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Approaches to learning of linear algebra among engineering students 
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UiT the Arctic University of Norway, Norway, ragnhild.rensaa@uit.no 

The present paper investigates engineering students’ own descriptions of what they mean by 

learning of linear algebra and how they know that they have learned something. I seek to extract 

keywords from engineering students’ descriptions of learning of this discipline by drawing on 

grounded theory techniques and classifying the answers in conceptual and procedural approaches. 

By this, both detailed and more meta perspectives on learning are obtained. Results indicate that 

when explaining their learning of linear algebra, conceptual more than procedural approaches are 

emphasized. However, in order to know that they have learned something, many engineering 

students need to know that they are able to solve relevant tasks in the discipline. 
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Introduction 

Students’ learning of mathematics is a main interest within the community of researchers in 

didactics of mathematics. We seek to know how students learn, what they learn, but also how they 

perceive their own learning (Sfard, 2007). Learning may be defined according to which point of 

view one has in an investigation, but also by taking into consideration what is relevant for the 

particular individuals of a study. A classical definition is given by Hiebert and Lefevre (1986), 

distinguishing between conceptual and procedural knowledge that may yield conceptual and 

procedural learning. Conceptual knowledge is defined as “knowledge that is rich in relationships” 

(ibid.1986, p. 6), which means that it cannot exist in isolation. Procedural knowledge includes 

sequential relationships or step-by-step instructions. Engelbrecht, Bergsten and Kågesten have 

found conceptual and procedural notions valuable in their research of engineering students (2009), 

and because the target group of the present investigation is engineering students, these constructs 

will be utilized.  

The present paper focuses on engineering students’ interpretation of their own learning in a linear 

algebra course. Such reflections are beneficial because the students then have to reflect on how they 

see their mathematical knowledge and for what purposes they study the discipline. Thus, asking 

questions about learning is valuable and frequently done by researchers. An immediate example is 

the present data collection, in which questions asked to the students were picked from a research 

investigation of a related group of students in a mathematics and physics foundation program for 

students going into an engineering program (Marshall, Summers, & Woolnough, 1999). Based on 

data from a longitudinal study over an academic year, they derive conceptions of learning held by 

these students. In my study the setting is somewhat different as the students are experienced 

engineering students, their reflections about learning are confined to a particular domain in 

mathematics, and it identifies students’ reflections at the end of the course. In this particular setting 

the following research questions are asked: Which approaches do engineering students include in 

their description of learning in linear algebra and how do they explain their knowing that they have 

learned something? 



Theoretical background 

The study reported on here investigates engineering students’ description of their learning 

approaches rather than the cognitive processes of learning itself. As will be argued for, such 

approaches are adequately split in two main categories: approaches connected to conceptual and to 

procedural knowledge. The definitions were originally given by Hiebert and Lefevre (1986) and are 

widely used. In this framework, conceptual knowledge is pieces of knowledge connected together 

or, as explained by Kilpatrick, Swafford, and Findell (2001), “an integrated and functional grasp of 

mathematical ideas” (p. 118). Procedural knowledge, on the other hand, includes familiarity with 

symbols but also representation systems in mathematics along with knowledge of rules and 

procedures that can be used in task solving strategies in mathematics (Hiebert & Lefevre, 1986, p. 

6). However, conceptual and procedural knowledges are partners and the interplay between them is 

valuated, emphasizing how one knowledge may lead to the other (Rittle-Johnson & Alibali, 1999). 

Indeed, they are increasingly regarded as interrelated and inseparable, but also object for extensions 

to superficial and deep qualities of the knowledges (Baroody, Feil, & Johnson, 2007). Such 

relationships are multifaceted, and researchers move towards more integrated views in which 

determining the dynamics between the two is the objective (Engelbrecht et al., 2009).  

Students often perceive linear algebra as difficult. This stems from three sources of difficulties 

(Dorier & Sierpinska, 2001). It is about the pedagogical approach, as proofs are found difficult 

(Rogalski, 1990). It is also a matter of difficulty with grasping the theoretical concepts and 

mathematical language; the ‘obstacle of formalism’ (Dorier, 1997). Finally, linear algebra demands 

a ‘cognitive flexibility’ as one has to move between different languages, both theoretical and 

practical forms. Students tend to think in practical terms (Sierpinska, 2000), and lack of connection 

to theoretical structures may hinder their learning (Dorier & Sierpinska, 2001). 

Engineering students recognize mathematics as a foundation of their education (Khiat, 2010). Still, 

they consider the discipline as a routine practice of their profession (Steen, 2001) and expect to be 

exposed to real-world engineering problems in mathematics (Hjalmarson, 2007). With such an 

approach, the formalism of linear algebra may be especially hard to get a grip of. Engelbrecht and 

colleagues (2009) found that engineering students uphold mathematics as procedurally founded. As 

part of their investigation, the authors created tailor-made working definitions to focus on 

engineering students, thus these are adopted in the present study:  

“Procedural approach: Use and manipulate mathematical skills, such as calculations, rules, 

formulae, algorithms and symbols. 

Conceptual approach: Show understanding by e.g. interpreting and applying concepts to 

mathematical situations, translating between verbal, visual (graphical) and formal mathematical 

expressions and linking relationships.” (Engelbrecht et al., 2009, p. 932). 

Methodology 

The present investigation is part of an ongoing study dealing with engineering students’ views about 

the learning of linear algebra. The teaching format in the course which was taught in English was 

‘traditional’, with large group lectures followed by task solving sessions where students worked in 

groups. The ‘untraditional’ part was that a well-functioning video recording system recorded all 



lectures and published them in-time. The linear algebra course was scheduled in the students’ fourth 

year of studies to become master engineers, postponed in accordance with Carlson’s 

recommendations (1993). However, some basic tools in linear algebra had been introduced in a 

mathematics course in their first year of studies, since these are necessary for use in the professional 

disciplines. All together 59 students attended the course this year, and data was collected as I was 

the teacher and arranged for a questionnaire to be answered at the end of the course. The open 

questions picked from (Marshall et al., 1999) discussed in the present paper were: “What do you 

mean by learning in linear algebra? And how do you know that you have learned something?” Due 

to experiences from a previous investigation (Rensaa, 2014), the questionnaire was made mandatory 

but anonymous to increase truthfulness, and the response rate was very good; 93% (55 out of 59). 

Data analysis was done in phases. Initially, grounded approaches were used (Strauss & Corbin, 

1998) to obtain codes that embrace engineering students’ approaches to learning. Next, these codes 

were related to the definition of conceptual and procedural approaches as described by Engelbrecht 

and colleagues (2009) since this definition is tailor-made for engineering students. It offers a meta-

perspective on the analysis results from coding, and this provides answers to the research questions 

about engineering students’ approaches to learning. 

Analysis and results 

The development of codes was done in steps. Initially, I wrote down headwords in each student’s 

description which was given in English. By comparing these, some seemed to describe similar 

things, e.g., ‘utilize for own goals’ and ‘use in gps’ [Global Positioning System], both which could 

be interpreted as ‘learning as applying mathematics’. Because I was working back and forth 

between statements and codes with an aim of reducing the number of codes without deteriorating 

their meanings, each time two replies were interpreted within the same category had to be put down 

as a criterion for the category. For instance, for descriptions of obtained learning, ‘know the whole 

picture’ and ‘associate theory to applications’ were both interpreted as being able to relate the 

different aspects of linear algebra to each other, thus crystalizing a category called ‘ARel’ (able to 

relate). The importance of emphasizing relation in this category was helped forward by a statement 

that did not fall into this category: ‘use different theorems to achieve solutions to practical 

problems’. The emphasis here is on obtaining solutions more than the relation, thus crystalizing a 

category called ‘ASol’ (being able to solve problems). Going back and forth between statements and 

codes resulted in a final reduction to 8 categories for what learning is and 6 categories for what is 

meant by learning of linear algebra.  

Next, the original data set and my developed codes were sent to another researcher for validation 

purposes. This researcher used the codes to independently code the data. Then, we met for 

comparison of results and refinement of codes. A main refinement was deepening the meaning of 

applications. Students had referred to applications when trying to describe learning in linear 

algebra, but we agreed that students should express that applications were actively studied in a 

mathematical connection in order to be coded as ‘Study Applications’ (SAp). An example of a 

statement where the coding was adjusted by this interpretation is the following: 

Student 30: For me, learning is knowing the practical use of theory and how to execute said 

theory. As a computer engineer student specializing in games development, linear 



algebra is central in the programming I perform. I only know I have learned 

something if I can associate theory to a problem I encounter.  

We agreed that this student is not stating that he is studying applications, but rather that he is 

actually taking advantage of knowing applications from other disciplines as part of his learning 

process. Thus, ‘Utilize Theory’ (UTh) is a closer category as the statement points to how theory may 

be utilized for practical purposes. The other refinement of codes that was needed was a specification 

of relations, originally named ‘Rel’. It was unclear which types of relations this was referring to. 

The category had derived from students’ answers as relating back to previous knowledge, thus the 

category needed to be adjusted to ‘RelB’ (relating to background).  

Two additional codes were agreed on: the categories ‘NoAns’ (no answer) and ‘Other’. All blank 

responses could be categorized as ‘NoAns’, while ‘Other’ refers to answers that responded to 

something else than what was asked about. The ‘Other’ category developed from cases in which 

divergence in our separate coding appeared. We both encountered problems because none of the 

codes actually fit with some of the particular answers. An example is ‘It really gives the knowledge 

of different engineering mathematical problems’. One researcher had interpreted this statement as 

‘Study Applications’ (SAp), the other as ‘Able to understand why/what is going on’ (AUn), but the 

student does not seem to be actually describing his learning. Thus, the final coding for this response 

was ‘Other’. This joint coding process showed that the codes were adequate and could be used to 

code all statements. However, we experienced that coding statements together often resulted in 

finding more information in a reply than what we had done individually.  

Ending the process, the following codes crystallized for engineering students’ description of what 

they mean by learning in linear algebra: SAp (Study Applications), GUn (Gain Understanding), 

UTh (Utilise Theory), ForM (Grasp Formalism), SimP (Simplify), SoL (Solve problems), RelB 

(Relating to Background), and ToO (Use Tools). Analytical results for this question are given in 

Table 1, presenting both the number of students in each category and percentage (rounded off) of 

the total number of 55 students. The category ‘No Answer’ consisting of 17 replies is left out, while 

a number of explanations covered approaches in more than one category. Thus, the sum of 

percentages does not add up to 100.  

 SAp Gun UTh ForM SimP SoL RelB ToO 

Number/% 8/15% 11/20% 10/18% 2/4% 2/4% 11/20% 2/4% 2/4% 

Table 1: Responses to what engineering students mean by learning in linear algebra 

Coding responses to engineering students’ description of how they know that they have learned 

something gave the following codes: ASol (Able to Solve), AExp (Able to Explain), AUn (Able to 

Understand Why/What is going on), AAp (Able to Apply), ARel (Able to Relate), and ARem (Able 

to Remember). Analytical results for this question are given in Table 2, including responses coded 

as Other (answering something else). The table presents both the number of students in each 

category and percentage, and again multiple codes were found in some answers. 



 

 ASol AExp AUn AAP ARel ARem Other 

Number/% 15/27% 3/5% 6/11% 9/16% 1/2% 2/4% 5/9% 

Table 2: Responses to when engineering students know that they have learned something 

When the codes and categories were set, I assigned the codes in conceptual and procedural parts. As 

the codes had developed based on engineering students’ own descriptions, they were aligned with 

Engelbrecht and colleagues’ working definition (2009) for conceptual and procedural approaches of 

engineers. This was done by linking the description of codes to statements given in the definition. 

Some codes were easier to categorize, like GUn. Gaining understanding was classified as a 

conceptual approach as this is necessary to be able to expose mathematical understanding. Other 

classifications were harder. An example is ASol. Problems may be complex, theoretical and demand 

deep argumentations, and solving these should classify as a conceptual approach. On the other hand, 

problems may as well be ‘standard’, connected to a set of skills that are more like a routine part of a 

learning process. Such dual interpretations of an activity highlight the complexity involved in 

interpreting conceptual and procedural knowledges in a praxeology. However, engineering students 

tend to ‘proceduralize’ problems, even those of a conceptual nature (Engelbrecht et al., 2009). 

Considering this, I deduced that ASoL ought to be categorized as a procedural approach, but highly 

interdependent upon conceptual approaches  

By going back and forth between the definition and codes, a final classification of codes was 

obtained. For what is meant by learning in linear algebra, the following codes were classified as 

conceptual: SAp fits with ‘applying to mathematical situations’; GUn is about ‘showing 

understanding’; UTh may be interpreted as ‘translating between verbal and formal mathematical 

expressions’; and RelB is about ‘linking relationships’. The remaining categories were classified as 

procedural: ForM is about ‘manipulating’ linear algebra expressions; SimP is simplifying by 

‘calculations’; SoL refers to a way of ‘using mathematical skills’; and ToO is to use tools like 

‘rules, formulas and algorithms’. About knowing that something is learned, the following codes 

were classified as conceptual: AExp is about ‘interpreting concepts’; AUn is about ‘showing 

understanding’; AAp is about ‘applying concepts to mathematical situations’ and ARel is ability to 

‘link relationships’. The remaining codes were classified as procedural: ASol is knowing how to 

‘use and manipulate mathematical skills’; and ARem may be a part of the manipulation of 

mathematical skills by recalling how to do this. Drawing on these interpretations, Table 1 and 2 may 

be organized in conceptual and procedural approaches. Gray coloring of conceptual cells and white 

coloring of procedural cells indicate the appropriate classification. In many cases, an interpretation 

of a student’s reply comprised more than one of the codes given. An example is the following 

statement with three codes of a conceptual type and one of a procedural type, codes included in 

parenthesis: 

Student 6: Generally, I mean that learning is to study something until you understand (GUn) 

the theory (UTh), and is able to use it in both theoretical and practical problems 

(SAp and SoL). 



A statement could be coded in a mix, as illustrated by the last part of the above statement. 

Interpreted as being ‘able to use it,’ this may be about studying applications as a way of utilizing 

knowledge in problem solving – SAp, a conceptual approach. Interpreted as being ‘able to use it’ 

this would be more about the solving process itself – SoL; a procedural approach. Thus, a statement 

could be coded in both procedural and conceptual categories, again illustrating the close 

relationship.  

Discussion 

The analysis results summed up in Table 1 and 2 give some indications of engineering students’ 

conceptions of learning. In many cases, an interpretation of a student’s reply comprised more than 

one of the codes and one phrase could be coded in a mix as illustrated by Student 6’s explanation. 

Engelbrecht and colleagues emphasize that the distinction between conceptual and procedural 

approaches are complex and not absolute (Engelbrecht et al., 2009). Thus, mixed coding may be 

expected. Brought together, however, the frequencies of codes give a meta perspective on which 

approaches (procedural or conceptual) are most appreciated by engineering students. In this 

perspective, Table 1 shows that engineering students emphasize conceptual approaches more than 

procedural ones when explaining what learning in linear algebra means to them.  

Table 1 shows that ‘Gain Understanding’ (GUn) is important to students, having the highest 

response rate. However, understanding is often – like in the above example – connected to knowing 

how to apply this understanding. Only when being able to apply their knowledge the students think 

they have understood linear algebra. This result is in line with the fact that these students are 

engineering students, busy with relating to the use of mathematics (Hjalmarson, 2007). To some 

students, however, solving of problems becomes the main issue and the scale by which they 

measure their learning. Lower interest is given to understanding, as the main objective is to obtain a 

correct answer. An example is the following:  

Student 34: in my opinion, linear equations are some kind of tool (ToO) to solve the problems 

(SoL) in real industrial areas such as factories and… (AAp). 

Not all replies coded as describing learning in a procedural way focus on solving problems. 

Grasping formalism, which is an aspect of difficulty for students when learning linear algebra 

(Sierpinska, 2000), may also be interpreted as a procedural approach in terms of manipulating the 

linear algebra language. This is illustrated in the following student’s description:  

Student 5: the meaning of learning linear algebra is actually learning a mathematical 

language (ForM), a language you can use to solve big questions with many 

variables (SoL). 

 

Responses to the question about engineering students’ knowing that they have learned something, 

summed up in Table 2, are more equally distributed between procedural and conceptual approaches. 

This is mainly due to the category ‘Able to Solve’, which takes all together 27% of the responses. 

An example of a statement coded within this category is: 



Student 35: The simplest way to know that I have learned something is that I can solve some 

problems (ASol), when I am faced with some practical problems using this 

method. 

This student indirectly says that he seeks to apply the mathematics in practical situations but 

knowing that he has learned something is concentrated to the solution process itself. 

Altogether, a rough answer to the stated research questions may be that the present engineering 

students emphasize conceptual more than procedural approaches when explaining learning of linear 

algebra, but in order to know that they have learned something a noteworthy amount need to know 

that they are able to solve relevant tasks in the discipline.  

Conclusion 

A result of the present analysis is that the engineering students emphasize conceptual aspects like 

understanding and utilizing theory as most important in their learning of linear algebra. This may be 

an anticipated result when dealing with students in general, but engineering students’ expectations 

towards mathematics are slightly different. They consider mathematics more as a routine practice 

(Steen, 2001) and procedurally founded (Engelbrecht et al., 2009). Thus, the result is noteworthy. 

However, to know that they have learned something, the same students seek confirmation in terms 

of being able to solve problems; a more expected procedural approach. An explanation to this result 

may be that the mathematics course is one in linear algebra. This course is more theoretical framed 

than the initial calculus courses, thus students are somewhat new to proofs and proving when 

coming to the course. Students find such approaches difficult (Dorier, 1997; Dorier & Sierpinska, 

2001; Rogalski, 1990), and engineering students may therefore put particular attention on these 

aspects in learning of linear algebra. Their consecutive measure of knowing that they have learned 

something in terms of ability to solve problems then shows that the connection between theory and 

task design is particularly important. Tasks should offer opportunities to engage in conceptual 

arguments on the preferred premises of solving tasks. However, as assessment guides students’ 

ways of studying, task design in exams is the most vital part. Thus, an investigation of engineering 

students’ learning approaches related to design of exam tasks will be an important follow-up of the 

present project. 

Even if students in the present study were asked to reply in writing – which naturally reduces the 

richness of the replies compared to responding orally – interesting responses were given. The 

following is an illustration of this, concluding the paper: 

Student 9: To learn does not necessarily mean to remember something, but to understand it in 

depth (GUn) and be able to utilize that information for your own goals (UTh). 

When one has truly learned something, one can easily explain it to someone else 

(AExp). 
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