(g) « sup(@(aga™),5(a""ga))
forallae A and all g € G.

Fix an embedding ¢ : G < SL, for some n > 1 which sends the torus A into the standard
maximal torus A, of SL,. Then, we are reduced to proving 2.2.1] in the particular case
where G = SL, and A = A,. For every matrix g € SL,, denote by ¢;; (1 <i,j < n) the
(i, j)th-entry of ¢g and for a € A, set a; = a;;. Then, we have

7(g) ~ suplog(2 + [gi ;1)
[2¥)

Hence, it suffices to show that for all 1 < 1,5 < n we have

log(2 + [gi]) < sup (log(2 + [(aga™)i;), log(2 + |(a ga)i;)))
for all g € SL,, and a € A,. However, (aga™');; = aiaj’lgm, (a7lga);; = aja;'g;; and at
least one of the quotients aia]fl, aja;I is of absolute value greater than 1. The result follows.
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We now prove ([M). Every h? € H?(F) can be written h? = hpug where hy € Hy < L
and ug € Ug. Moreover, we have o(lug) ~ 7(l) + 7(ug) and 7(ug) < o(a tuga) for all
le L,ugeUgandac /%. Besides, as H;, « H, by we have 7(hy) « a(a " hra) for all
hr € Hy, and a € A. It follows that

(h9) ~ T (hy) +7(ug) « 7(a ‘hra) +7(a uga) ~ 7(a""ha)

for all h? = hyug e H? = Hy, x Ug and all a € A%. This proves (iv). H

2.3 Weak Cartan decompositions and Harish-Chandra-Schwartz space
of X

Let Ay, j € J, be representatives of the H(F)-conjugacy classes of maximal (6, F')-split tori
of G. There are a finite number of them and by a result of Benoist-Oh and Delorme-Sécherre
([9] and [19]), there exists a compact subset K < G(F') such that

(2.3.1) = JHF)A0,(F

jed

This decomposition is called a weak Cartan decomposition.

Let C < G(F) be a compact subset with nonempty interior and set

=X (x) = volx (zC)~ Y2

for all € X and where voly refers to a G(F')-invariant measure on X (which exists as H
is reductive hence unimodular). If C" < G(F) is another compact subset with nonempty
interior, the functions =3 and =3, are equivalent and we will denote by =X any such function
(for some choice of C).

Proposition 2.3.1 (i) For every compact subset I < G(F), we have the following equiv-

alences
(2.3.2) =X (k) ~ Z¥(z)
(2.3.3) ox(zk) ~ ox(x)

forallze X and all k e K.
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(ii) Let Ao be a (0, F)-split subtorus of G. Then, there exists d > 0 such that

(2.3.4) =% a)7(a)" « E¥(a) « E%(a)

(2.3.5) ox(a) ~7(a)
for all a € Ao(F).

(iii) There exists d > 0 such that the integral

L =X (2)20x (z)~4dz

15 absolutely convergent.

Assume moreover that the pair (G, H) is tempered, then we have

(iv) For all d > 0 there exists d > 0 such that

f EG(hz)E(h:ﬂ)*d/dh & EX(:z)UX(x)fd
AB(F)\H(F)

forall x e X.

(v) There exist d > 0 and d' > 0 such that

f =6 (3~ ha)5 (2~ ha)~dh « 2% (2)20x (2)"
AZ(F)\H(F)

forallze X.
(vi) More generally, let Q be a 6-split parabolic subgroup of G and set L := Q n 0(Q),

Hy := Hn L and H? := Hy, x Ug where Ug denotes the unipotent radical of Q. Let
Ap < L be a mazimal (0, F')-split subtorus and set

A= {ae A(F); |ala)] = 1 Vare R(Ao, Ug)}

where Ug denotes the unipotent radical of Q. Then, H? is a unimodular algebraic

group, (G, H?) is a tempered pair and, fiving a Haar measure dh® on HC(F), there
exists d > 0 and d' > 0 such that

f =6 (- ha)F(a— h%) ~1dh? « = (a)ox ()"
AB(F)\H®(F)

foralla e /%.
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Proof:

(i)
(i)

is easy and left to the reader.

Let My be the centralizer of Ay in G. For all Py e P%(M,) set

AIJSO ={a€ Ay(F);|aa)| = 1VYae R(Ay, Po)}
Then

(2.3.6) APy = | 4%

P()E'Pe (M())

Thus, we may fix Py € P?(M), set A* := A}, and prove 234 and for those a
belonging to A*. Since Py is 6-split, HF, is open in G. The proof of (i) is now the
same as Proposition 6.7.1(ii) of [I1] after replacing Proposition 6.4.1(iii) of loc. cit. by
Lemma 2.2.T] ().

The proof is exactly the same as for Proposition 6.7.1 (iii) of [11]: we use the weak
Cartan decomposition 23] to show that X has polynomial growth in the sense of [10]
and then we conclude as in loc. cit.

Let Ay be a maximal (6, F)-split subtorus of G, My := Centg(Ag) and Py € PY(M,). By
the decompositions 2.3.1] and 2.3.6, points (i) and (i) and Lemma 22.TI({) it suffices
to show the existence of d > 0 such that

f =€ (ha)7(h)~*dh « =€ (a)

AG(F)\H(F)

for all a € A}, . Since Py is 0-split, H(F)Py(F) is open in G(F). It follows that if K
is a maximal compact subgroup of G(F) by which Z¢ is right invariant there exists an
open-compact subgroups J = G(F) and Jy < H(F) such that J < JyaKa™! for all
a € A;SO. Hence, for all d > 0, all £ € J and all a € AJISO, writing k = kgakga™' with
ky € Jy and kg € K, we have

=% (hka)a(h)"4dh = J =% (ha)7(hky")4dh

Jx‘lé"(l”)\H(F) AG (F)\H(F)

It follows that for all d > 0 we have

Z%ha)a(h)"4dh « J

J =% (hka)dka(h)~%dh
AB(PN\H(F) K

Jx‘lg(l’)\H(l”)

for all a € A}, and we conclude by the ‘doubling principle’ (see [11] Proposition 1.5.1)
and the fact that the pair (G, H) is tempered.
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(v)

(vi)

Once again, the proof is very similar to the proof of Proposition 6.7.1 (v) of [I1] so

that we shall only sketch the argument. Let Ay be a maximal (0, F')-split torus of G

and Py € PY(M,) where My := Centg(Ap). By the weak Cartan decomposition, (i),

(), the inequality o(h) « o(a~tha)a(a) and the decomposition 236 we are reduced
to proving the existence of d,d > 0 such that

f =6 (g~ ha)F(h)~*dh « 26 (a)*F(a)"

AG(F)\H (F)

for all a € A},. Using the fact that H(F)Py(F) is open in G(F) we show as in the
proof of (vl that if K is a maximal compact subgroup of G(F') we have

=%a"ha)7(h) " %dh « J

f EG(a_lk‘lhk‘ga)ﬁ(h)_ddkldk‘gdh
AB(F\H(F) JKxK

ng(F)\H(F)

for all a € A}, and then we conclude again by the ‘doubling principle’ (see [I1] Propo-
sition 1.5.1 (vi)) and the fact that the pair (G, H) is tempered.

The proof that H? is unimodular is similar to the proof of Proposition 6.8.1 (ii) of [L1]
noticing that @ is a good parabolic subgroup with respect to H (that is QH is open in
G) and that H, = H n Q. Moreover, the fact that the pair (G, H?) is tempered and
the estimate can be proved in much the same way as Proposition 6.8.1 (iv)-(vi) of [11].
Indeed, if we denote by M, the centralizer of Ay in GG, we have

+ _ +
5= U 4
POEPG(MO)

Poc@Q

and thus, fixing Py € P?(M,) with Py = Q, it suffices to show the existence of d, d’ > 0
such that

(2.3.7) The integral f =9 (h9)a(h?)~dh® converges;
A (F)\HQ(F)

and

(2.3.8) J =%a'h%)7(a" hPa) " 4dhe « =X (a)?ox(a)? for all a € AL
AL (F)\HQ(F) ’

Then, 2337 can be proved exactly as Proposition 6.8.1 (iv) of [I1] where the only inputs
used are the facts that QH is open in G and that the pair (G, H) is tempered. Also,
2.3.8 can be proved exactly as Proposition 6.8.1 (vi) of loc. cit. where this time the
only inputs are the estimates of (i) and of Lemma 2.2.1] (iv)), the convergence of 2.3.7]
and the fact that PyH is open in G. W
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2.4 Proof of theorem [2.1.1]
By Proposition 2.3.1] (i), it suffices to establish the two following claims

(2.4.1) For all f €S, scusp(G(F)) the function z — K7} (x) is compactly supported.

(2.4.2) Assume that the pair (G, H) is tempered. Then, for alld > 0 and all f € C,, scusp(G(F)),
we have
K@) « Z%(2)?ox ()~

for all z € X.

We will only show [2.4.2] the proof of Z.4.T|being similar and actually slightly easier. Moreover,
the proof of is also very similar to the proof of Theorem 8.1.1 (ii) of [IT]. We will thus
content ourself with outlining the main steps. Let Ay be a maximal (0, F')-split subtorus of
G, My := Centg(Ag) and Py = MUy € P?(My). Let Py = 0(P,) be the opposite parabolic
subgroup and set

A%O = {a € Ay(F); |a(a)] = 1 Va e R(Ay, Py)}

By the weak Cartan decomposition 2:3.1] as well as Proposition Z3T|([), it suffices to show
242 only for z = a € A%O. For all Q € F%(M,) and 6 > 0 set

AL(0) == {a € Ay(F); |ala)] = €™ Ya e R(Ay, Ug)}

where Q := 6(Q) and Ug denotes the unipotent radical of Q. Then, if § is sufficiently small
we have
+ + +
At = U A5(8) n AT
QeFO(Mo)—{G},PocQ

Thus, fixing Q € F/(M,) — {G} with Py = Q and 6 > 0, it suffices to prove the estimate
only for z = a € /%(5) N A%O. We fix such a ) and such a ¢ henceforth. Let Uy be
the unipotent radical of Q and set L := Q n @, H := H n L and H? := Hy x Ug. We
define a unitary character ¢ of H?(F) by setting x?(hrug) = x(hr) for all hy € HL(F)
and ug € Ug(F). Then by Proposition ZZ3TI[i) , H¥ is a unimodular algebraic group and
the pair (G, H?) is tempered. Thus, fixing a Haar measure dh® on H?(F), we can define

Ky = [ Fa R (h2) " d°
AZ(F)\HQ(F)

for all f € C,(G(F)) and all x € G(F). As Ug = H? = Q, for any strongly cuspidal function
f € Cuscusp(G(F)), the function K}"Q vanishes identically. Therefore, it is sufficient to show
the existence of ¢ > 0 such that for every f € C,(G(F')) and d > 0 we have
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(2.4.3) Ki(a) - cK}"Q(a) « Z%(a)?ox(a)™

for all a € /%(5) N A%O. We prove this following closely the proof of Proposition 8.1.4 of
[11]. We henceforth fix f e C,(G(F)) and d > 0.

The F-analytic map B
H(F) n Po(F)Uo(F) — Up(F)

h =pu— u

is submersive at the origin (this follows from the fact that Py(F)H(F) is open in G(F)).
Therefore, we may find a compact-open neighborhood Uy of 1 in Uy(F') together with an
F-analytic map

h:Uy — H(F)

such that h(u) € Po(F)u for all u € Uy and h(1) = 1. Set Uy = Uy N Ug(F), H :=
H(F)h(Ug) and fix Haar measures dhy and dug on Hp(F) and Ug(F') whose product is
the fixed Haar measure on H?(F). The following fact is easy and can be proved exactly the
same way as point (8.1.7) of [11] (note that here H n Q = H n L):

(2.4.4) The map H(F) x Uy — H(F), (hr,ug) — hrh(ug), is an F-analytic open embed-
ding with image H and there exists a smooth function j € C*(Ug) such that

Jpman=] | etmnestuatians
for all p € L*(H).

Fix € > 0 that we will assume sufficiently small in what follows. By Lemma Z2T|[), for e
small enough we have
alg [< e7(a)]a™ < Uy

for all a € A%((S). This allows us to define
H=":= H (F)h (aUq [< eo(a)]a™"),

H@= .= H;(F)aUq [< eo(a)]a™"

and the following expressions

Kp~(a) := J ., f(a tha)x(h)*dh
AH(F)\H<<a
K}"Q’“(a) = J fla™'hla)x?(h9)~1dh¥
AR (P)\HA <0
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for all a € /%(5). Set ¢ = j(1) (where the function j(.) is the one appearing in 2.4.4).
Obviously will follows if we can show that for e sufficiently small we have:

(2.4.5) |K¥(a) - K¥°(a)| « Z¥(a)%0x ()~
(2.4.6) ’K]?(a) - K}C’Q’“(a)) « Z¥(a)2ox ()¢
(2.4.7) K¥<(a) = cK¥9~(a)

+ +
for all a € AG((S) N AL
First we prove and 4.6l By Lemma 2.2.1] (il)- (ii)- (ivl) and noticing that

H~" = H(F) n Q(F)aUg [< e7(a)]a™* and HY =" = HO(F) n Q(F)aUq [< e (a)]a™ ",

we see that 7(a) « 7(a"tha) and &(a) « o(a"'h%a) for all a € Ag(é), h e H(F)\H=<%* and
h@ e HO(F)\H? =% Thus, by definition of C,(G(F)), for every d; > 0 and dy > 0, the left
hand sides of and are essentially bounded by

7(a)™ " f E%(a " ha)F(a" ha)~2dh
AG(F)\H (F)

and
7(a)™" J 2% a'h%)7(a" h%a) 2 dh?
AG(F)\HQ(F)

for all a € A%(é) respectively. By Proposition 231l (w)- (), there exists d3 > 0 such
that for dy sufficiently large the last two expressions above are essentially bounded by
EX(a)%ox(a)B5(a)~h for all a € A%. Finally, by Proposition 23] (i), if d; is sufficiently
large we have ox(a)®7(a)"" « ox(a)~® for all a € Ag(F). This proves and

It only remains to prove ZZ4.7 By 244 and the choice of Haar measures, we have

(24.8) Kj~(a)= J

| f ™ huh(ug)a)(hih(ug)) i (ug)dugdhs
AB(F\HL(F) JaUg[<ea(a)]a—!

and

(2.4.9) KY9=(a) = J

J f(a_thuQa)X(hL)_ldquhL
AB(F\HL(F) JaUg[<er(a)]a~!
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for all a € /%(5). Since the function ug — x(h(ug)) 'j(ug) is smooth, by Lemma 22T
for e sufficiently small we have

(2.4.10) A(h(ug))jlug) = (1) = ¢

forall a € /%(5) and all ug € aUg[< ez (a)]a™t. Let J < G(F) be a compact-open subgroup
by which f is right invariant. By definition, the map ug — h(uQ)uél is F-analytic, sends 1
to 1 and takes values in Py(F). By Lemma 22.TI[) again, it follows that for all 0 < §' < §
and all ¢y > 0 if € is sufficiently small we have

a”'h(ug)ug'a € exp (B(O, coe” "7 W) EO(F>>

for all a € A%((S) N A%O and all ug € aUg[< €o(a)]a. Moreover, there exists o > 0 such
that [Ad(g7)X |, < e*®9|X|, for all g € G(F) and all X € g(F). Hence, if ¢ is sufficiently

small we have
(2.4.11) a_luélh(uQ)a = (a_luQa)_l(a_lh(uQ)uéla)(a_luQa) eJ

for all a € A%((S) N A%O and all ug € alUg[< €a(a)]a™!. It is clear that 241 follows from
2.4.8 2.4.9] 2.410 and 2.4.17] and this ends the proof of Theorem 2.1.11 W

3 The spectral side

3.1 The statement

In this chapter G is a connected reductive group over F, G := G/Ag and H is a symmetric
subgroup of Gi. As in the previous chapter, we let AZ as the connected component of Hn Ag.
Let w and x be continuous unitary characters of Ag(F') and H(F') respectively such that

Wiagr) = Xjage)- Set
v(H) :=[H(F)n Ag(F) : Ag(F)]
In §2.11 we have defined a linear form

f € Suscusp(G(F)) — JX(f)

which, if (G, H) is a tempered pair, extends to a continuous linear form

[ € Coscusp (G(F)) — JX([)
For all 7 € Irr(G) we define a multiplicity m(m, x) by
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m(m, x) := dim Hompg (7, x)

where Hompg (7, x) denotes the space of linear forms ¢ : @ — C such that fom(h) = x(h)¢ for
all h € H(F). By Theorem 4.5 of [18], we know that this space is always finite dimensional
so that the multiplicity m(m, x) is well-defined.

Recall that Irry, cusp(G), resp. Ity s (G), denote the sets of equivalence classes of irre-
ducible supercuspidal, resp. square-integrable, representations of G(F') with central charac-
ter w. Define the following linear forms

f € Suscusp(G(F)) — J;;ec,cusp(f) =v(H) Z m(m, x) Trace(r" (f))

welrry cusp (G)

and

f € Coseusp(G(F)) = T oo f) = v(H) D, mim, x) Trace(n (f))

welrry sqr (G)

Notice that the sums defining these linear forms are always finite by the result of Harish-
Chandra that for every compact-open subgroup J < G(F) the set of m € Irry, 4 (G) with
7/ # 0 is finite ([45] Théoréme VIIL.1.2). Recall that in §I.6] we have introduced certain
spaces °S,,(G(F)), °C,(G(F)) of cusp forms. The goal of this chapter is to prove the following

Theorem 3.1.1 For all f € °S,(G(F)) we have

JX(f) = J;%ec,cusp(f)
Moreover, if (G, H) is a tempered pair, for all f € °C,(G(F)) we have

JX(f) = J;fnec,disc(f)

3.2 Explicit description of the intertwinings

For all 7 € Irr,, cusp (G(F)) we define a bilinear form

B,:mxn¥ —C

by

B:(v,v") = (m(h)v, v )x(h) " tdh

JAEI(F)\H(F)

for all (v,vv)enm x wv. If (G, H) is a tempered pair and 7 € Irry, s (G(F')) then the above
integral is also absolutely convergent and thus also defines a bilinear form B, : 7 x 7¥ — C.
In all cases, we have

Br(m(hi)v, 7" (he)v") = x(h1)x " (h2) Br(v,v")
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for all (v,v") e m x 7 and all hy, hy € H(F). Thus B, factorizes through a bilinear form

. Vv
Br:myxm/a—C

where 7, and 7/, denote the spaces of (H(F'), x)- and (H(F), X~ 1)-coinvariants in 7 and
mV respectively i.e. the quotients of m and 7¥ by the subspaces generated by vectors of
the form w(h)v — x(h)v (h € H(F), v e 7) and 7¥(h)vY — x(h)""v¥ (he H(F), v¥ € V)
respectively. The following proposition has been proved in more generality in [44] Theorem
6.4.1 when the subgroup H is strongly tempered (in the sense of loc. cit.). The same kind of
idea already appears in [47] Proposition 5.6.

Proposition 3.2.1 B, induces a nondegenerate pairing between m, and my—1

Proof: We will prove the proposition when (G, H) is a tempered pair and 7 € Irry, s (G),
the case where 7 € Irry, cusp (G) being similar and easier. Fix a G(F')-invariant scalar product
(.,.) on m. We can define the following sesquilinear version of B,

L..mxm—C

(v, ) = (m(h)v,v")x(h)~"dh
A (F)\H(F)
which factorizes through a sesquilinear pairing £, : m, x m, — C. Obviously, it suffices to
show that this pairing is non degenerate. Since 7, is finite dimensional, this is equivalent to
saying that the map

vem— Ly(,v) e Homg(r, )

is surjective. To continue we need the following lemma, a consequence of the weak Cartan

decomposition (2.3.1]):

Lemma 3.2.1 For all ¢ € Hompy(m, x) and all v € 7 we have

J\ﬁ v)|*dz < o

and moreover for all f € C,—1(G(F')) the integral

f F(9)t(r(g)v)dg
Ag(F)\G(F)

\
is absolutely convergent and equals ((m(f)v).
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Proof: For every compact-open subgroup J < G(F') we will denote by e +¢ the smooth linear
form (i.e. an element of 7¥) v e 7 — ﬁ(J) §,{(n(k)v)dk. Let Ay be a maximal (6, F)-split

subtorus of G, My := Centg(Ag) (a minimal #-split Levi subgroup) and Py € PY(My). Set

A]to = {CL € AQ(F), |a(a)| > 1Vae AP@}

Then, by the weak Cartan decomposition [2.3.Tland Proposition 2.3.TI({)- (i) (i) - (i), in order
to prove that the two integrals of the proposition are convergent it suffices to show that for
all d > 0 we have

(3.2.1) [0(m(a)v)| <« E%(a)F(a)™®

for all a € AIJSO. Let J = G(F) be a compact-open subgroup such that v € 7/. Since P, is
O-split, H(F)Py(F') is open in G(F) and consequently there exists a compact-open subgroup
J' < G(F) such that

J c H(F)a(Jn Py(F))a™*

for all a € A}, . Thus, for all a € Ay we have £(m(a)v) = (e * £, m(a)v) and the inequality
B.2.1] now follows from the known asymptotics of smooth coefficients of square-integrable
representations.

To prove the last part of the proposition, choose J < G(F') a compact-open subgroup by
which f is invariant on the left. Then, we have

Fla)(r(g)v)dy =

f f(9) f ((r(kg)v)dkdg
Ag(FI\G(F) J

_ f F(9)es » €, m(g)v)dg
Ag(F)\G(F)
—es s La(f)0) = ((n(f)v) @

By the lemma we can define a scalar product, also denoted (.,.), on Homy(m, x) charac-
terized by

L (@) @ dx = (6, €) (v, o)

for all ¢,¢' € Homp (7, x) and all v,v" € . Let £ € Homp (7, x) which is orthogonal for this
scalar product to all the forms £, (.,v) for v € 7. To conclude it suffices to show that this
implies ¢ = 0. Since for all v,v" € m we have (v, 7(.)v") € C,~1(G(F)), by the lemma we have

0= fX R e = v(H) | et (ot = e

for all v,v" € m and where d(m) stands for the formal degree of 7. Hence, £ = 0. B
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3.3 Proof of Theorem [3.1.1]

Once again we will prove the theorem in the case where (G, H) is a tempered pair and f €
°C,(G(F)). The case where f € °S,(G(F)) is completely similar since compactly supported

cusp forms are linear combinations of matrix coefficients of supercuspidal representations
whereas a general cusp form f € °C,,(G(F)) is a linear combination of matrix coefficients of
square-integrable representations.

More precisely, let f € °C,,(G(F)) and for all 7 € Irr, 5 (G(F)), set fr(g) := Trace(r (¢~ )7 (f))

for all g € G(F'). Then, we have f, € °C,(G(F)) for all 7 € Irr, 4(G(F)) and by the Harish-
Chandra-Plancherel formula for cusp forms [[L6.1l we have

()= D dm)I¥(fr)

welrry, sqr (G(F))

Thus, it suffices to show that

TX(f) = v(H)d(m)"'m(m, x) Trace(r" (f))

for all 7 € Irr, s (G(F)). Fix m € Ity 5 (G(F)). As fr is a sum of coefficients of 7, the
equality above is equivalent to

SX(foov) = v(H)d(m)"'m(r, X) foov (1)
for all (v,v") e m x ¥ where f,,v(g) := (n(g)v,v") for all g € G(F). Fix (v,v¥)enm x V.
Then, we have

K}‘M (x) = Br(m(x)v, 7" (z)v")

Vv

for all z € X. Choose a basis (Ty,...,0Ux) of m, (where N = m(m,x)) and let (vy,...,7))
be the dual basis of 7Y, with respect to B, (such a dual basis exists thanks to Proposition
B.21). Let (vq,...,vyx) and (vy,...,vN) be any lifting of these basis to 7 and 7 respectively.
Then we have

B (m(z)v, 7" (x)v") = Z B (m(z)v, v, ) Br (v, " (x)v")

for all z € X. Now by Lemma B.2.1] we have
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TX(fopv) = fx B (m(x)v, 7 (x)v")dr = Z JX B (m(x)v, v, ) By (v, 7 (x)vY)dx

- ”(H’ZLG(F)\G< (oo B (7 (o)

Z<vvv> B, (vs,0))

- u<H>N<2’(fT;> — W(H)d(m) i, ) o (1) B

4 The geometric side

4.1 The statement

In this chapter E/F is a quadratic extension, H is a connected reductive group over F' and
G := Rg/pHp. We have a natural inclusion H < G and we shall denote by ¢ involution of
G induced by the nontrivial element of Gal(E/F). Hence H = G?. Note that in this case,
with the notations of §.1 we have A% = Ay. Set

V() = [H(F) 0 Aa(F)  An(F)

As in m we let @ = G/Ag, H = H/AH, = Ag( )H(F)\G(F), X = HAg\G,
ox = ox and T := oz. Note that X is an open subset of X(F'). We have the following
identity between Weyl discriminants

(4.1.1) DH(h) = DE(R)Y?, h e Hyou(F)
which will be crucial in what follows.

Let w and x be continuous unitary characters of Ag(F') and H(F') respectively such that

WA (F) = Xjagr)- In §2T1 we have defined a continuous linear form f € Cyseusp(G(F)) —
JX(f). We define a second continuous linear form f € C,, seusp(G(F)) = JX (f) by setting

Tom(f) = v(H) Y [WHT)™ | D)0 ()x(t) " dt

TeTon(H) T(F)
for all f € Cyuscusp(G(F)), where Ten(H) denotes a set of representatives of the H(F)-
conjugacy classes of maximal elliptic tori in H, we have set T := T//Ay for all T € Tey(H)
and we recall that T'(F) is equipped with the Haar measure of total mass 1. Since for all
f € Coseusp(G(F)) the function (D%)Y20; is locally bounded, by LI.T] we see that the ex-
pression defining JX,,(f) is absolutely convergent. The goal of this chapter is to show the
following
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Theorem 4.1.1 For all f € Cyy scusp(G(F')), we have
JX(f) = Jgeom(f)

We fix a function f € C, scusp(G(F')) until the end of this chapter.

4.2 Truncation and first decomposition

We fix a sequence (ky)ns1 of functions ky : X (F) — {0, 1} satisfying the two following
conditions:

(4.2.1) There exist C1,Cy > 0 such that for all x € X(F) and all N > 1, we have:

O'X(.CL’) < ClN = HN(LU) =1

kn(z) # 0= ox(x) < CoN

(4.2.2) There exists an open-compact subgroup K’ < G(F') such that the function ky is
right-invariant by K’ for all N > 1.

Such a sequence of truncation functions is easy to construct (see [11] §10.9). Set

R = | KX ann(a)da
X
for all N > 1. Then we have

(4.2.3) J(f) = Jim T(f)

Let T(H) be a set of representatives of the H(F')-conjugacy classes of maximal tori in H.
By the Weyl integration formula for H, we have

K¥(foa) = 3 WD Do [t e e
TeT (H) T(F) T(F)\H(F)

where we have set T := T/Ay for all T € T(H). At least formally, it follows that for all
N=>1
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a2 K= X WED | DO [ g gealade) e
TeT ) T(F) TG (F)\G(F)

where for all T' € T (H) we have denoted by T the centralizer of 7' in G (a maximal torus
in G) and we have set

knr(g) = rn(ag)da

J‘AG(F)T(F)\TG(F)
for all g € G(F'). Define

DY (1) f P9~ tg)knr(g)dgx(t) " dt
T(F) TG (F)\G(F)

for all N > 1 and all T € T(H). The equality E22.4] can thus be restated as

Rarl)i= |

(4.2.5) TN = Y IWEHT) T TR (f)
TeT(H)

The previous formal manipulations are justified a posteriori by the following lemma:

Lemma 4.2.1 (i) There exists k > 1 such that

knr(9) « Niopaa(g)*
for all N =1 and all g € G(F).

(i) For all T € T(H), the expression defining Jy p(f) is absolutely convergent and the
identity [{.2.9 is valid.

Proof:

(i) Since the natural inclusion AGT\T% < X is a closed immersion (essentially because 7%
is f-stable), we have ox(a) ~ o4,m7c(a) for all a € TY(F). As ox(z) < ox(zg)o(g)
for all (z,g) € X x G(F), it follows from E.2.T] that there exists ¢; > 0 such that for all
N>=1,allae T%(F) and all g € G(F) we have

kn(ag) #0 = o4,nre(a) < cNo(g)

Hence, since the function xy is nonnegative and bounded by 1, by [[.2.3] there exists
k > 0 such that

knr(g) < meas ((AGT\TG)[< clNa(g)]) « Nfg(g)*
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for all N > 1 and all ¢ € G(F). The function g — knr(g) being left invariant by
TC(F) we may replace o(g) in the inequality above by inf ,erc () 0 (ag) which by L2.1]
is equivalent to o7a\(g). This proves (i).

(ii) Since f belongs to the Harish-Chandra-Schwartz space C,(G(F')), this follows from a
combination of (i), &.I.Tland Lemma [.9.4 W

From now on and until the end of §£.5 we fix a torus T' e T (H).

4.3 Change of truncation

Set T¢ := T%/A¢g (a maximal torus of G) and let A be the maximal (0, F)-split subtorus of
T Let A < TC be the inverse image of A and set

kxalg) = f kx(ag)da
Ag(F)\A(F)

for all g € G(F) and all N > 1. We define the following quantity

v(T) = [H(F)n Ag(F) : Ag(F)] x [A(F) n Ap(F) : Ag(F)]™!

Then, we have

(43.1) Tonlf) = () f_ DH(t)f F(g™ g rnalg)dgx (1) dt
T(F) A7 (F)A(F)\G(F)

Indeed, by our choices of Haar measures on tori (see §L.1]) and noting that T'(F) n Ag(F') =
H(F)n Ag(F), we have

KN,T(Q) = J

kn(ag)da = [(T N Ag)(F) : (Ar n Ag)(F)] J kn(ag)da
Ag(F)T(F)\TY(F)

Ac(F)Ar (F)\TC(F)

=[(HnAg)(F): (Ar n AG)(F)]J rn(at®g)dadt®

Ar(F)A(F)\TC (F) JAG(JF‘“)(AﬁAT)(F)\A(F)

= [(H n Ag)(F) : (Ag 0 Ap)(F)][(A n Ap)(F) = (Ag n Ap)(F)] L e kna(t%g)dt?

HNA(tGg)dtG

u) |
Ar(F)A(F)\TC (F)

for all g € G(F') and all N > 1, hence the result.

Since A(F)Ar(F)\T(F) is compact by [L2.] we have

(4.3.2) ora\alg) ~ I o(ag)
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for all g € G(F) and hence the same proof as that of Lemma [.2.TJ{l) shows that there exists
k > 0 such that

(4.3.3) rna(g) € NkUTG\G(g)k

for all N > 1 and all g € G(F).

Let M be the centralizer in G' of A. It is a #-split Levi subgroup with A9 = Ay. Indeed,
the inclusion Ay © Ay is obvious and T¢ is a maximal torus of M hence Anrp is included
in Apc g = Ay. Let Ay be a maximal (6, F')-split subtorus of G containing A and denote by
Ap its inverse image in G. Let Mj be the centralizer in G of Ay. It is a minimal #-split Levi
subgroup, we again have Ay gy = Apg 0 and we set Agg := Ay 9. Let K be a special maximal
compact subgroup of G(F). We use K to define the functions Hg g for all Q € F?(My) (see
§I.81). Fix Py € PY(M,) and let Ay be the set of simple roots of Ag in Py. To every Y e AIJSO,G
we associate a positive (G, My, 0)-orthogonal set (Yp;) prepo(ary) by setting Yp; = wY where w
is the unique element in the little Weyl group W (G, Ag) such that wP, = F}. By the general
constructions of §L.8.7] this also induces a positive (G, M, 0)-orthogonal set (Yp) pepo(ar). For
all g € G(F), we define another (G, M, 0)-orthogonal set V(g) = (Y(g)p) pepe(ar) by setting

V(g)p:=Yp— Hp4(9)

for all P € P?(M) where P := 0(P). Recall that this (G, M, f)-orthogonal set induces a
function T'§4(., V(g)) on Aprg (see §L82). If Y(g) is a positive (G, M, 6)-orthogonal set
then this is just the characteristic function of the convex hull of {)(g)p; P € P?(M)}. Define

oY, g) = f TG, o(Haro(a), Y(9))da
Ag(F)\A(F)

for all Y € A} , and all g € G(F). Fixing a norm |.| on Agg, by there exists k > 0
such that we have an inequality

(4.3.4) Waro(Y, 9)| < (1+|Y])orec(g)*

for all Y € AIJSOﬂ and all g € G(F'). Define the following expression

Ronlf) = u<T>f F(g™ t9)nr0 Y, g)dgx ()"t

D (t J
T(F) Ap(F)A(F)\G(F)

for all Y € A}, ,. Using 34 and reasoning as in the proof of Lemma E2TI(), we can show
that this expression is absolutely convergent.

Proposition 4.3.1 Let 0 < ¢; < €5 < 1. Then, for all k > 0 we have
‘J;\(f,T(f) - J;T(f)‘ « N°*

49



forall N =1 and allY € A]ﬁoﬂ satisfying the two inequalities

(4.3.5) N < inf a(Y)
OJEA()
(4.3.6) sup a(Y) < N®
OcEAo

Proof: Let 0 < ¢ < ey < 1. For M > 0 we will denote by 1.5, and 1-,, the characteristic

functions of the sets of g € G(F) satisfying aeA(zi?I)lfAT(F) o(ag) < M and aeA(}«“r)l/fxT(F) olag) = M

respectively. For all M > 0, we can write

Inr(f) = INr<n(f) + I r=m(f)

J))S,T<f) = Jé,T,<M(f) + Jé,TgM(f)
for all N > 1 and all Y € A}, ,, where

r

B i () o= (T f D (1) 1o (9) Flg~"t) . a(g)dg ()~ dt
T(F) JA(F)A(F)\G(F)

r

Bmoni(F) o= (T f D (1) 1o (9)F(g~"tg) i a(g)dg ()~ dt
T(F) JA(F)A(F)\G(F)

and J¥ - _(f), J¥ = (f) are defined by similar expressions. First we show

(4.3.7) For all € > 0 and all £ > 0 we have

[Nz s ()] « N7*

and
S8 1 ne (f)] < N7H
for all N > 1 and all Y € A}, , satisfying inequality E3.6l

By £33 and 34 and the fact that f belongs to the Harish-Chandra-Schwartz space
Co(G(F)), we only need to show that for all k£, &’ > 0 and € > 0 there exists d > 0 such that

f DH(t)f 1o ()2 (g tg)3 (g tg) open () dgdt <« N—F
T(F) A(F)Ar(F)\G(F)
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for all N > 1. By [£3.32] for all » > 0 this integral is essentially bounded by

N f D (1) f =6 (g tg)o (g tg) orealg)t T dgdt
T(F) TG (F)\G(F)

for all N > 1. By &1.1] and Lemma [[.9.4] for all k£, r > 0 there exists d > 0 making the last
integral above convergent. The claim follows.

Choose € > 0 such that € < ¢;. By d.3.7] it suffices to show that for all £ > 0 we have

(4.3.8) | TX e (F) = T ene ()| « N7F

for all N > 1 and all Y € .AIJSO,(, satisfying inequalities EL3.5] and 3.6, For Q € FY(M),
Y e A;Smg and N > 1, we set

Y,Q (

rnalg) = Liro(Haro(a), Y(9))75o(Haro(a) — Y(9)q)kn(ag)da

JAG(F)\A(F)

for all g € G(F') where the functions 1"5\24’9(., V(g)) and 7§ 4 have been defined in §L.82L Note
that

Liro( Y(ag)) = Tipg(- + Harola), Y(9))

for all a € A(F). Hence the functions K%% are A(F)-invariant on the left and this allows us

to define the following expressions

R = [ o | Lo ()57 t9)¥ o)y (0)
T(F) A(F)Ar(F)\G(F)
forall N > 1, all Y € A}, , and all Q € F°(M). By [L82, we have

INTne(f) = 2 ’]J)\CZ}I/“CiN(f)

QeFo (M)

forall N>1andall Y e A;SO’@. Thus, to show [4.3.§8it suffices to establish the two following
facts

(4.3.9) There exists Ny = 1 such that

J%?ijv(f) = J§7T,<N€(f>

forall N > Ny and all Y € AIJSO’G satisfying inequality [4.3.0l
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(4.3.10) For all Q € F(M), Q # G, and all k > 0 we have

TE ()] « N

forall N >1and all Y € Alﬁoﬂ satisfying inequality [4.3.5]

First we prove £.3.90 By definition of J}f,};i ne(f) and J§ . _no(f) it suffices to show that
there exists Ny > 1 such that

H%i(g) = Om(Y, 9)
for all N > Ny, all Y € A}, , satisfying inequality and all g € G(F) with o(g) < N°.

Unraveling the definitions of /-@X,’%(g) and V(Y g), we see that it would follow if we can
show the implication

(4.3.11) [0 (Hyp(a),Y(9)) # 0 = rkn(ag) =1

forall N » 1, all Y € A;oﬂ satisfying inequality [£.3.6] all g € G(F) with o(g) < N and
all a € A(F). By [L&T] there exists C' > 0 such that for all Y € A}, 4, all g € G(F) and all
a € A(F) we have

D%,y (Haro(a), Y(9)) # 0 = oaa(a) < C (sup oY) + a<g>)

OcEAo

As o4(a) ~ ox(a) (this is a consequence of the facts that A’Ag\A is closed in X and
Ac\AY Ag is finite) and ox(ag) « ox(a) + o(g) for all a € A(F) and all g € G(F), it follows
that there exists C’ > 0 such that for all N > 1, all Y € AIJSO’(, satisfying inequality [4.3.6] all
g€ G(F) with o(g) < N¢ and all a € A(F") we have

F?\Z,@ (HM,G(a)a y(g)) # 0= O'X(ag) < (' (Nﬁl + Ne)

Since €, €; < 1, by property 211 of our sequence of truncation functions the last inequality
above implies ky(ag) = 1 whenever N » 1. This shows .3.11] and ends the proof of 3.9l

It only remains to prove claim £3.10. Fix Q € F/(M), Q # G, with Levi decomposition @ =
LUg where L := Q n 6(Q). Let Q@ = 6(Q) = LUg be the opposite parabolic subgroup. We
have the Iwasawa decomposition G(F) = L(F)Ug(F)K and accordingly we can decompose
the integral

j 1v-(9) £ (g~ tg)K 5 (g)dg =
A(F)Ar(F)\G(F)

1o e (luk) f (K™ u N uk) k0% (luk) didudk
A(F)Ar(F\L(F)xUq (F)x K ’
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forall N >1,allY e A;Sme and all t € T,ee(F). To continue we need the following fact which
we will establish after we finish the proof of [4.3.10

(4.3.12) There exists Ng > 1 such that for all N > N, all Y € A}, , satisfying inequality
and all [ € L(F), ue Ug(F), k € K with o(luk) < N¢ we have

Hm(zuk) - HNA(M;)

Taking [4.3.12] for granted we get

f 1oxe(9) (g~ "t)x59 (g)dg =
A(F)Ar(F)\G(F)

J Lone (luk) f (k™ ™ 1 tluk) ey (k) dldudk
A(F)Ar(F\L(F)xUq(F)x K

for all N » 1, all t € Thee(F) and all Y € A}, o satisfying inequality As f is strongly
cuspidal if we forget the term 1_ye(luk) in the integrand of the last integral above we get
zero. Thus, we have

f 1ne(9) £ (g™ t9)s"% (g)dg =
A(F)Ar(F)\G(F)

—J Lo e (luk) f (K™ a1 k) w0 (k) didudk
A(F)Ar(F\L(F)xUq(F)x K

for all N » 1, all t € Tyu(F) and all Y € A}, ¢ satistying inequality 3.5 Hence, to get
it only remains to show that for all £ > 0 we have

(4.3.13)
f DH(t)f Loy (luk) | £(k~ 0= Huk)| ‘KNA(uf)‘ didudkdt « N*
T AF) Az (PN\L(F) T o (F)

forall N> 1andall Y e A(’;PO. Since for all (G, M, f)-orthogonal set Z = (Zp)pepeary the
function X € Ay — I %’Q(X , Z) is uniformly bounded independently of Z (this follows from
the definition of this function) and 75, is a characteristic function, we have

N8(9)] < mnalo)

forall N > 1, all Y € Aj, 5 and all g € G(F). Hence, by B33 and the fact that f belongs to
the Harish- Chandra—Schwartz space C,(G(F)) there exists k > 0 such that for all d > 0 the
left hand side of EE3.13 is essentially bounded by the product of N* with
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D (¢ f 1o ne (luk)ZC (K U Huk)F (K u ™ U  Huk) @
T(F) AP AT (F)\L(F)xTq(F)x K

orec (k) didudkdt

for all N > 1 and all Y € A}, ;. Since T% c L we have o7e\g(lk) < ora\g(luk) for all

le L(F), ue Ug(F) and all k € K. Thus, the last expression above is essentially bounded
by

f_ DH(t)f 1o v (9)2% (g tg)5 (g~ tg)ore9)"dg
T(F) A(F)AT(F)\G(F)

for all N > 1. We already saw that for all ¥ > 0 we can find d > 0 such that this last
integral is essentially bounded by N=* for all N > 1. This shows £3.13l and ends the proof
of £3.10] granting [£.3.121

We now prove For g € G(F), the function 1"5\24’9(., V(9))75(- — Y(9)q) depends only
on the points Y(g)p for all P € P?(M) with P < Q and those points remain invariant by
left translation of g by Ug(F'). Hence, it suffices to show the following:

(4.3.14) There exists Ng > 1 such that for all N > N, all Y € A}, , satisfying inequality
E35 allle L(F), ue Ug(F), k € K with o(luk) < N¢ and all a € A(F) we have

iro(Haro(a), V)75 6 (Har(a) = Y(1)g) # 0 = wy(aluk) = ry/(alk)

Let N > 1and Y, [, u, k be as above (in particular Y satisfies condition and o(luk) <
N¢). We will show that the conclusion of [£.3.14] holds provided N is sufficiently large. Let
a € A(F) be such that

Liro(Haro(a), Y()75 5 (Honr(a) = Y()q) # 0
We need to show that ry(aluk) = ky(alk).
There exists C' > 0 such that for all g € G(F) and all Y € A}, , if

o(g) < C inf a(Y)

QEAQ

then Y(g)p € Af, for all P e P(M) and thus Y(g) is a positive (G, M, #)-orthogonal set.
As e < ¢ it follows that for N sufficiently large the (G, M, 0)-orthogonal set ) (1) is positive.
In particular, again for N sufficiently large, the function

X e Ao — F%,G(Xu y(l))Tg,e(X - Y()e)
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is the characteristic function of the sum of A, , with the convex hull of the family (V(1)p) pcq-
As e < ¢ and o(l) « N¢, it follows that

(4.3.15) log|B(a)| = I;ngﬁ (Yp — Hpy(l)) » inf a(Y)—o(l) » N@

aer

for all € R(A,Ug). Fix a norm |.| on g(F) and let us denote by B(0,) the open ball of
radius r centered at the origin for all > 0. Since o(lul™') « N¢ and € < €1, we deduce from
that there exists a constant ¢; > 0 such that for N big enough we have

alul"a™" € exp (B(0,e V™))

Let P, € P?(M) be such that Hyg(a) € Af, 4 (the closure of the positive chamber associated
to P,). Since P, is #-split, the multiplication map H(F') x P,(F) — G(F) is submersive at
the origin and hence this map admits an F-analytic section defined on a neighborhood of
1in G(F). It follows that there exists co > 0 (independent of a since there is only a finite
number of possibilities for P,) so that for N large enough

alul'a™ € H(F)exp (B(0,e72N") A p,(F))

Choose X € B(0,e™N") np,(F) with alul"ta™' € H(F)exp(X). Since ky is left invariant
by H(F') we have

kn(aluk) = ky(exp(X)alk)

Asae A}, 5 € < e and o(l) « N, there exists a constant ¢z > 0 such that

kN e Xalk € B(0, e =N

By property [4.2.2] of our sequence of truncation functions, we deduce that for NV sufficiently
large ky is right invariant by exp(k~'"ta~!'Xalk). Hence,

rn(exp(X)alk) = ky(alk)

This proves claim [£3.14] and ends the proof of the proposition. Il

4.4 First computation of the limit

Recall the function g € G(F') — var9(g) introduced in §I.82 Its value at g € G(F') is given
by the volume of the convex hull of the set {Hpg(g); P € P?(M)}.

Proposition 4.4.1 We have

lim T 7 (f) = (—1)%ow(T) f_ DH(t)f F(g7 g onro(g)dgx(t)dt
T(F) Ap(FYA(F)\G(F)

N—o0
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Proof: Let 0 <€ <€ < 1,0 <9 <1 and set

A} o(0) :={Y € A} 5 inf a(Y) = dsup a(Y)}
’ ’ aelg aeg
Then AIJSO’G((S) is a cone in Ay with nonempty interior. By Proposition 4.3.1] for all £ > 0
we have

‘J;\(/,T(f) - JéT(f)‘ « N7*
for all N > 1 and all Y € Aj, 4(6) with N < inf a(Y) < 5 'N®. As for N sufficiently

OJEA()
large the two sets

{Y e Ap 4(0); N < inf o(Y) < 5_1]\762}

aer

and

{Y € Al 4(8); (N + 1) < inf a(Y) <8 '(N + 1)62}

OJEA()

intersect, it follows that the two limits

lim Jy »(f), lim Sy (f)

N—on YeA;;O,g(é)Hoo

exist and are equal. We will denote by JgévT( f) this common limit.

Let Ao r denote the image of Agg(F') by Hpyyp. Then by Lemma [[.82] we know that for
every lattice R < Appr ® Q and all g € G(F) the function Y € R n A}, 4(0) = Varo(Y, g)
coincides with the restriction of an exponential-polynomial of bounded degree and with
exponents in a fixed finite set (both independent of g). Let us denote by Dp90(R,g) the
constant term of the purely polynomial part of this exponential-polynomial. Then by Lemma

[L.81l we have

(441)  T(f) = w(T) f_ DH(t)f F(g™0)0r0(R, g)dgx(t)~dt
T(F) A (F)A(F)\G(F)

for every lattice R < Agpr ® Q. Fix such a lattice R. By Lemma [[.82] there exists r > 0
such that

N 1 a _—
Dao0(7 R, g) — (1) 5roua4(g)| < o(g) k!

k

for all £ > 1 and all g € G(F). Since the left hand side is invariant by left translation of g
by T¢(F), we also have
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1

%Mﬂ,()(%R, g) - (_1)“%{,92;1\470(9)

for all £ > 1 and all g € G(F'). By Lemma [[.9.4], this implies that

< ore\g(g) k™!

) _ N 1 _
lim f(g 1tg)vae,o(ER, 9)dgx(t)~"dt =

DH (¢ J
k= JT(F) Ar(F)A(F)\G(F)
a% — —
(—1)is f_ DH(t)f £ (g™ tg)orralg)dg ()t
T(F) Ap(F)A(F)\G(F)

From this and B2 (which is of course also true if we replace R by R, k = 1) we deduce
the proposition. l

4.5 End of the proof
By the descent formula [[.8.4l and Proposition [4.4.1] we have

lim T (f) = (~1)Sou(T) [Are(F) : Ar(F)A(F)] Y] d§i(L) f_( )@ﬁé(t, )x()"dt
LeL(M) T

Since f is strongly cuspidal only the term corresponding to L = G can contribute to the
sum above so that

(4.5.1)
T T () = (~1)S0u(T) [Age(F) : A(F)A(F)]d1(G) L(F) Dus(t, F)x(e) i

Assume first that 7" is not elliptic in H. We distinguish two cases:

o If M # Centg(Agpc) we have @y (t, f) = 0 for all t € Ty (F) as M # M(t) so that the
limit [4.5.1] vanishes.

o If M = Centg(Arc), we have A = A¥ # 0 (as T is not elliptic in H), thus
dS; 9(G) = 0 and the limit E.5.T] also vanishes in this case.

Hence, in both cases the limit [£.5.1] equals zero for T nonelliptic in H. Now, if T is elliptic in
H we have Ar = Ay, Are = Aand Af}" = 050 that d§; 4(G) = 1, [Are(F) : Ap(F)A(F)] =
1 and v(T) = v(H) and we get

i () = ) | ate v i = vt | D" @6sxn)

Theorem [ T.T now follows from the above equality, 2.3 and 22251 W
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5 Applications to a conjecture of Prasad

In this chapter E//F' is a quadratic extension, H is a connected reductive group over F' and
G := Rg/pHg. We will denote by 6 the involution of G induced by the nontrivial element
of Gal(E/F). Hence H = G°. As before we set G := G/Ag and H := H/Ay. If Q is an
algebraic subgroup of H then Rg/rQg is an algebraic subgroup of G. Also, note that if P
(resp. M) is a parabolic (resp. Levi) subgroup of G which is #-stable (i.e. 6(P) = P, resp.
(M) = M) then there exists a parabolic (resp. Levi) subgroup P (resp. M) of H such
that P = Rp/pPg (resp. M = RppMpg). We will denote by R(G) the space of virtual
representations of G(F') that is the complex vector spaces with basis Irr(G). Similarly, if A
is an abelian group we will denote by R(A) the space of virtual characters of A. We will
write H'(F,.) for the functors of Galois cohomology and if H, G are algebraic groups over F'
with H a subgroup of G we will set

ker'(F;H,G) := Ker (H'(F,H) - H'(F,G))

By [35] Theorem 1.2, for every connected reductive group over F' there exists a natural
structure of abelian group on H'(F,G) which is uniquely characterized by the fact that
for every elliptic maximal torus 7" = G the natural map H(F,T) — H'(F,G) is a group
morphism. Moreover, for every connected reductive groups H, G and every morphism H — G
the induced map H*(F,H) — H(F,G) is a group morphism. Indeed, if 7 is an elliptic
maximal torus in H (whose existence is guaranteed by [33] p.271) and 7" is a maximal torus
of G containing the image of 7, then we have a commuting square

HYF,T)— H'(F,T)
HY(F,H)—— H'(F,G)

where the upper, left and right arrows are morphisms of groups and moreover the map
HYF,T) — HY(F,H) is surjective ([35] Lemma 10.2). From these, it easily follows that
HY(F,H) — H'(F,G) is a morphism of abelian groups.

Finally, for every 7 € Irr(G) and every continuous character y of H(F') we recall that in B.1]
we have defined a multiplicity
m(m, x) := dim Hompg (7, x)

which is always finite by [I§], Theorem 4.5. The function 7 € Irr(G) — m(m, x) extends by
linearity to R(G).

5.1 A formula for the multiplicity

We will denote by I'e;(H) the set of regular elliptic conjugacy classes in H(F) and we equip
this set with a topology and a measure characterized by the fact that for all x € H,eo(F)

o8



the map t € G,(F) — tx € Tey(H), which is well-defined in a neighborhood of the identity,
is a local isomorphism preserving measures near 1 (recall that in §I.1] we have fixed Haar
measures on the F-points of any torus and in particular on G,(F')). More concretely, if we
fix a set Ton(H) of representatives of the H(F')-conjugacy classes of elliptic maximal tori in

H, then for every integrable function ¢ on I'qy(H) we have the following integration formula

fr e = 3 WD f o(t)dt

TeTan(H) TF)

where we have set ' T :=T/Ap for all T € Toy(H) and we recall since T is anisotropic, the
Haar measure on T'(F') is of total mass 1. For all 7 € Irr(G) and every continuous character
x of H(F) with wxia,(F) = X|au(F), set

Mgeom (T, X) 1= f D (2)0,(z)x(x) *dx

Ten(H)
This expression makes sense since semisimple regular elements of H are also semisimple and
regular in G and the function z € H,oy(F) — D (2)Y20,(7) is locally bounded on H(F) by
[25] Theorem 16.3 and the identity D (z) = D%(x)Y2.
Recall that we are denoting by Irre,(G) the set of (equivalence classes of) irreducible
essentially square-integrable representations of G(F'). The main theorem of this section is
the following.

Theorem 5.1.1 For all 7 € Irry,(G) and every continuous character x of H(F) with
WrlAn(F) = X|An(F) we have

m(7r, X) = mgeom(ﬂ-a X)

Proof: Up to twisting 7 and y by real unramified characters, we may assume that w, and y
are unitary. Set w := wyja(r). By Theorem BI1 and Theorem EI]T] for all f € °C,(G) we
have

S (o, x) Trace(a™ (£) =L D0

o€lrry sqr (G)

By [L.4.1] and Proposition [.L6.1] when we apply this equality to a coefficient of m we get the
identity of the theorem. W

5.2 Galoisian characters and Prasad’s character wy g

Let H denote the complex dual group of H, Z (H ) be its center and W be the Weil group of
F'. Denoting by Homo,¢(H(F), C*) the group of continuous characters of H(F), Langlands
has defined an homomorphism

oy HY(We, Z(H)) — Homeen (H(F),C*)
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which is injective since F is p-adic but is not always surjective although it is most of the time
(e.g. if H is quasi-split). We refer the reader to [37] for discussion of these matters. We will
call the image of oy the set of Galoisian characters (of H(F')). Assume that H is semi-simple.
Let Hy. be the simply connected cover of H and 71 (H) be the kernel of the projection Hy. —
H. By Tate-Nakayama duality, we have an isomorphism H'(Wpg, Z(H)) ~ H'(F,7,(H))",
where (.)” denotes duality for finite abelian groups, and the morphism oy is the composition
of this isomorphism with the (dual of the) connecting map H(F) — H'(F,m (H)). In
particular, in this case, a character of H(F') is Galoisian if and only if it factorizes through
HY(F, 7 (H)).

In [43], Prasad has defined a quadratic character wy g : H(F') — {£1} which depends not
only on H but also on the quadratic extension E/F. It is a Galoisian character whose simplest
definition is as the image by ay of the cocycle ¢ defined by c(w) = 1 if w € Wg (the Weil
group of E) and c(w) = z if w € Wp\Wg, where z denotes the image of the central element

-1
-1
shall need another description of Prasad’s character (see [43] §8 for the equivalence between
the two definitions). First of all, wy g is the pullback by H(F) — Huq(F) of wy,, g, where
H,; denotes the adjoint group of H. Thus, to describe wy p we may assume that H is
semisimple. We introduce notations as before: H,. is the simply connected cover of H and
71 (H ) stands for the kernel of the projection Hy. — H. Let B € H, 3 and T' = B be a Borel

subgroup and a maximal torus thereof (both a priori only defined over F). Let p € X%(T') be
the half sum of the positive roots of 7" with respect to B (this belongs to the character lattice
of T since H,. is simply-connected). Then, it can be easily shown that the restriction of p to
m1(H) induces a morphism 7 (H) — ps defined over F. Pushing this through the inclusion
o — Ker Ng/p we get a morphism 71 (H) — Ker Ng/p and wy  is simply the composition
of the connecting map Hoy(F) — H'(F, 7 (H)) with the corresponding homomorphism
between Galoisian H'’s:

) € SLy(C) by any principal SLy-morphism SLy(C) — H. In what follows we

HY(F,m(H)) — H'(F,Ker Ng/p) ~ {£1}

5.3 First application: comparison between inner forms

Let H' be another connected reductive group over F' and let ¢ : Hp ~ HZ be an inner
twisting. Set G’ := Rpg/pH'. Then ¢* induces an inner twisting ¢ : G ~ G~ (actu-
ally, there are natural isomorphisms G ~ Hz x Hy, G ~ H x Hi and using these as
identifications we just have ¢ = ¢ x ).

Recall that two regular elements & € Greg(F) and 2" € G, (F') are stably conjugate if there
exists g € G(F) such that 2/ = ¢“(gzg™") and the isomorphism < o Ad(g) : G, 7 ~ G+
is defined over F. Similarly, two regular elements of G(F') are stably conjugate if they are
conjugate by an element of G(F) which induces an isomorphism defined over F between
their connected centralizers.

We say that a virtual representation II € R(G) (or II' € R(G’)) is stable if its character

60



O©n (or O) is constant on regular stable conjugacy classes in G(F') (resp. in G'(F')). Two
stable virtual representations Il € R(G) and II' € R(G’) are said to be transfer of each
other if for all pairs (z,1') € Greg(F) x G, (F) of stably conjugate regular elements we have
On(z) = O (z’). By the main results of [7], every stable virtual representation II € R(G)
is the transfer of a stable virtual representation II' € R(G’) and conversely.

We define similarly the notion of stable conjugacy for regular elements in H(F') and
H'(F) and of transfer between (virtual) representations of H(F') and H'(F). The inner
twist 1 allows to identify the L-groups of H and H’ and thus to get an identification
HY(Wg, Z(H)) = H'(Wg, Z(H")). We say that two Galoisian characters y, x’ of H(F) and
H'(F) correspond to each other if they originate from the same element of H' (W, Z(H)).
Galoisian characters are always stable and if x, x’ are Galoisian characters of H(F'), H'(F)
respectively that correspond to each other then they are also transfer of each other.

Theorem 5.3.1 Let IT and I be stable virtual essentially square-integrable representations
of G(F) and G'(F') respectively. Let x and x' be Galoisian characters of H(F') and H'(F)
respectively. Then, if I1, II' are transfer of each other and x, X' correspond to each other,
we have

m(IL, x) = m(IT', x')

Proof: Let I'yi(H)/stab be the set of stable conjugacy classes in Iey(H). It is easy to see
that we can equip (H)/stab with a unique topology and a unique measure such that the
natural projection p : Tey(H) — Ten(H)/stab is a local isomorphism preserving measures
locally. We define Iy (H/) /stab and equip it with a topology and a measure in a similar way.
Let p' : Feu(ﬁ/) —» FCH(F/) /stab be the natural projection. Since IT and II" are stable and
essentially square-integrable, by Theorem [B.1.1] we have

m(Il,y) = f ()| D" (2)On(2)y(x)\da

Tent (ﬁ)/Sta‘b

and

1 ’ —
ml) = [ T ID )oY )
FCH(H )/St[lb
Since we can always transfer elliptic regular elements to all inner forms (see [35] §10),
there is a bijection

Ton(H)/stab ~ oy (H')/stab

characterized by: x — y if and only if x and y are stably conjugate. It is not hard to
see that this bijection preserves measures locally and hence globally. Let x € H,e(F') and
y € H],(F) be two stably conjugate elements. As Op, Oy on the one hand and y, x’

on the other hand are transfer of each other, we have On(z) = On/(y) and x(x) = x'(y).
Moreover, we also have D (x) = D' (y). Therefore, to get the theorem it only remains to
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show that [p~*(x)| = |p"'(y)|. By standard cohomological arguments we have |p~'(z)| =
}kerl(F;T, G)} and [p''(y)| = ‘kerl(F;T’,G’)‘ where T' := G, and T" := G). Since F
is p-adic, by [35] Theorem 1.2 there exist structures of abelian groups on H'(F,G) and
H'(F,G’) such that the natural maps H'(F,T) — H'(F,G) and H'(F,T') — H'(F,G’) are
morphisms of groups. Moreover, by [35] Lemma 10.2 these are surjective. It follows that
ket (F;T,G)| = |HY(F,T)||H'(F,G)|™" and |ker'(F;T',G")| = |[H'(F,T")||H'(F,G")| ™.
As T and T" are F-isomorphic we have H'(F,T) ~ H'(F,T") and by [35] Theorem 1.2 again
we have H'(F,G) ~ H'(F, &) (since G and G’ have isomorphic L-groups). This suffices to
conclude that |ker' (F;T,G)| = |ker' (F;T’,G’)| and therefore that |[p~'(z)| = P (y)|. W

5.4 Elliptic twisted Levi subgroups

In this section we assume for simplicity that H is semi-simple and quasi-split.(All
the results presented in this section are still true, with obvious modifications, in general.
However, the assumption that H is semi-simple and quasi-split simplifies a lot the proofs
and, in any case, we will only need to apply them for such groups.)

We say that an algebraic subgroup M of H is a twisted Levi subgroup if Rg/pMpg is
a Levi subgroup of G. If M is a twisted Levi subgroup of H, we say that it is elliptic if

Ap = {1,

Lemma 5.4.1 Let M be a Levi subgroup of G and set M := M n H. Then, the following
assertions are equivalent:

(i) M is an elliptic twisted Levi subgroup of H;
(i1) M contains an elliptic mazimal torus of H ;
(111) Ay is 0-split;

(iv) M is O-split and P(M) = P°(M).

Proof: ()= (i): By [33] p.271, M contains a maximal torus 7" such that Ay = Ay = {1}.
Thus, T is elliptic and since M is of the same (absolute) rank as H, it is also maximal in
H. This proves the first implication.

()= (El): Assume that M contains an elliptic maximal torus 7 of H and set T' := Rp/pTg.
Then we have Ay, © Ar and Ar is 6-split (as (A4%)° is a split torus contained in 7 and so is
trivial) from which it follows that A, is also #-split.

()= (x)): Assume that Ay, is #-split. Then, M is O-split since it is the centralizer of Ay;.
Moreover 6 acts on Ay as —Id thus sending any positive chamber A}, corresponding to
P e P(M) to its opposite. This shows that P(M) = P?(M).

)= (@): Assume that M is f-split and P(M) = PY(M). In particular M is f-stable and
since M comes by restriction of scalars from a subgroup of Hg (as is any evi subgroup of
G), it follows that M = Rp/pMp i.e. M is a twisted Levi. It only remains to show that
M is elliptic. Assume, by way of contradiction, that it is not the case i.e. Ay # {1}. Then
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there exists a parabolic P € P(M) such that Hy (Aam(F')) contains a nonzero element of
the closure of the positive chamber associated to P. Since this element is #-fixed and the
intersection of the closures of the positive chambers associated to P and P (the parabolic
subgroup opposite to P) is reduced to {0} we cannot have §(P) = P thus contradicting the
fact that P(M) = P?(M). W

Let Py be a minimal 6-split parabolic subgroup of G. We claim that F, is also a minimal
parabolic subgroup of G (hence a Borel subgroup since G is quasi-split).
Proof: Let B be a Borel subgroup of GG. Since two minimal #-split parabolic subgroups are
always G(F')-conjugate (|26] Proposition 4.9), it suffices to show the existence of g € G(F)
such that gBg~! is 6-split. Over the algebraic closure we have G ~ Hp x Hy with 6
exchanging the two copies. Since B is in the same class as its opposite Borel this shows the
existence of g; € G(F) such that g; Brg; ' is 6-split. Then, the set U := Hzg, B is a Zariski
open subset of G with the property that for all g € U the Borel gBzg~! is 6-split. Since
G(F) is dense in G for the Zariski topology (|20], Exp XIV, 6.5, 6.7) we can find g € G(F)nU
and it has the desired property. B

Set Ty := Py n 0(F), Apmin 1= Az, Ao := Aping and denote by A,,;, and A, the sets of
simple roots of A,,;, and Ag in Fy. All the parabolic subgroups that we will consider in this
section will be standard with respect to Py (i.e. contain Fy) and when we write P = MU for
such a parabolic subgroup we always mean that U is the unipotent radical and M the unique
Levi component containing 7y;. We have a natural projection A,,;, — Ay and € naturally
acts on R(Ain, G) sending A, to —Ain. Let A_ be the set of simple roots a € A, such
that 0(a) = —a. It can be identified with a subset of Ag through he projection A,.;, — Ag
(i.e. the restriction of this projection to A_ is injective). Let I < A_. We will denote by
P; = M;U; the unique parabolic subgroup containing F, such that the set of simple roots
of Ay in My 0 Py is precisely A, — I. Then P is 6-split and we have M; = Pr n 0(Py).
Moreover, as A}, is generated by the restrictions of the roots in /, 6 acts as —Id on this space
showing that A, is 0-split and thus by point of the previous lemma that M; := M;n H
is an elliptic twisted Levi subgroup of H. Let H,, be the quotient of H(F') by the common
kernel of all the Galoisian characters x of H(F'). It is an abelian group and for all T < A_
we will denote by M 4 the image of M(F) in Hyy.

Define C as the set of pairs (M, P) with M an elliptic twisted Levi subgroup of H and
P e P(M) where M := Rp/pMpg and D as the set of triples (7', M, P) with (M, P) € C and
T < M an elliptic maximal torus. We let C and D denote the H(F')-conjugacy classes in C
and D respectively. We say that two pairs (M, P), (M', P") € C are stably conjugate, and
we will write (M, P) ~ap (M, P'), if there exists h € H(F) such that hMgh~' = M’ and
hPph~' = Pr. Write C/stab for the set of stable conjugacy classes in C. We let Tou(H) be
a set of representatives of the H (F')-conjugacy classes of elliptic maximal tori in H. Finally
for all P = MU o Py and all T' € Tey(H), we define

Tu(T) :={yeG(F);y"'Tyc M} /M(F)
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Proposition 5.4.1 (i) For allT € Toy(H), all P = MU 2 Py and all v € Ty (T) we have
(T,yM~y~" ~ H,vPy~"') e D;

(i) The map

| ] || Tw@-—>0D

TE7—C“(H) PocP=MU

vyeTu(T) — (T,yM~y ' n H,vPy™ 1)

(which is well-defined by ({)) is surjective and the fiber over (T, M, P) € D is of cardi-
nality |W (H,T)|[|W (M, T)|~*.

(111) For all (M, P) € C the fiber of the map C — C/stab containing (M, P) is of cardinality
[ker! (F'; M, H)|.

(iv) For all (M, P), (M’, P") € C we have (M, P) ~ga (M', P") if and only if P and P’
are in the same class and the map I < A_ — (M, Pr) € C/stab is a bijection.

(v) Let (M, P),(M', P') e C be such that (M, P) ~sq (M', P'). Then, for every Galoisian
character x of H(F) we have xjpm = 1 if and only if xjpv = 1, where we have denoted
by xjm and xjame the restrictions of x to M(F') and M'(F') respectively.

(vi) We have the following identity in R(Hygp):

D (=) ker' (F; My, H)|Indyg (1) = wip
IcA_

where wy g : Hyy — {£1} is Prasad’s character (see §5.2).

Proof:

(i) For all T € Toy(H), all P = MU > Py and all v € T'y(T), the subgroup yM~y~' n H
contains an elliptic maximal torus of H (namely 7T') and thus by Lemma .41 is an
elliptic twisted Levi subgroup. This shows that (T,yM~y~! n H,yPy~') e D.

(ii) Let (T, M, P) € D. Up to conjugation we may assume that 7" e Toy(H). As Py is a
minimal parabolic subgroup of G, there exist v € G(F) such that y"'!Py o Py and
Y 'Rg/pMpgy o Ty. This shows the surjectivity. The claim about the cardinality of
the fibers is a consequence of the two following facts:

(5.4.1) Let T,T" € Tqy(H), P = MU > By, P/ = M'U" > Fy, v € T'y(T) and
v € Tpp(T"). Then the two triples (T, yM~~' n H,vPy~') and (T",vM'y~ ' n
H,vP'y~1) are H(F)-conjugate if and only if T = T', M = M’', P = P’ and
7" € Normp gy (T)yM(F).
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(5.4.2) Let T € Tqn(H), P = MU > Py and «y € I'y;(T). Then, the image of the map

h — hy
is of cardinality |W (H,T)||W (M, T)|~! where M := yM~y~' n H.

Proof of ATt Assume that (T, yM~~' ~ H,yvPy~ ') and (T",vM'y~  n H,vP'y~!) are
H(F)-conjugate. By definition of T¢y(H) we have T = 7" and since P and P’ are both
standard with respect to Py we also have P = P’ and M = M’. Thus there exists
h € H(F') such that

WT, M,yPy )Wt = (T My Py )

where M := vM~~' n H and M’ := ~/M~'~* ~ H. This equality immediately implies
that h € Normy ) (T'). Moreover, since yM~y~ = Rp/p Mg and M~y = Rp/p M
we also have hyM~~'h™' = v'M~'~" and hyPy'h~' = /P~'~! proving that ' 'h~y
normalizes both M and P i.e. 7 € hyM(F) and hence v' € Normy ) (T)yM (F). This
proves one direction of the claim the other being obvious.

Proof of B2 As |W (H,T)||W (M, T)|~! is the cardinality of the quotient

NOI"IHH(F) (T)/ NOI"IHM(F) (T)

it suffices to show that for all h, h" € Normpyp (1) we have hy = h'y in I'y(T') if and
only if #’"'h € M(F). But as M = yM~~! n H this immediately follows from the
definition of I'y/ (7).

This follows from a standard cohomological argument by noticing that M is the nor-
malizer of the pair (M, P) in H.

If (M, P) ~ga (M, P'") then in particular P and P’ are conjugate in G(F) and thus
are in the same class (i.e. are G(F)-conjugate). Conversely, assume that P and P’ are
in the same class and set M := Rg/pMp, M’ :== Rg/pM’;. Then, there exists g € G(F)
such that gPg~' = P’ and gMg~' = M’. Let P and P be the parabolic subgroups

opposite to P and P’ with respect to M and M’ respectively. Then gPg~! = P and
— —
since §(P) = P, 0(P') = P, (M) = M and 0(M') = M’ we also have

—/

0(g)PO(g)~" =0(gPg™") =P
and
0(g)M0(g)~" = 0(gMg™") = M’
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Therefore g~10(g) normalizes both M and P and thus g~'6(g) € M(F). Since the map

M(F) — {me M(F);0(m) = m™"}

m — m~'0(m)

is surjective, there exist m € M(F') and h € H(F) such that ¢ = hm. We have
hPph™" = PL and hMgph™' = M’ showing that (M, P) and (M’', P') are stably
conjugate. This shows the first part of (iv]). Notice that for all P € P?(M,) with
P 5 P, the torus Ay, where M := P n §(P), is 6-split if and only if P = P; for some
I < A_. Hence, the second part of follows from the first and Lemma [5.4.] since
every class of parabolic subgroups contains a unique element which is standard with
respect to Fj.

We need to show that M, = M/,. Let H,. be the simply connected cover of H and
71 (H) be the kernel of the projection H,., — H. Then we have H,, = H'(F,m (H)).
Let M. and M, denote the inverse images of M and M’ in H.. From the short exact
sequences 1 - m(H) > My > M - 1land 1 - m(H) > M, > M — 1, we get
exact sequences 1 — My, — Hy — HY (F, M) and 1 - M’ — Hy, — H'(F, M.,).
Thus, we need to show that Ker (Hy, — H'(F, M,.)) = Ker (H,, — H'(F, M’,.)). By
hypothesis, there exists h € H(F) such that hMgph™' = M’ and hPgh™' = PL. Set
M := Rg/pMpg and M’ := Rp/p M. Then, we also have hMzh~ = M’f and it follows
that for all 0 € 'y we have hh~' € H(F) n M'(F) = M'(F). Choose h,. € Hy.(F)
which lifts h. Then, there is a bijection ¢ : H'(F, M) ~ H*(F, M’,) given at the level
of cocycles by

c > (O’ el'p — hscc(a)”hs_cl)

Let ¢y be the 1-cocycle o € I'p — hy"h,t € M. (F) and denote by [cy] its class in
HY(F,M.,)). Then ¢ — [co] : H'(F, M) ~ H'(F, M.,) is a bijection of pointed sets

(and even an isomorphism of abelian groups) making the following square commute

Hab —>H1(F>Msc)

\ i

Hy —— HY(F, M)

This immediately implies that the kernels of the upper and bottom arrows are identical.

Let I < A_ and denote by M . the inverse image of M in H,.. Then, from the short
exact sequence 1 — m(H) — M, — M; — 1 we get an exact sequence
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1— MI,ab - Hab - Hl(FaMI,sc) - Hl(FaMI) - H2(F>7T1(H>>

By [32] the natural connecting map H'(F, H) — H?*(F,m(H)) is an isomorphism and
it follows that the previous exact sequence can be rewritten as

1 — My — Hyp — HY(F, M) — ker' (F; My, H) — 1

From this exact sequence, we deduce the following equality in R(H):

(5.4.3) ker! (F; My, H)|[ndf/‘{;ab(1) = Res/™ Ind!(1)

where Res?‘“’ denotes the restriction functor with respect to the morphism H, —
HY(F,Mj.) and Ind! denotes the induction functor with respect to the morphism
1 — HY(F,Mj,.). Moreover the morphism H'(F, Ma_ s.) — H'(F, M;,.) induced
by the inclusion Ma_ < M, makes the following square commute

Hab - Hl(Fu MA,,SC)

\ |

Hab—>'H1(F>MI,sc)

Hence, we have a factorization Res)* = Res?i oResIA’ where ResIA’ denotes the re-
striction functor with respect to the morphism H'(F, Ma_ ) — H'(F, M;4.). Com-
bining this with B.4.3] we get the identity

(5.4.4)
Z (—1)‘A*_”|kerl(F;MI,H)|Ind/I{;{;ab(1) = Resi‘f’ ( Z (—1)lA-—Tl ResIA’ Ind{(l))
IcA_ ICA_

To continue, we need to compute the groups H*(F, M ) and the morphisms

HY (F,Ma_ ) — H'(F, M)

explicitly for all I < A_. Let T and F 4. denote the inverse image of 7T and Fy in
G = RppH,e . Since Tj . is O-stable, there exists a maximal torus 7o . of H such
that Ty . = Rg/p7To.sc,z. Moreover, there exists a Borel subgroup Py, of H,. g such
that Py s = Re/rPose. In what follows, we fix an algebraic closure I of I’ containing
E and we set I'y := Gal(F/E). Let A, ;, + be the set of simple roots of 7.7 in

min,F
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Py s It is a subset of X%(’Bsc) which is ['g-stable (as Py s is defined over E) and
we have a natural surjection A, ; %= — A, (obtained by restriction to the maximal
split subtorus of 7j . z) whose fibers are precisely the I'g-orbits in Ammf- For all
B e A, 7 we will denote by ws € XZ(7os) the corresponding weight and for all
a € A, we define

Wo 1= Z w3

BEAmin,f ;B’_)a

where the sum is over the set of simple roots § € A, . % mapping to a through the
projection A, ;7 = Apin. We always have w, € X7(Tose) but we warn the reader
that in general w,, is NOT the weight associated to the simple root « in the usual sense
(although it is proportional to it). Let I < A_. For all o € I the character w, extends
to M; .7 and is defined over £ and thus gives rise to a character Rg/rMjser —
Rp/pGpp. Since 0(w,) = —w,, this last character induces a morphism M, —

Ker Ng/r that we will also denote by w,. Consider the torus 17 := (Ker N E/F)I and
the morphism

Ry = (wa)ael . Ml,sc - TI

Then we claim that
(5.4.5) The induced map H'(r;) : H(F, M s.) — H'(F,T;) is an isomorphism.
Let M sc.der be the derived subgroup of M .. and set

/
T[ = Ml,sc/Ml,sc,der

Then, we have an exact sequence

H1<F7Ml,sc,der> - Hl(FuMI,sc) - H1<F7 TI,)

and H'(F, M sc.4er) is trivial by [32] since M 4. ger is simply connected. Moreover the
morphism H'(F, My ) — H'(F,T}) is surjective. Indeed, if T < M is a maximal
elliptic torus (which exists by [33] p.271) then the kernel of the projection T' — T7 is
a maximal anisotropic torus of My s 4er and thus by Tate-Nakayama duality its H 2
vanishes and the morphism H(F,T) — H'(F,T}), which obviously factorizes through
H(F, M), is surjective. Therefore, the morphism H'(F, My ,.) — H'(F,T}) is an
isomorphism and it only remains to show that the natural map H'(F,T}) — H'(F,T)
is also an isomorphism. Let 77 be the kernel of the projection 7; — T;. Then 77 is
connected since it is a quotient of the common kernel of all the w,’s, a € I, which is
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a connected group (this follows from the fact that {w,;a € I} generates X} (M s.)).
Therefore, T} is an anisotropic torus (since 77 is) and by Tate-Nakayama duality again
we just need to prove the injectivity of H'(F,T}) — H'(F,Ty) or, equivalently, that the
map H'(F,T) — H'(F,Tj) has trivial image. We have norm maps N : Rg/pT} , — T}
and N : Rg/pl} p — T} giving rise to a commuting square

HY(F,T}) HY(F,T})

il d

Hl(F, RE/FTI”,E) —_— Hl(F, RE/FT[/,E)

Since T g ~ G, p is the maximal split torus quotient of M .. g, the torus RgpT7 p, is
anisotropic and therefore so is the kernel of the norm map Rg/r17 5 — T7 (which is au-
tomatically connected). Hence, by Tate-Nakayama again, the map H*(F, Rp/rli p) —
HY(F,T}) is surjective and it follows, by the above commuting square, that to con-
clude we only need to show that H'(F,Rg/pT} ) is trivial. By an argument simi-
lar to what we have done before, the map H'(F, M) — H'(F, Rp/rT} ), where
Mj s == Rg/pMi s, is surjective. Since My . is a Levi subgroup of G, the map
HY(F, M;s.) — H'(F,Gy.) has trivial kernel and by [32] it follows that H'(F, M; .) =
1. Hence, H'(F, Rg/rT} ) = 1 also and this ends the proof of [5.4.5]

By 645l we have isomorphisms

(5.4.6) HY(F,M;..) ~ H\(F,T}) ~ (Z/2Z)"

for all I = A_ such that the maps H'(F, Ma_4.) — H'(F, M) correspond to the
natural projections
(Z2/22)% — (2/22Z)"
(e(X)O!EAf g (6a)ael

We can now compute the right hand side of 5.4.4l For all I < A_, let A; denote
the kernel of the projection H'(F,Mna_ ) — H'(F,M;,). In particular we have

Ag = HY(F,Ma_ ) ~ (Z/2Z)* and A; is the subgroup (Z/2Z)*\. Forall I = A_
we have

ResIA’ Indi(1) = Z X

x€lrr(Ag)ixja, =1

where Irr(Ag) denotes the set of characters of Ag. Thus the sum
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D1 (=1)A 1 Res? Indj(1)
IcA_

is equal to

PG e D S E DY IR G S B

IcA_ xelrr(Ag)ixja, =1 xelrr(Ag) \ICA_;xja,=1

Let x € Irr(Ag). By the above description of the subgroups A; < Ag, we see that
Ar+ Ay = Apny forall I, J < A_. Hence there exists a smallest subset I,, © A_ such
that x4, =1 and we have

DICE IS E YNGRV Co
ICA,;X|AI=1 IycIcA_

This sum is zero unless I, = A_ in which case it is equal to 1. Using again the
explicit determination of the subgroups A; c Ay, it is easy to see that there is only
one character y € Irr(Ag) with I, = A_, namely the character w defined (via the

isomorphism [B.4.6]) by

(2/22)" — {£1)

(ea)aca. — (_1)ZO¢EA7 e

Therefore by 5.4.4] we get

D (=1 ke (F; My, H)| Tndjls? | (1) = Resp* (w)
IcA_

and it only remains to show that Resh(w) = wpy p. Set

p = Z Ty = Z wg, p1i= Zwaandpgzz Z Wy,
eA

Aa€Amin B aeA_ QEA pin \A—

min,F

Then, by restriction p, p; and p, define three morphisms m (H) — Ker Ng/p. By
definition, wy g and Resh**(w) are the morphisms

Hy, = H' (F,m(H)) — H'(F,Ker Ng/p) ~ {£1}
induced by p and p; respectively. Thus it suffices to show that the morphism
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H'(py) : H'(F,m(H)) — H'(F,Ker Ng/r)

induced by p, is trivial. By definition of A_ we can find a subset S < A,;,\A_
such that A, \A_ = S 1 —60(S5) (disjoint union). For all a € S, the character w,
induces a morphism 71(H) — Rg/rGp,r ~ Rp/p(Ker Ng/p)p. By the decomposition
Apin\A_ =S 1 —60(S), we see that H'(ps) is the composition of

2 H'Y(w,) : H'(F,m(H)) — H'(F, Rg/r(Ker Ng/r)p)

aesS

with the norm map H'(F, Rg/r(Ker Ngjr)p) — H'(F,Ker Ng/p). By Hilbert 90, we
have
HI(F, RE/F(KeI'NE/F>E) =1

and thus H'(py) = 0. This ends the proof of the proposition. W

5.5 Reminder on the Steinberg representation

Fix a minimal parabolic subgroup F, of G with Levi decomposition Py = MyU,. Then, the
Steinberg representation of G(F') is by definition the following virtual representation

St(G) - Z (_1)aM*aMOZ’ICj(511D/2)

PycP=MU

where i% denotes the functor of normalized parabolic induction. It follows from [13] that
St(G) is in fact a true representation of G(F') which is moreover irreducible and square-
integrable. Obviously, the Steinberg representation has trivial central character. Moreover,
if G .4 denotes the adjoint group of G then St(G) is the pullback of St(G,q) by the projection
G(F) — Guq(F). For all z € G,ee(F') and all P = MU o P, let us set

T(z) = {y e G(F); vy e M(F)}/M(F)

Then, the character Og; () of St(G) is given by the following formula (|24] Theorem 30)

(551) DG(x>1/2®St(G)<x) _ 2 (_1)fllv1*a]\{0 Z DM(’}/ilx’}/)lm(Sp(’}/ilSL’”}/)l/z

P()CP=MU ’yEF]\/[(Z‘)

for all z € G,ee(F). In particular, we have

(5.5.2) Osi(c)(x) = (—1)0 =My
for all x € G(F)OH
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The representation St(G) is stable: this follows from the fact that parabolic induction
sends stable distributions to stable distributions. Let H’ be another connected reductive
group over F' and ¢ : Hy ~ H’f be an inner twisting. Following notations of §5.3] we
define G := RpypHj; and the inner twisting ¢“ : Gz ~ G”.. Let Py = M{Nj be a minimal
parabolic subgroup of GG'. Since transfer is compatible with parabolic induction we have that
(—1)a0 St(G) and (—1)M St(G") are transfer of each other. Moreover, in our situation we
have (—1)*"0"“M = 1. Indeed, by the main result of [34] we have (—1)*"0" "M = ¢(G)e(G)
where e(G) and e(G’) are the so-called Kottwitz signs of G and G’ respectively and it follows
from points (4) and (5) of the Corollary of loc.cit. that e(G) = e(H)* = 1 and e(G') =
e(H')? = 1. Thus,we have that

(5.5.3) St(G) and St(G’) are transfer of each other.

5.6 Harish-Chandra’s orthogonality relations for discrete series

Let m and o be essentially square-integrable representations of H(F') with central characters
coinciding on Ay (F'). Then, we have the following orthogonality relation between the char-
acters of m and oV (the smooth contragredient of o) which is due to Harish-Chandra (see
[14] Theorem 3):

1l fr~co
0 otherwise

Len(H) D" ()0 ()0, (z)dx = {

where the measure on I'g;(H) is the one introduced in §5.11 These relations can be seen as
an analog of Theorem [B.1.1]in the case where E = F' x F. Let x be a continuous character
of H(F). In the particular case where m = St(H) and ¢ = St(H) ® x, by §5.5.2 we get the

relation

1 ify=1
0 otherwise

(5.6.1) L“(H) D" (z)x(z)dx = {

Indeed if x is nontrivial then St(H) ® x % St(H) since St(H) and St(H) ® x have different
cuspidal supports.

5.7 Second application: multiplicity of the Steinberg representation

Theorem 5.7.1 For every Galoisian character x of H(F') we have

)1 ifx=wnE
m(St(G), x) = { 0 otherwise

Proof: Let x be a Galoisian character of H(F'). If the restriction of y to the center of H(F')
is nontrivial then obviously m(St(G), x) = 0 since St(G) has trivial central character. We
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assume now that yx restricted to the center of H(F') is trivial. Let H,4 be the adjoint group
of H and set Gqq := Rp/pHaap. Let H(F)q.q denote the image of H(F') by the projection
H(F) — Hu(F) (i.e. the quotient H(F')/Zy(F)). Then, since St(G) is the pullback of
St(Gaa) to G(F'), by Frobenius reciprocity we have

m(St(G), x) = dim Hom(p),,,(St(G), x) = dim Homp, () (St(Gua), Indyyit" x)

a

The representation ndg‘ﬁ;()F ix is a multiplicity-free sum of Galoisian characters containing

wp, .k if and only if x = wy p. This shows that the statement of the theorem for H,q implies
the statement of the theorem for H. Thus, we may assume that H is adjoint. Moreover,
by §5.5.3 and Theorem [(E.3.1] up to replacing H by its quasi-split inner form, we may also
assume that H is quasi-split. We will now use freely the notations introduced in §5.4l By
Theorem B.1.T] and §5.5.1] we have

mSHG) ) = Y WEHDT Y (- Y f()DM(V_ltV)l/QX(t)_ldt
) T(F

TeTn (H) PocP=MU vyel' s (T

(Note that we have dp(y~'ty) = 1 for all v and ¢ as in the expression above since v~ 't is a
compact element). By Proposition B.4.T](l), it follows that

MG = 3 (DR [ D)) e

(M,P)eC Len(M)

where for all (M, P) € C we have set ay := ap with M := Rg/pMp. Thus, by .61 we
also have

m(St(@),x) = D, (=1)*™ Mo (x|, 1)
(M,P)eC

where x| denotes the restriction of x to M(F) and (.,.) denotes the natural scalar product
on the space of virtual characters of M. By Proposition B.4TI[l), (ivl) and (w), this can
be rewritten as

m(SH(G),x) = D, (=1 o ker! (F; My, H)|(xjm,: 1)
IcA_
By Frobenius reciprocity, it follows that
_ apm;—anm 1. Hayp
m(SHG),x) = Y, (1)t~ |ker' (F; My, H)|(x. Indyi? 1)
IcA_

It is easy to see that (—1)*Mi=0 = (—1)I4-~1l for all I = A_ and therefore by Proposition
BATI[w) the last expression above is equal to 1 if x = wy g and 0 otherwise. B
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