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In this report we analyze one student’s meta-representational competence as he engages in solving a 

quantum mechanics problem involving the linear algebra concepts of basis, eigenvectors, and 

eigenvalues. We provide detail on student A25, who serves as a paradigmatic example of a student’s 

power and flexibility in thinking in and using different notation systems. This case study, which lays 

the groundwork for future analysis, provides evidence that meta-representational competence (MRC) 

is beneficial to a student’s ability to make sense of and use concepts from linear algebra while solving 

quantum mechanics problems. 
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Introduction 

The National Research Council’s (2012) report, which charges the United States to improve its 

undergraduate Science, Technology, Engineering, and Mathematics (STEM) education, specifically 

recommends “interdisciplinary studies of cross-cutting concepts and cognitive processes” (p. 3) in 

undergraduate STEM courses. It further states that “gaps remain in the understanding of student 

learning in upper division courses” (p. 199), and that interdisciplinary studies “could help to increase 

the coherence of students’ learning experience across disciplines … and could facilitate an 

understanding of how to promote the transfer of knowledge from one setting to another” (p. 202). 

Our work contributes towards this need by investigating student understanding of linear algebra in 

quantum mechanics. Two research questions that guide us in this paper are: what are the various ways 

in which students reason about and symbolize concepts related to eigentheory in quantum physics, 

and in what ways might meta-representational competence impact how they make sense of linear 

algebra concepts in quantum mechanics? 

In this paper, we focus on one student’s reflection on symbolizing choices he makes while solving a 

quantum mechanics problem that involves linear algebra. In particular, we analyze his reasons for 

how and why he chooses a specific symbol system – either Dirac notation or matrix notation – for 

solving an expectation value problem. We align our analysis with the frameworks of meta-

representational competence (diSessa, Hammer, Sherin, & Kolpakowski, 1991) and of structural 

features of algebraic quantum notations (Gire & Price, 2015). This case study, which lays the 

groundwork for future analysis, explores in what ways MRC might aid a student’s ability to make 

sense of and use concepts from linear algebra while solving quantum mechanics problems. 

Background and theoretical framework 

In this section, we give an overview of research conducted on student understanding of symbols and 

representations in mathematics and physics, as well as our theoretical orientation. We conclude with 

a brief introduction to eigentheory in Quantum Mechanics and Dirac notation. 



Student understanding of symbols and representations 

The recognition of the importance of students’ understanding of symbols used in mathematics and 

physics has grown over the past few decades. Arcavi (1994, 2005) coined this as “symbol sense,” 

which includes aspects such as being “friendly” with symbols, engineering symbolic expressions, 

choosing which aspects of a mathematical situation to symbolize, using symbolic manipulations 

flexibly, and sensing the different roles symbols can play in various contexts. Other research along 

this vein include: an explication of how different perspectives, such as cognitivist, situationist, and 

social-psychological, provide vastly different ways to understand how students make sense of and 

use inscriptions and symbols (Kaput, 1998); a study of how students mathematize their language from 

a Vygotskian perspective (Van Oers, 2002); and an exploration of how notational systems can serve 

as a mediational tool which triggers and sustains mathematical activity (Meira, 2002). 

Research into students’ competence with symbols and representations is not limited to primary and 

secondary school studies. For example, Hillel (2000) described three modes of description (abstract, 

algebraic, and geometric) of the basic objects and operations in linear algebra and pointed out that 

“the ability to understand how vectors and transformation in one mode are differently represented, 

either within the same mode, or across modes is essential in coping with linear algebra” (p. 199). 

Thomas and Stewart (2011) found that students struggle to coordinate the two mathematical processes 

captured in 𝐴𝒙 = 𝜆𝒙, where 𝐴 is an n x n matrix, 𝒙 is a vector in ℝ𝑛, and 𝜆 is a scalar, to make sense 

of equality as “yielding the same result.” This interpretation of the “equals” symbol is often novel 

and nontrivial for students (Harel, 2000). Harel also posits that the interpretation of “solution” in this 

setting, the set of all vectors 𝒙 that make the equation true, entails a new level of complexity than 

does solving equations such as 𝑐𝑥 = 𝑑, with each taking values from the reals. Thomas and Stewart 

(2011) conjecture that this complexity may prevent students from progressing symbolically from 

𝐴𝒙 = 𝜆𝒙 to (𝐴 − 𝜆𝐼)𝒙 = 𝟎, which is particularly useful when solving for the eigenvalues and 

eigenvectors of a matrix 𝐴. 

Research into students’ understanding of quantum mechanics also investigates student use of 

symbols, such as how students make sense of and use a novel notation, called Dirac notation 

(explained in the subsequent section). Most closely related with this current study, Gire and Price 

(2015) looked at structural features of three different notation systems used in quantum mechanics 

(Dirac, matrix, and wave function) and how students’ reasoning interacts with these features. The 

features identified by the authors are: (a) individuation, or “the degree to which important features 

are represented as separate and elemental” (p. 5); (b) externalization, or “the degree to which elements 

and features are externalized with markings included in the representation” (p. 7); (c) compactness; 

and (d) symbolic support for computation. Using problem-solving interviews with students as insight 

into these features, Gire and Price found that students readily used Dirac notation, and that the 

structural features vary across the different notations and among contexts. 

Relatedly, diSessa et al. (1991) importantly discovered that students have a great deal of knowledge 

about what good representations are and are able to critique and refine them, which the authors 

defined as Meta-Representational Competence (MRC). diSessa and Sherin (2000) explained that 

MRC includes inventing and designing new representations, judging and comparing the quality of 

representations, understanding the general and specific functions of representations, and quickly 

learning to use and understand new representations. Furthermore, diSessa (2002, 2004) offered a 



variety of critical resources students possess as part of their MRC for judging the strength of 

representations, such as compactness, parsimony, and conventionality. Two particular resources 

encompassed by MRC that we focus on in our data are “critique and compare the adequacy of 

representations and judge their suitability for various tasks,” and “understand the purposes of 

representations generally and in particular contexts and understand how representations do the work 

they do for us (diSessa, 2004, p. 94).  

In this study, we align ourselves with the theory that representations are a sense-making tool, in that 

“the construction of representations on paper during problem solving mediates and organizes one's 

understanding of mathematical concepts” (Meira, 2002, p. 101). We couple this with a framing of 

MRC, specific to two particular notational systems, to investigate a student’s reflection on his own 

notational preferences in quantum mechanics and what that may reveal about his understanding of 

change of basis and eigentheory in that context.  

Brief introduction to eigentheory and Dirac notation in quantum mechanics 

In quantum mechanics, certain physical systems are modeled and made sense of using eigentheory. 

To a physical system we associate a Hilbert space (such as ℂ2), to every possible state of the physical 

system we associate a vector in the Hilbert space, and to every possible observable (i.e., measurable 

physical quantity) we associate a Hermitian operator (usually given in its matrix form). The only 

possible result of a measurement is an eigenvalue of the operator, and after the measurement the 

system will be found in the corresponding eigenstate.  

Dirac notation, also known as bra-ket or just ket notation, is a commonly used notational system in 

quantum mechanics. A vector representing a possible state is symbolized with a ket, such as |𝜓⟩. 

Mathematically, kets behave like column vectors, such as |𝜓⟩ ≐ [
𝑎1

𝑎2
], 𝑎1, 𝑎2 ∈ ℂ, and are usually 

normalized. The complex conjugate transpose of a ket is called a bra, which behaves mathematically 

like a row vector, such as ⟨𝜓| ≐ [𝑎1
∗ 𝑎2

∗]. In addition, the eigenvalue equations for observables are 

central to many calculations. For example, the eigenvalue equations for 𝑆𝑥 (the operator measuring 

the 𝑥-component of intrinsic angular momentum) of a spin-½ particle are 𝑆𝑥|±⟩𝑥 = ±
ℏ

2
|±⟩𝑥, where 

|+⟩𝑥 and |–⟩𝑥 form an orthonormal eigenbasis of 𝑆𝑥, and ±
ℏ

2
 are the two possible measurement results 

of the observable. When symbolized in terms of this eigenbasis, the matrix representation of 𝑆𝑥 is 

[
ℏ 2⁄ 0

0 − ℏ 2⁄
]. One can also measure spin along other directions, such as 𝑧; similarly, the eigenvalue 

equations are 𝑆𝑧|±⟩ = ±
ℏ

2
|±⟩ (it is common for no subscript to be used for the 𝑧-direction). Thus, 

“within its own basis,” the matrix representation of 𝑆𝑧 would be identical to the aforementioned 

diagonal one for 𝑆𝑥. It is often beneficial to change between bases; for example, |+⟩𝑥 = 1

√2
|+⟩ + 1

√2
|−⟩ 

and |−⟩𝑥 = 1

√2
|+⟩ − 1

√2
|−⟩, so 𝑆𝑥 in the “𝑧-basis” is [

0 ℏ 2⁄

ℏ 2⁄ 0
]. Finally, inner products are involved 

in computing the expectation value of observable 𝐴 for state psi, ⟨𝜓|𝐴|𝜓⟩. These calculations require 

the bra and ket expansion to be in the same eigenbasis as the matrix representation of 𝐴.  As such, 

expectation value problems present a rich setting for investigating students’ symbolizing of 

eigentheory and change of basis in a physics context. 



Methods 

Participants for this study were third year undergraduate physics majors at a large, public, research-

intensive university in the Pacific Northwestern United States. They were drawn on a volunteer basis 

from a class of 35 students in a Spin and Quantum Measurements course; this course met for 7 class-

hours per week for three weeks and involved many student-centered activities and discussions. The 

data for this report come from individual, semi-structured interviews (Bernard, 1988) conducted with 

8 students at the end of the course. The goals of the interview questions were to learn how students 

reasoned about linear algebra concepts (e.g., normalization, basis, and especially eigentheory), how 

they reasoned with these concepts as they discussed quantum mechanics concepts and solved 

quantum mechanics problems, and how they symbolized their work.  

To begin our analysis, we viewed the video and observed how students navigated the interview 

problems, while we kept in mind the overarching research questions regarding students’ reasoning 

about and symbolizing eigentheory in quantum physics. We noticed some students were particularly 

fluent in how they talked about and worked with both matrix and Dirac notations. This compelled us 

to investigate the literature about student use of symbols and notations, the most relevant of which 

were discussed above. Our analysis draws most heavily on the work of diSessa and colleagues 

regarding MRC, and that of Gire and Price (2015) regarding structural features of algebraic quantum 

notations. In particular, we coded for instances of students mentioning structural features of the 

mathematics or students making explicit meta-commentary on the representations they chose to use. 

This allowed us to integrate our analysis of students’ MRC with Gire and Price’s types of structural 

features in a way novel to the physics and mathematics education fields.  

In this report, we focus on one student: A25, a double major in physics and nuclear engineering who 

had completed two 10-week courses in linear algebra. The reason we chose to focus on participant 

A25 was his demonstrated ability to articulate his thinking. During the interview, he exhibited 

flexibility in reasoning about the concepts we were probing, and through his explanation a great deal 

of MRC seemed visible and analyzable. 

Results 

In the beginning of the interview, student A25 volunteered that he sometimes explicitly chooses 

between doing calculations in matrix notation or in Dirac notation:  

I:  So how do you feel like, using eigenvectors and eigenvalues, in spins has been 

similar to and different from how you've experienced those in other classes? 

A25:  Uh, well, it's very similar because you're doing a lot of the same math …the 

difference especially in physics, you're looking at kets. In, in at first I was kind of 

jarring, like to- to try to do the math in kets. But now, it's kinda- it's kinda easier, 

there's problems, there certain problems…where there's two ways to do them, 

they're kind of parallel, you can do it and you can expand the- the state in- in like 

as a- and expand them as kets in a different basis, or you can write that state as a- 

as a, as a vector, in that basis, and you can either do the matrix math for the like 

expectation values for example, you can do the matrix math or you can do the ket 

math, and sometimes it's, I'm finding that I, rather expand something in the ket. 



From the transcript we see that A25 was aware multiple legitimate ways exist to solve the problem, 

seemingly understanding the various mathematical nuances and implications of his notational 

choices. His brief explanation highlights sentiments that are consistent with Arcavi’s characteristics 

of symbol sense, such as being “friendly” with symbols and using them flexibly. Also, A25’s self-

reflection on his symbol usage adds a metacognitive aspect to the symbol sense characterization. 

Because A25 volunteered expectation value problems as a situation in which he could use either 

notation, the interviewer had him work on such a problem right away, even though it was prepared 

to be at the end of the interview: “Consider the state |𝜓⟩ = −
4

5
|+⟩𝑥 + 𝑖

3

5
|−⟩𝑥 in a spin-1/2 system. 

Calculate the expectation value for the measurement of 𝑆𝑥.” A25 immediately worked on the problem 

using Dirac notation, saying, “basically to find the expectation value… it's like denoted that way 

[writes 〈𝐴〉] but really what you're doing is you're taking the, the bra of the state, and then you're 

putting the operator [writes = ⟨𝜓|𝐴|𝜓⟩] in the middle of the inner product.” He continued to explain 

his work as he proceeded, with statements such as “you know that 𝑆𝑥 is just going to um, like apply 

it's eigenvalues to these, so, so like the eigenvalue corresponding to plus 𝑥 is going to be + ℏ 2⁄  and 

the, the eigenvalue corresponding to −𝑥 is going to be − ℏ 2⁄ , so you end up with this equation that 

looks like this [points to the second half of line 2 in Figure 1a]. Note that his work in Figure 1a, which 

led him to the correct answer of 7ℏ 50⁄ , involved the state’s expansion and use of eigenvector 

equations for 𝑆𝑥 in ket notation. He did not need to physically write the expansion of |𝜓⟩ in the 𝑥 

basis kets, nor did he write out the eigenvector equations; however, his verbal description of his 

process relied on his understanding of both basis and the eigenvector relationships at play. 

Furthermore, this notation was novel to the students during this course; as such, A25 was clearly 

quick to use and understand this representation (a quality of MRC, diSessa & Sherin, 2000).  

After discussing his work and solution, the interviewer asked: “Before you were telling about bra-ket 

versus matrix notation, you brought up an expectation value as an example of like, either or both, so 

can you, now that you had this problem, kinda revisit that?” A25 immediately solved the problem 

completely within matrix notation. He began by saying “if we’re strictly in the plus and minus 𝑥 

basis” and wrote the column vector [
−

4

5

𝑖
3
5

] associated with the given ket |𝜓⟩. He then said, “and then the 

bra would be, um, minus 4 over 5 and then minus i 3 over 5,” writing out the row vector [−
4

5
−𝑖

3

5
] 

as he spoke (see Line 1 in Figure 1b). He then said, “and so what you do is take this [copies the 

column vector]…and then you have the operator in the middle [writes an empty 2x2 matrix], and then 

you have the bra here [copies the row vector], and the operator in this case is 𝑆𝑥 and we’re in the 𝑥 

basis so it’s just ℏ 2⁄  and -ℏ 2⁄ , 0, 0” [fills in the 2x2 matrix values] (see line 2 in Figure 1b). 

Impressively, he was able to fluidly move from his original ket notation to matrix notation, flawlessly 

making translations from the bras, kets, and operators in ket notation to row vectors, column vectors, 

and matrices in the matrix notation, further evidence of his strong MRC. Next, he explained his 

process for computing the matrix times the column vector before he did the computation, noting that 

“you’re gonna get a vector.” Again in line 3 he explained “then I do it again, so, um, this time you're 

gonna get a number out,” meaning he anticipated that a row vector times a column vector would be 

a number. This shows two aspects of A25’s strong understanding: first, a fluency in the calculations 

and computations within matrix notation similar to his ease in working in ket notation, including the 

ability to anticipate results before actually carrying out a computation (as in anticipating the result of 



a matrix times a vector); and second, an ability to compare the two notations as well as an 

understanding that the two notations represent two ways to conceptualize the quantum physical 

calculation of expectation value. We see this as flexibly using symbolic manipulations (Arcavi, 1995) 

and an anticipation of results.  

 
(a) 

 
(b) 

Figure 1: A25’s expectation value problem, in ket notation (a) and matrix notation (b) 

The interviewer then asked A25 to reflect on any preference between the two notations:  

A25:  Uh...To be honest, I don't really, I don't really know why I prefer this [Figure 1a], I 

think it's just because, um, I like this notation. This specific notation [Figure 1a line 

1] like this to me is like a cleaner way of writing that [Figure 1b line 2] because 

that- I mean this and that [touches Figure 1a line 1 and Figure 1b line 2 

simultaneously] I feel like are your starting points, so you, you start here with this 

nice, like, looking thing [traces one finger under ⟨𝜓|𝐴|𝜓⟩], or you start here with 

this big array of numbers [puts two open hands around Figure 1b line 2], and I prefer 

this [Figure 1a line 1], even though you have to expand this into basically the same 

amount of information [Figure 1a line 2]. And also, the nice thing about, about this 

[Figure 1a line 1], is it—actually this is really why it's better—is because you can, 

you can say ok 𝑆𝑥 works- acts directly on these kets, you can just get rid of the 

matrix altogether... 

We see his use of “nice looking thing” and “big array of numbers” in comparison to one another are 

an example of compactness. He also compares Figure 1a line 1 and Figure 1b line 3 regarding the 

“amount” of information they convey, which involves reflection on the physical and mathematical 

content expressed in the compared notations. Finally, acting directly on the expansion in terms of the 

eigenstates of the operator allow him to forego the matrix calculation entirely, which speaks to A25’s 

view of compactness, parsimony, and symbolic support for ket notation for this problem.  

When asked about his notation preferences if the basis expansion of a given state vector and the 

operator “didn’t match,” A25 recalled a problem from his last homework that was “actually easier…to 

do the matrix multiplication,” stating “you don't want to have to change these kets into different bases 

all over the place 'cause they're already all written in the same basis and you know what the operator 

is in that basis so you might as well just, do the matrix multiplication.” Here we see how strong A25’s 

understanding is of the important linear algebra concepts of bases and change of bases, and how they 

relate to the matrix multiplication within expectation value quantum mechanics problems. 



Furthermore, we see another aspect of his MRC, namely his understanding that different notations 

have different strengths and weaknesses, and his ability to leverage these strengths and weaknesses 

depending upon the particular quantum mechanics situation. This speaks to his awareness of symbolic 

support as well as using symbols flexibly. Finally, when asked if the concepts of basis or 

eigenvectors/eigenvalues come up more in one notation than the other, A25 stated, “certainly…every 

time you write down a ket you're, you're very conscious of what basis you're in. In this one [points to 

Figure 1b] it's just kinda implied…all this [is] in the same basis, so you're just, you're just writing out 

numbers, an arrays of numbers, but here [in Figure 1a] you're thinking ok, this is the 𝑆𝑥 operator, this 

is the 𝑥 plus ket, this is the 𝑥 minus bra…so I think that you're definitely more aware of what basis 

you're in when you're using this, because you have to be.” This explanation is consistent with 

externalization (Gire & Price, 2015), in that the ket notation allows features of the problem, namely 

basis, to be externalized in a way that matrix notation did not provide for A25. This again attests to 

his understanding that notations have different strengths and weaknesses, an element of MRC that 

seems particularly important within quantum mechanics. 

Conclusion 

In this report we analyzed one student’s MRC and his understanding of change of basis and 

eigentheory as he solved an expectation value problem in quantum mechanics. This case study lays 

the groundwork for future analysis by being a paradigmatic example of a student’s power and 

flexibility for thinking in and using different notation systems. In addition, it provides evidence that 

MRC seemed to positively impact this student’s ability to make sense of and use concepts from linear 

algebra while solving quantum mechanics problems. In addition to analyzing the other students from 

our data set, future research includes investigating how classroom interactions may have influenced 

students regarding their notational choices, what aspects of MRC seem most important to success in 

using linear algebra when solving quantum mechanics problems, and what that implies regarding 

students’ understanding of the mathematics and physics content involved.  
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