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We report analyses from a collaborative, developmental research project between two Norwegian centres of excellence in higher education (MatRIC and bioCEED) in which biology-related mathematical modelling (MM) activities are introduced to biology students as a means to motivate their appreciation for, and competence in, mathematics. This phase of the project involved four sessions with 11 first-semester students. We report data and analyses from two activities: Yeast Growth and Digoxin. Our commognitive analyses trace the evolution of the students' mathematical discourse in two episodes, revealing a scaffolding story about the gradual transition from ritualized to exploratory engagement with MM, and pointing to the crucial role played by the teacher in this process. We conclude with discussing some implications of our analysis for the design and use of MM activities for students of Biology, and other non-mathematics specialists.

Teaching mathematics to biology students through mathematical modelling

Research into the mathematical needs of non-mathematics specialists is by no means new (e.g. [START_REF] Kent | Mathematics in the university education of engineers[END_REF]. Participants in many university-level studies are often non-mathematics specialists (e.g. engineers or pre-service teachers), but their specialism often remains a mere part of the study's backdrop [START_REF] Biza | Research on teaching and learning mathematics at the tertiary level: State-of-the-art and looking ahead[END_REF]. The relatively small but growing number of studies in this area (e.g., [START_REF] Gould | Mathematical Modelling Handbook[END_REF] have touched on issues such as: the double discontinuity between school, university and workplace mathematics; the challenges of teaching mathematical modelling at school and university levels; issues of confidence in and appreciation for mathematics; and, embeddedness of mathematics into other disciplines.

Within biology, mathematics is becoming increasingly important, placing new demands on the education of future biologists. In the US, for example, the recognition of these demands has led to two national projects focusing on developing undergraduate biology education (Brewer & Smith, 2011;[START_REF] Steen | Math & Bio 2010: Linking undergraduate disciplines[END_REF]. A potential problem with placing greater emphasis on mathematics in biology education is that "biology education is burdened by habits from a past where biology was seen as a safe harbour for math-averse science students" (Steen, 2005, p. 14). The project that we draw on in this paper aims to improve student appreciation for mathematics through helping them experience the relevance of mathematics to their field of study. It does so through exploring the suggestion made by several authors (e.g. Brewer & Smith, 2011;[START_REF] Steen | Math & Bio 2010: Linking undergraduate disciplines[END_REF] for greater integration of mathematics and biology in the curriculum. MM, as Brewer and Smith (2011) point out, is a basic skill within the 'core competencies and disciplinary practices' (p. 17) of biologyand a vehicle for improving student appreciation for the role that mathematics can play in scientific research.

Studies which have investigated the use of MM in university biology education (e.g. [START_REF] Chiel | From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students[END_REF] indicate that engagement with MM activities can contribute to more positive attitudes towards, and self-perceived competence in, both biology and mathematics. Concerning an integrated approach to mathematics and biology, [START_REF] Madlung | A study assessing the potential of negative effects in interdisciplinary math-biology instruction[END_REF] investigated whether such an approach might have adverse effects, such as breadth at the expense of depth, or mathematics anxiety problems. Two versions of a bioscience module, one of which contained a computational statistical element, were developed and offered to an introductory and an advanced biology class. Results showed no detrimental effects of an integrated approach but indicated that advanced level students were more able to benefit from it.

To examine the evolution of biology students' appreciation for, and competence in, mathematics as they engage with MM activities we espouse a discursive perspectiveparticularly that of the theory of commognition [START_REF] Sfard | Thinking as communicating. Human development, the growth of discourse, and mathematizing[END_REF]Nardi, Ryve, Stadler & Viirman, 2014, p. 183-5)according to which learning is change in one's participation in well-defined forms of activity (discourse). In what follows, we introduce those components of the commognitive perspective pertinent to the data analysis we present in this paper; we then present a sample of our data and analysis (two episodes from students' engagement with two MM activities, Yeast Growth and Digoxin).

The commognitive construct of routines: Explorations, deeds and rituals

According to the commognitive perspective, 'it is by reproducing familiar communicational moves in appropriate new situations that we become skillful discursants, and develop a sense of meaningfulness of our actions' (Sfard, 2008, p. 195). A routine is a set of meta-rules that describe a repetitive discursive action. Sfard defines three types of mathematical routines: explorations, deeds and rituals, with deeds and rituals presented as predecessors of explorations. A routine is called an exploration 'if its implementation contributes to a mathematical theory' (p. 224) (e.g. equation solving, defining and proving). Explorations involve the construction, substantiation or recall of narratives about mathematical objects. Routines that involve practical action (action resulting in change in objects, either primary or discursive, p. 241) are called deeds. Deeds are therefore different from explorations, which aim to effect change on narratives. Often, however, there are routines that "begin their life as neither deeds nor explorations but as rituals, that is, as sequences of discursive actions whose primary goal […] is neither the production of an endorsed narrative nor a change in objects, but creating and sustaining a bond with other people' (p. 241).

Sfard claims that rituals are a 'natural, mostly inevitable, stage in this development process ' (p. 245) and that the road to exploration often leads through ritual. The data and analysis sample we present in this paper examines this claim with a particular focus on the following research question: "What characterizes the use of routines by Y1 Biology students as they engage in MM activities?"

Aims, methods, data and participants of the study

The research design of our study comprises cycles of developmental activity (planning, implementation, reflection, feedback) which are theoretically informed, contribute to the emergence of theory and take place in a partnership between teachers (in this case, a university mathematician) and didacticians [START_REF] Goodchild | Critical alignment in inquiry-based practice in developing mathematics teaching[END_REF]. This ongoing project is a collaboration between two Norwegian centres of excellence in higher educationthe Centre for Research, Innovation and Coordination of Mathematics Teaching (MatRIC) and the Centre for Excellence in Biology Education (bioCEED). The aim of the project is to improve biology students' motivation for, interest in, and perceived relevance of mathematics in biological studies through the use of MM. The teaching took place at a well-regarded Norwegian university where biology students take one compulsory mathematics course, taught in the first semester, designed not specifically for the biology undergraduate programme but for students from about twenty different natural science programmes. Typically, in this university, there is little collaboration between the mathematics and biology departments, and few opportunities for focusing on issues specific to biology in the mathematics course. The data for this paper originate in four three-hour sessions with twelve volunteer students, nine female and three male. Activity during the sessions was video and audio recorded, both from whole-class and small-group work. Also, all written material produced by the students was collected. The teaching was conducted in English, but all student group work and most student contributions to group discussions were in Norwegian. The first session began with an introduction to the basic ideas of MM and to the modelling cycle. Students were then asked to work in smaller groups on modelling problems of varying complexity, but requiring only pre-calculus mathematics. The structure of the three remaining sessions was similar, but the initial exposition instead introduced specific types of models relevant to the problems given in that session. The data we draw on in this paper are taken from sessions two and three, and concern one group of four female students as they work on two different, but related, tasks, Yeast Growth and Digoxin. In the analysis, we examined the discourse of the students looking for recurring patterns that could be described as routines, for instance graph construction. Furthermore, we looked for signs indicating the type of routine use. For instance, we aimed to discern the motives (if any) students provide for their activity. Since the changes in discourse that we aim at charting in this paper take place gradually and over extended periods of time, they are difficult to exemplify through data excerpts within this short paper. Hence, in presenting the data analysis we have opted for offering instead a condensed, selectively detailed narrative account of key incidents illustrating these changes.

Mathematical modelling for biology students: Yeast Growth and Digoxin tasks

A large part of the first session was spent on a very open task where the students were asked to estimate the density of a rabbit population based on the number of roadkill rabbits along a stretch of highway. Reflecting on the session, the lecturer felt that the students had not been able to work productively enough on this task, and he decided to make the second session more structured. The first 45 minutes of that session were spent first on a follow-up of a homework task given at the end of the previous session, followed by a brief lecture on "steady-state box models" and, related to this, a very short task on pollution in a lake. Then the focus shifted to modelling change, introducing a task concerning the growth of a yeast culture in a petri dish (Yeast Growth). Contrary to the first session, however, the task was broken into subtasks that the students worked on for 10-15 minutes each, with whole-class summaries in between.

For the first Yeast Growth subtask, the students were given a first part of a table of data, taken from an old research paper [START_REF] Pearl | The growth of population[END_REF], with three columns (time, amount of biomass, change in biomass) describing the growth of a yeast culture. The students were asked to: analyze the numerical data in the table; plot the data and analyze the graph; suggest a simple model based on a difference equation of the form

n n p k p 1  
, where n p is the size of the yeast biomass after n hours, and, explain what their expectations would be regarding the predictive power of the model they constructed. The initial plan for the second subtask was to give students the second part of the table and ask them to: analyze this new data (noting the change in population per hour becomes smaller as the resources become more limited); plot the population against time, explore the shape of the graph and state what they would expect in the long run; and, calculate the expected value for "carrying capacity" in this case (noting that, based on the graph, the population appears to be approaching a limiting value, known in biology as "carrying capacity"). However, in the actual session (due to limitations of time) the students were instead given a non-linear model based on incorporating the carrying capacity: "We may estimate carrying capacity to be 665 (this value is not precise and your value may differ a bit k is a positive constant. What is your choice of 3 k ? (b) Now our objective is to consider the decay of digoxin in the blood stream to prescribe a dosage that keeps the concentration between acceptable levels so that it is both safe and effective. Design a simple linear model describing the following scenario: we prescribe a daily drug dosage of 0.1mg and know that half the digoxin remains in the system in the end of each dosage period. (c) Consider three different options where the initial one-time dose of medicine received by the patient is 0 a = 0.1mg, 0.2mg or 0.3mg. What are your conclusions? What would you recommend if you were this patient's GP?"

In Yeast Growth, the students were expected to find an approximately linear relation between the change and the amount of biomass, estimate the proportionality constant, and conclude that this rate of growth cannot continue indefinitely. With the additional data then provided, they were then expected to conclude that the growth decreases and the amount of biomass stabilizes at the carrying capacity of the petri dish, in this case 665. The students were then given a suggested non-linear model and were expected to check the validity of the model by finding the proportionality constant. Finally, they were expected to use the model to generate values that could be compared with the actual data. To do this, they needed to solve the equation ) 665 (
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In Digoxin, in part (a) the students were expected to find a linear relationship between the change and the amount of digoxin remaining, and estimate the proportionality constant from the graph. In part (b) they were expected to construct a model of the form

1 . 0 5 . 0 1    n n a a
, and then, in part (c), use this model with the different initial conditions to realize that, in all cases, an equilibrium of 0.2mg will eventually be reached, leading to a recommended initial dose of 0.2mg.

In what follows we highlight two critical incidents, one from Yeast Growth and one from Digoxin.

Yeast Growth: Ritualized engagement with mathematical modelling

The group ignores the first question in the subtask, about analyzing the data in the table. Instead, their initial efforts concern the practical details around graph construction and data plotting: choosing the right scale for the axes, and the like. They do all work in parallel, constructing one graph each, on millimetre grid paper, but they still work collaboratively, discussing their work at every turn. The routines they are using seem familiar to them, but there is no evidence of any reflection concerning the purpose of the activity they are engaging in. The task requests of them to plot the data, and since this is something they know how to do, they do it. We see this as suggestive of ritualized routine use. After about ten minutes, however, they seem confused about how to interpret the data in the table: what does n p  actually mean? They start discussing how to fit a straight line to the data, but the relative inefficiency of their working methodputting a lot of effort into the design of the graph and all drawing their own copymeans that, in the end, they do not have the time to do this, let alone find the proportionality constant. In the first whole-class followup, the students quickly agree that the problem concerns exponential growth, but none of the groups have succeeded in finding the constant 1 k . It turns out that that they have constructed the wrong graph: plotting change against time, not against amount. We see this as evidence of ritualized routine use. Had the students engaged with the first question in the subtask, and reflected about the interpretation of the data, this mistake might have been avoided. Instead, the students resorted to a well-established routine for data plotting, using time as the independent variable. After this mistake has been clarified, the students are given additional data, and start discussing the validity of the model: is unlimited growth reasonable? The need for a revised model is established.

The work on the second subtask still mostly revolves around plotting the data, but now the group only constructs one plot. There is, however, some remaining confusion regarding the nature of the data: does n p  represent change or the actual amount? One of the students interprets the decrease in n p  as evidence of a population crash (a catastrophic decline in population), but the other group members point out that the decrease is in change, not actual amount: "But this is just the change, this is not the number of living cells." Thus, when engaged in biological discourse, they are able to reason in a meaningful manner about the interpretation of the mathematical symbols. However, the formulation of the task creates additional confusion. It explicitly mentions a nonlinear model, but at the same time asks for proportionality. Finding proportionality between the more complexly presented quantities in this task seems unfamiliar to the studentsand, since this is something not normally done in school, it probably is. Following the recent whole-class discussion, but contrary to what is written in the formulation of the subtask, the students do what they were expected to do in the first subtask, plotting the change n p  against n p instead of against ) 665 ( n n p p  . They thus struggle with fitting a straight line to the data, since their plot does not describe a linear relationship.

In the whole-class follow-up, it turns out that, yet again, none of the groups have been able to compute the constant 2 k , and, in the end, the lecturer provides the students with an estimated value and asks them to use the model they now have to compute a number of values of n p and to check the predictive value of the model. This turns out to be very confusing for our group, who are at a loss as to how to proceed: "I don't have a clue. I feel so stupid." The work they have been doing in both sessions so far has been geared towards constructing models, not validating them, leaving them unprepared for this way of using models. Furthermore, the routines they have been using have all concerned graph construction and plotting, and now they are supposed to compute values. After some initial confusion, they start doing computational work, but their nervous laughter and exclamations of surprise suggest that they have little faith in that what they are doing makes sense. Indeed, the different numbers they are juggling around suggest that they are making various computational errors. Also, they spend quite some time plotting the values that they obtain. We see this as indication that their routine use is still highly ritualized: they do certain things because they feel that it is expected of them, without having any clear rationale for why they are doing so.

Looking at the way the students engage with the Yeast Growth task, we conclude that what was intended by the lecturer as scaffoldingdividing the task into clearly delineated, smaller subtasksin fact amounted to restricting student agency. We propose that this restricted agency is connected to ritualized routine use. The formulations of the subtasks state explicitly what the students are supposed to do, and even suggest what specific routines to invoke (plot the data; estimate the constant). This decreases the need for reflection about what routines to use and why, thus inviting ritualized routine use. This interpretation is further supported by how they struggle when asked to perform a different set of routines, using a given model for substantiation purposes, rather than constructing a model from given data. This indicates to us that they are not yet using the construction routines in an exploratory manner.

Digoxin: Towards exploratory routine use

Although there seems to be a connection between the highly scaffolded format of the Yeast Growth task and students' ritualized routine use, we do not intend this to be seen merely as a cautionary tale. Indeed, looking at the students' work on the Digoxin task in session 3 four weeks later, there is evidence of progress towards making the discourse of growth model construction their own. The Digoxin task was presented as a whole, without the same amount of scaffolding as the Yeast Growth task. As in the second session, the group focuses their effort on constructing the graph, but has some problems interpreting the task because of unfamiliar terminology (e.g. difference equation).

Contrary to Yeast Growth, in Digoxin time is not included as a column in the table of data, thus minimizing the risk of students resorting to the "plotting against time" routine. Still, one of the students suggests using n as the independent variable, in an attempt to fall back on the familiar routine. After some discussion, they decide not to resort to the earlier default option of using time as the independent variable, and, using the graph and the table, they manage to find the proportionality accurately. This might be interpreted as an indication of what Sfard (2008, p.251) calls "thoughtful imitation". Having failed at constructing the requested plot in subtask 2 of Yeast Growth, and then being shown by the instructor what should have been done, they are now able to engage more fruitfully with this similar, but less complex, task. There is some additional confusion due to the formulation of the task (even though we are dealing with decay, the task still prescribes that 3 k should be positive). Here we see signs that the group have still not made the discourse fully their own, but rather are emulating the discourse of the teacher. Rather than trusting their own reasoning, they handle the problem in a manner familiar to many studentsthey adapt the answer to fit the teacher's expectations: "Let's just drop the minus sign." As for parts (b) and (c) of the task, they (as well as the other two groups) run out of time before managing to make much headway. Still, it appears as if the ritualized routine use when working on the Yeast Growth task has supported the students' pathway towards handling the Digoxin task in a more exploratory manner.

The path to exploration passes through ritual: Conclusions and ways forward

In this paper, we examine a case (Y1 Biology students' engagement with MM) of how new routines evolve, and particularly how discursants experience a step from ritualized to exploratory routines. The analysis points to the crucial role played by the teacher in facilitating this process. For instance, through the tasks presented to students, he influences their routine use, not only in the obvious way of suggesting what routines to use, but also in what way to engage with these routines. We have seen how a highly scaffolded task, which explicitly states what routines to invoke, might in fact invite ritualized routine use, whereas a less strongly scaffolded task might necessitate reflection about what routines to invoke and why, thus inviting a more exploratory engagement. At the same time, our analysis suggests that perhaps the ritualized routine use suggested by more scaffolded tasks might be a necessary step on the route towards exploratory routine use.

Per [START_REF] Sfard | Thinking as communicating. Human development, the growth of discourse, and mathematizing[END_REF], rituals are a 'natural, mostly inevitable, stage in this development process' (p. 245) and, recognizing this as so, recognizes fully the 'inherently social nature of human thinking and learning' (p. 245). Our claim here resonates with Sfard's: the road to exploration must sometimes pass through ritual. There is an inherent circularity in this evolutionary process: a learner 'could not possibly appreciate the value of the new routine until she was aware of its advantages; such appreciation, however, could only emerge from its use ' (p. 246). Furthermore, 'the deedenhancing mathematical explorations would sometimes involve new abstract objects, objects that can only emerge through implementation of this very routine' (p. 247) and this holds for the evolution of an individual's mathematical discourse as well as that of the field of mathematics as a whole. Discursive researchers -Sfard herself as well as Bakhtinposit that thoughtful imitation can be a transitory phase in transforming ritual into exploration (where imitation is meant as a nontrivial process that involves evaluation, assimilation, reworking and re-accentuation). Indeed, in the students' work on the Digoxin task, we have shown signs of such "thoughtful imitation".

Deritualization results in consolidated discourse, namely a 'well-developed network of interlacing, partially overlapping routines ' (p. 254). In this trajectory of growth there are at least two 'basic conditions for effective mediation': the principle of the continuity of discourse ('introducing a new discourse by transforming an existing one', p. 254); and, the principle of commognitive conflict ('the situation in which different discursants are acting according to different metarules' (p. 256)a potential source of discourse change, and thus of learning). In this paper, we sample evidence mostly of the former principle. Our scrutiny of the entire dataset is now gearing towards the identification of evidence of the latter. Further, we anticipate that rolling out more MM activities to a new cohort of Y1 Biology students will lend corroborative power to the conjectures we explore here. It may also provide an opportunity for a more extended testing out of using the commognitive framework towards analyses that inform pedagogical practice.
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  What is your value?" For the third and final subtask, the students were asked to use the new model, with 2 k =0.00082, to compute values and compare them with the actual data ("Compute twelve values of n p using the formula and starting with the initial value Digoxin was the first task of session 3 and also concerned the modelling of change, in this case the decay in the body of Digoxin, a drug used in the treatment of heart disease: (a) For an initial dosage of 0.5mg in the bloodstream, the table shows the amount of digoxin n a remaining in the bloodstream of a particular patient after n days, together with the change the graph. Suggest a simple model based on a difference equation of the form
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