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Minimal time of null controllability of two
parabolic equations

Lydia Ouaili∗

Abstract
We consider a one-dimensional 2 × 2 parabolic equations, simultane-

ously controllable by a localized function in their source term. We also
consider a simultaneous boundary control. In each case, we prove the ex-
istence of minimal time T0(q) of null controllability, that is to say, the
corresponding problem is null controllable at any time T > T0(q) and not
null controllable for T < T0(q).We also prove that one can expect any
minimal time associated to the boundary control problem.

1 Introduction
Let us fix T > 0 and ω = (a, b) ⊂ (0, 1), and consider the parabolic systems:

∂ty −∆y + q(·)Hy = 1ωB̃ u in QT := (0, T )× (0, 1),

y(·, 0) = 0, y(·, 1) = 0 on (0, T ),

y(0, ·) = y0 in (0, 1),

(1)

and 
∂ty −∆y + q(·)Hy = 0 in QT ,

y(·, 0) = B̃ v, y(·, 1) = 0 on (0, T ),

y(0, ·) = y0 in (0, 1),

(2)

In systems (1) and (2), q ∈ L2(0, 1) is a given function, H is a real matrix,
B̃ ∈ R2 is a given vector, 1ω denotes the characteristic function of ω, y0 ∈
L2(0, 1;R2) is the initial datum for system (1) and y0 ∈ H−1(0, 1;R2) for system
(2), u ∈ L2(QT ) and v ∈ L2(0, T ) are the control forces.

It is well known that the system (1) (resp., the system (2)) is well-posed for
any T > 0 (resp., admits a unique solution by transposition) (see [18]), i.e., for
any (y0, u) ∈ L2(0, 1;R2) × L2(QT ) (resp., (y0, v) ∈ H−1(0, 1;R2) × L2(0, T ))
there exists a unique solution

y ∈ L2(0, T ;H1
0 (0, 1;R2)) ∩ C0([0, T ];L2(0, 1;R2))

(resp., y ∈ L2(QT ;R2) ∩ C0([0, T ];H−1(0, 1;R2))).

Note that the rank of the control operator B̃ is one and we are interested
in studying the approximate controllability and null controllability for systems
(1) and (2).
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France. E-mail: lydia.ouaili@etu.univ-amu.fr
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1. We say that system (1) (resp., system (2)) is approximately control-
lable in L2(0, 1;R2) (resp., H−1(0, 1;R2)) at time T if for every y0, yd ∈
L2(0, 1;R2) (resp., y0, yd ∈ H−1(0, 1;R2)) and ε > 0, there exists u ∈
L2(QT ) (resp., v ∈ L2(0, T )) such that the solution y to system (1) (resp.,
system (2)) satisfies

‖y(T, ·)− yd‖L2(0,1;R2) ≤ ε (resp., ‖y(T, ·)− yd‖H−1(0,1;R2) ≤ ε.)

2. We say that system (1) (resp., system (2)) is null controllable at time
T if for every y0 ∈ L2(0, 1;R2)) (resp., y0 ∈ H−1(0, 1;R2), ) there exists
u ∈ L2(QT ) (resp., v ∈ L2(0, T )) such that

y(T, ·) = 0 in L2(0, 1;R2) (resp., y(T, ·) = 0 in H−1(0, 1;R2)).

Systems (1) and (2) are a particular class of general n× n parabolic systems ∂ty −D∆y +A(t, x)y = 1ωB̃ u in QT := (0, T )× Ω,

y = C̃u1Γ0
on (0, T )× ∂Ω,

y(0, ·) = y0 in Ω,

(3)

where ω and Γ0 are respectively open subsets of a smooth bounded domain
Ω ⊂ RN , N ≥ 1, and of its boundary ∂Ω, D = diag(d1, ..., dn) ∈ L(Rn), with
n ≥ 1, A(t, x) = (ai,j(t, x))1≤i,j≤n ∈ L∞(QT )n

2

is the coupling matrix and
B̃, C̃ ∈ L(Rm;Rn), with m ≤ n, are the control matrices.

Concerning the scalar case (n = 1), H.O. Fattorini and D.L. Russell prove in
[9] and [10] the null controllability in the one-dimentional case (N = 1), using
the moment method. The N -dimentional case has been established simultane-
ously by G. Lebeau and L. Robbiano in [15] and by A. Fursikov and O. Yu.
Imanuvilov in [12] using Carleman inequalities. The case where A is a constant
matrix, has been considered in [2], where the authors prove a necessary and suf-
ficient condition for the approximate and null controllability. In [13], a cascade
structure of the matrix A(t, x) has been considered and the null controllability
for n× n systems has been established by Carleman inequalities, under the fol-
lowing assumptions on the coupling terms: there exists a nonempty open set
ω0 ⊆ ω and a positive constant c0 such that

ai,i−1 > c0 > 0 in (0, T )×ω0 or −ai,i−1 > c0 > 0 in (0, T )×ω0, ∀i ∈ {2, ..., n}.
(4)

This condition implies in particular that Supp ai,i−1 ∩ ω 6= ∅ for all 2 ≤ i ≤ n.
The null controllability in the general case Supp ai,i−1 ∩ω = ∅ remains an open
problem. One of the recent steps in this direction has been established for two
parabolic equations (n = 2) in [5], where the authors analyze the distributed
and boundary controllability of system (3) under the following assumption on
the structure:

D := Id, A(x) :=

(
0 q(x)
0 0

)
, C̃ := B̃ :=

(
0
1

)
and Ω := (0, 1).

Under the assumptions

Supp q ∩ ω = ∅,
∣∣∣∣∫ 1

0

q(x)| sin(kπx)|2 dx
∣∣∣∣+

∣∣∣∣∫ a

0

q(x)| sin(kπx)|2 dx
∣∣∣∣ 6= 0,
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for distributed control (C̃ = 0 in (3)) and assumption∫ 1

0

q(x)| sin(kπx)|2 dx 6= 0, ∀k ≥ 1,

for boundary control (B̃ = 0 in (3)), they prove the existence of a minimal time
T0(q) ∈ [0,∞] for the distributed controllability problem (resp., T1(q) ∈ [0,+∞]

for the boundary controllability problem), i.e., system (3) with C̃ = 0 (resp.,
with B̃ = 0) is null controllable if T > T0(q) (resp., if T > T1(q)), and not null
controllable if T < T0(q) (resp., T < T1(q)). Moreover, for every τ0 ∈ [0,∞], the
authors prove that there exists a function q ∈ L∞(0, 1) and ω ⊂ (0, 1) satisfying
Supp q ∩ ω = ∅ in the case of distributed controls, such that T0(q) = τ0 or
T1(q) = τ0.

To our knowledge, there are few results on boundary control systems (B̃ =
0 in (3)). Most of them concern the one-dimensional case (N = 1). In [11], the
authors consider the case where D = Id and A is a constant matrix and prove
a necessary and sufficient condition for the boundary controllability using the
moment method. The case D 6= Id and n = 2 has been considered in [4] with

D := diag(1, d), d > 0 and d 6= 1, A :=

(
0 1
0 0

)
, C̃ :=

(
0
1

)
and Ω := (0, 1).

The authors prove the existence of a minimal time of null controllability, given
by the index of condensation (see Definition 2.1 below) of the sequence of eigen-
values Λ = {k2π2, d kπ2}k≥0 of the system.

Systems (1) and (2) are particular cases of system (3) with N = 1, n =
2, m = 1,

D := Id, A(t, x) := H q(x), with H ∈ L(R2) and Ω = (0, 1).

In this paper we consider the case when H is a diagonalizable matrix with two
distinct real eigenvalues µ1, µ2 ∈ R. System (1) and (2) have been studied in [5]
when the matrix H has λ = 0 as a unique eigenvalue. The approach followed
in this paper is close to that developed in [5]. However, due to the structure of
the matrix H, new and interesting mathematical difficulties arise.
Remark 1.1. In the case when q(x) = q is constant, it is shown in [2] that system
(1) is null controllable if and only if the Kalman rank condition

det
[
B̃,HB̃

]
6= 0, (5)

holds. For system (2), this condition (5) is necessary for both approximate and
null controllability (see [6, Remark 25]).
In the case when q ∈ L2(0, 1) is a given function, observe that conditions q 6≡ 0
and (5) are necessary for both approximate controllability and null controllabil-
ity for systems (1) and (2).

After an appropriate change of variables, observe that the controllability of
systems (1) and (2) is equivalent to the controllability of the following systems:

∂ty + Ly = 1ωB u in QT := (0, T )× (0, 1),

y(·, 0) = 0, y(·, 1) = 0 on (0, T ),

y(0, ·) = y0 in (0, 1),

(6)
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and 
∂ty + Ly = 0 in QT ,

y(·, 0) = B v(t), y(·, 1) = 0 on (0, T ),

y(0, ·) = y0 in (0, 1),

(7)

where the operator (L,D(L)) and the vector B ∈ R2 are respectively given by:

L :=

(
−∆ + µ1 q 0

0 −∆ + µ2 q

)
, D(L) = H2(0, 1;R2) ∩H1

0 (0, 1;R2), (8)

and B = (b1, b2)T 6= (0, 0), with b1, b2 a real coefficients.
Remark 1.2. Note that in this case, the Kalman rank condition (5) and condition
q 6≡ 0 read as

q 6≡ 0 and b1b2(µ1 − µ2) 6= 0, (9)

for (6) when L is given by (8). Following Remark 1.1, (9) is necessary for the
null controllability of system (1) at time T > 0. In fact, the algebraic Kalman
condition (5) and condition (4), i.e., there exists a nonempty open subset ω0 ⊆ ω
and a positive constant c0 > 0, such that

q(x) > c0 or q(x) < −c0 in ω0,

imply the approximate and null controllability of system (1) at time T > 0. On
the other hand, if Supp q ∩ ω = ∅, the distributed controllability of system (1)
has been studied in [5] when H has a unique eigenvalue, λ = 0, with geometric
multiplicity 1.
We can also deduce that conditions (9) are necessary for the controllability of
(7) when L is given by (8). Again, the controllability of (2) has been studied in
[5] when H has λ = 0 as a unique eigenvalue with geometric multiplicity 1.

The main novelty of this paper is to consider H with different eigenvalues
and

Supp q ⊂ [0, a] or Supp q ⊂ [b, 1], (10)

for system (6). We are going to see that, under assumption (10), it appears a
minimal time T0(q) ∈ [0,+∞].

Let us denote by σ(Li) = {λi,k}k≥1, with i = 1, 2, the set of eigenvalues
corresponding to the operators (Li, D(Li)) for i = 1, 2, defined by

Li = −∂xx + µiq, D(Li) = H2(0, 1) ∩H1
0 (0, 1). (11)

The main result of this paper is the following one:

Theorem 1.1. Let us consider (L,D(L)) given by (8), B ∈ R2 and q ∈ L2(0, 1),
a given function. Let us assume that conditions (9) hold. In addition, let us
suppose that (10) is satisfied for system (6). Then, one has:

1. Systems (6) and (7) are approximately controllable at time T if and only
if

σ(L1) ∩ σ(L2) = ∅. (12)

2. Assume that condition (12) holds and define

T0(q) := lim sup
n→+∞

− ln |λ1,n − λ2,n|
λ1,n

. (13)

Then,
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(a) If T > T0(q) systems (6) and (7) are null controllable at time T .
(b) If T < T0(q) systems (6) and (7) are not null controllable at time T .

Remark 1.3. The controllability result of system (7) has been already proved
in [4, Th 2.5, p. 12] by means of condensation grouping. In fact, we will prove
that T0(q) may take any value of [0,+∞] (see Remark 6). For the sake of
completeness we will provide a proof of the controllability result of system (7).
Remark 1.4. To prove the approximate controllability result, we carry out an
analysis of the properties of the eigenfunctions of (L,D(L)) (see section 2.1) for
system (7) and, under the geometrical condition (10) on the function q ∈ L2(0, 1)
for system (6). We establish a necessary and sufficient condition (12) that
characterizes the approximate controllability property for systems (6) and (7).
Thus, (12) is a necessary condition for the null controllability of these systems
at time T > 0. Observe that this condition does not depend on the final time
T .
Remark 1.5. From the expressions of eigenvalues λ1,k, λ2,k of (L,D(L)) (see
(18)), we can deduce that, under assumption∫ 1

0

q(x) dx 6= 0, (14)

there exists k′ ∈ N∗ such that

λ1,k 6= λ2,l, ∀k, l ≥ k′,

In particular, condition (12) holds (apart from a finite number of Fourier modes)
and we can deduce that T0(q) = 0. As a consequence, under condition (14), we
deduce the existence of a finite-dimensional space X ⊂ L2(0, 1;R2) such that
one has the null controllability of (6) and (7) at any time T > 0 if y0 ∈ X⊥.
Remark 1.6. In the case of boundary controllability, we will see in section 6,
that there exists a function q ∈ L2(0, 1), such that T0(q) > 0. In fact, T0(q)
may take any value in [0,+∞].

This paper is organized as follows: In Section 2, we recall some preliminary
results related to the spectrum of the operator (L,D(L)), some characterizations
of the controllability and a result on the existence of biorthogonal families to real
exponentials. Section 3 is devoted to studying the approximate controllability
of systems (6) and (7). In Section 4, we prove the existence of a time T0(q)
such that systems (6) and (7) are null controllable for any T > T0(q). Finally,
in Section 5, we prove that systems (6) and (7) are not null controllable when
T < T0(q).

2 Preliminary results
In this paper, we denote by 〈·, ·〉H−1,H1

0
the usual duality pairing betweenH−1(0, 1;R2)

and H1
0 (0, 1;R2) and by 〈·, ·〉L2 the scalar product of either L2(0, 1;R2) or

L2(0, 1;R), with norm denoted by ‖ · ‖L2 .
In this section, we give some spectral properties of the operator (L,D(L))

which will be used later. We also recall some controllability properties of systems
(6) and (7) and we finish by recalling a known result on the existence and bounds
of biorthogonal families to real exponentials.
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2.1 Spectral properties
Theorem 2.1. Let q ∈ L2(0, 1), λ ∈ C and consider the following initial value
problem: {

−p′′ + q p = λ p in (0, 1),

p(0) = 0, p′(0) = 1.
(15)

Then, problem (15) admits a unique solution p ∈ H2(0, 1) which is the solution
of the Volterra equation:

p(x) =
sin(
√
λx)√
λ

+

∫ x

0

sin(
√
λ(x− t))√
λ

q(t) p(t) dt, ∀x ∈ (0, 1). (16)

We denote by p(·, λ, q) the solution of (15), corresponding to λ ∈ C and the
function q ∈ L2(0, 1). We now recall some well-known properties concerning the
spectrum of the Sturm-Liouville problem.

Proposition 2.1. The operators (Li, D(Li)), given by (11), with i = 1, 2, are
selfadjoint and admit an increasing sequence of eigenvalues σ(Li) := {λi,k}k≥1 ⊂
R, i = 1, 2, with the following properties:

λi,1 < λi,2 < ... < λi,k < λi,k+1 < ..., with lim
k→+∞

λi,k = +∞, (17)

and

λi,k = π2k2 + µi

∫ 1

0

q(x) dx− µi
∫ 1

0

cos(2kx) q(x) dx+O
(

1

k

)
, (18)

for k → ∞. Furthermore, if ϕi,k is the normalized eigenfunction associated to
λi,k with i=1,2, then, the sequence {ϕi,k}k≥1 is an orthonormal basis of L2(0, 1).
Moreover

ϕi,k(x) =
p(x, λi,k, µiq)

||p(·, λi,k, µiq)||L2

, ∀k ≥ 1, x ∈ (0, 1), with i = 1, 2, (19)

with the following asymptotic behavior:
p(x, λi,k, µiq) =

sin(
√
λi,kx)√
λi,k

+O
(

1
k2

)
,

||p(·, λi,k, µiq)||L2 = 1√
2λi,k

√
1 +O

(
1
k

)
,

(20)

and {
ϕi,k(x) =

√
2 sin(kπx) +O

(
1
k

)
,

ϕ′i,k(x) =
√

2πk cos(kπx) +O(1),
(21)

as k →∞ uniformly for x ∈ [0, 1].

For a proof of the previous results, we refer to ([14, Th 4.4, p.125, Th 4.10,
p.134 and Th 4.11, p.135 ], [16, Th 4, p. 35]).

We deduce that the spectrum of (L,D(L)) is {λ1,k, λ2,k; k ∈ N∗}, and the
corresponding eigenfunctions are given by:

φ1,k =

(
ϕ1,k

0

)
and φ2,k =

(
0
ϕ2,k

)
, ∀k ≥ 1. (22)

Moreover the sequence {φ1,k, φ2,k, k ∈ N∗} is an orthonormal basis of L2(0, 1;R2).
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2.2 Controllability properties
Let us introduce the adjoint problem associated to systems (6) and (7):

−∂tψ + Lψ = 0 in QT ,
ψ(·, 1) = 0, ψ(·, 0) = 0 on (0, T ),

ψ(T, ·) = ψ0 in (0, 1),

(23)

where ψ0 ∈ L2(0, 1;R2) or ψ0 ∈ H1
0 (0, 1,R2) is a given initial datum. Let us

first see that system (23) is well posed, in the following sense:

Proposition 2.2. For all ψ0 ∈ L2(0, 1;R2) system (23) admits a unique solu-
tion ψ ∈ L2(0, T ;H1

0 (0, 1,R2)) ∩ C0([0, T ];L2(0, 1;R2)), given by

ψ(t, ·) =
∑
k≥1

e−λ1,k(T−t)〈ψ0, φ1,k〉L2φ1,k + e−λ2,k(T−t)〈ψ0, φ2,k〉L2φ2,k.

Moreover, if ψ0 ∈ H1
0 (0, 1;R2), then the solution satisfies

ψ ∈ L2(0, T ;H2(0, 1;R2) ∩H1
0 (0, 1;R2)) ∩ C0([0, T ];H1

0 (0, 1;R2)).

The next proposition, provides a general characterizations of the controlla-
bility properties related to systems (6) and (7).

Proposition 2.3. 1. System (6) is approximately controllable at time T > 0
if and only if, the following unique continuation property holds:
“If ψ is the solution of the adjoint problem (23) associated to ψ0 ∈
L2(0, 1;R2) and

B∗ψ = 0 in (0, T )× ω, then, one has ψ0 ≡ 0 in (0, 1).” (24)

2. System (6) is null controllable at time T > 0, if and only if there exists
C > 0 such that the observability inequality

||ψ(0, ·)||2L2 ≤ C
∫∫

(0,T )×ω
|B∗ψ(t, x)|2 dx dt (25)

holds for every ψ0 ∈ L2(0, 1;R2), where ψ is the corresponding solution of
(23).

3. System (7) is approximately controllable at time T > 0, if and only if, the
following unique continuation property holds:
“If ψ is the solution of the adjoint problem (23) associated to ψ0 ∈
H1

0 (0, 1;R2)and

B∗ ∂xψ(t, 0) = 0 on (0, T ), then, one has ψ0 ≡ 0 in (0, 1).” (26)

4. System (7) is null controllable at time T > 0, if and only if, there exists
C > 0 C such that the observability inequality

||ψ(0, ·)||2H1
0 (0,1;R2) ≤ C

∫ T

0

|B∗∂xψ(t, 0)|2 dt (27)

holds for every ψ0 ∈ H1
0 (0, 1;R2), where ψ is the associated solution of

(23).

For a proof of the previous results see for instance [8], [18] or [19].
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2.3 Biorthogonal family and condensation index
In this subsection, we study the existence of a biorthogonal family to the real
exponentials in L2(0, T ).
Let us consider a sequence Λ = {λk}k≥1 ⊂ R∗+ satisying

λk < λk+1, ∀k ≥ 1,∑
k≥1

1

λk
< +∞. . (28)

Definition 2.1. The index of condensation of the sequence Λ = {λk}k≥1 is
defined by:

c(Λ) = lim sup
k→+∞

1

λk
ln

1

|C ′(λk)|
∈ [0,+∞], (29)

where

C(λ) :=
∏
k≥1

(
1− λ2

λ2
k

)
(30)

is called the interpolation function.

This definition was introduced by V. Bernstein in [7] to study the overcon-
vergence of Dirichlet series (see [7] and [17]).

Proposition 2.4. Let us consider a sequence Λ = {λk}k≥1 ∈ R∗+ satisfying
(28). Then, there exists a biorthogonal family {qk}k≥1 in L2(0, T ) to {e−λkt}k≥1,
i.e., ∫ T

0

qk(t) e−λjt dt = δk,j , ∀k, j ∈ N.

Moreover, for any ε > 0, there exists a constant Cε > 0 such that

‖qk‖L2 ≤ Cε e(c(Λ)+ε)λk , ∀k ≥ 1 (31)

where c(Λ) is given by (29) .

For a proof of this result, we refer to [4].

3 Approximate controllability
This section is devoted to the proof of the first item of Theorem 1.1. To study
the approximate controllability of systems (6) and (7), we use the properties of
the spectrum of the operator (L,D(L)) (see (8)) given by Proposition 2.1.

3.1 Approximate controllability for system (6)
We recall that ϕi,k is given by (19) with p(·, λi,k, µiq) given by (see (15) and
(16))

p(x, λi,k, µiq) =
sin(

√
λi,kx)√
λi,k

+ µi

∫ x

0

sin(
√
λi,k(x− s))√
λi,k

q(s) p(s) ds,

8



for any x ∈ (0, 1), k ≥ 1 and i = 1, 2. In particular

−p′′(·, λi,k, µiq) + µi q(·) p(·, λi,k, µiq) = λi,k p(·, λi,k, µiq) in (0, 1),

and p(1, λi,k, µiq) = p(0, λi,k, µiq) = 0. Using an integration by parts in∫ 1

0

sin
√
λi,k(x− s)√
λi,k

(−p′′(s)+µiq(s) p(s)) ds = λi,k

∫ 1

0

sin
√
λi,k(x− s)√
λi,k

p(s) ds,

one gets

µi

∫ 1

0

sin
√
λi,k(x− s)√
λi,k

q(s) p(s) ds = −
sin(

√
λi,kx)√
λi,k

+ p′i,k(1)
sin(

√
λi,k(x− 1))√
λi,k

,

where p′i,k(1) = p′(1, λi,k, µiq). Then we can write for all x ∈ (0, 1) and k ∈ N∗
that

p(x, λi,k, µiq) = p′i,k(1)
sin(

√
λi,k(x− 1))√
λi,k

+µi

∫ x

1

sin(
√
λi,k(x− s))√
λi,k

q(s)p(s) ds.

Using (19), we deduce that if Supp q ⊂ (0, a) then the eigenfunctions of (Li, D(Li)),
with i=1,2, satisfy

ϕi,k(x) =
p′i,k(1) sin(

√
λi,k(x− 1))√

λi,k||p(·, λi,k, µiq)||L2

= ϕ′i,k(1)
sin(

√
λi,k(x− 1))√
λi,k

, ∀x ∈ ω, (32)

and if Supp q ⊂ (b, 1) then

ϕi,k(x) =
sin(

√
λi,k x)√

λi,k||p(·, λi,k, µiq)||L2

, ∀x ∈ ω. (33)

In this subsection, we assume that Supp q ⊂ (b, 1), the case Supp q ⊂ (0, a) can
be treated in the same way.

Necessary condition Let us fix T > 0 and assume that condition (12) does
not hold, i.e., there exist k0, j0 ∈ N such that λ1,k0

= λ2,j0 = λ. Thus

ϕ1,k0
(x) = αj0,k0

ϕ2,j0(x), ∀x ∈ ω, with αj0,k0
=
||p(·, λ2,j0 , µ1q)||L2

||p(·, λ1,k0
, µ2q)||L2

.

Let us consider
ψ0 := b2φ1,k0 − αj0,k0 b1φ2,j0 ,

with {φi,k}k≥1, i = 1, 2, given by (22). Then, the associated solution of
the adjoint problem (23) is given by

ψ(t, x) = eλ(T−t)b2 φ1,ko(x)−eλ(T−t)b1 αj0,k0
φ2,j0(x), ∀(t, x) ∈ (0, T )×ω.

In particular, if (t, x) ∈ (0, T )× ω, this function satisfies

B∗ψ(t, x) = e−λ(T−t)(b1 b2 ϕ1,k0(x)− b1 b2 αj0,k0ϕ2,j0(x)) = 0,

but ψ0 6= 0. We deduce by Proposition 2.3 that the system (6) is not
approximately controllable at time T > 0.
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Sufficient condition Let us now assume that (12) holds and consider ψ0 ∈
L2(0, 1;R2), such that the corresponding solution to the adjoint problem
(23) satisfies

B∗ψ(t, x) = 0, in (0, T )× ω.

Using Proposition 2.2, ψ ∈ L2(0, T,H1
0 (0, 1,R2)) ∩ C0([0, T ];L2(0, 1,R2))

and ∑
k≥1

(
b1e
−λ1,k(T−t)〈ψ0, φ1,k〉L2ϕ1,k

+b2e
−λ2,k(T−t)〈ψ0, φ2,k〉L2 ϕ2,k

)
= 0 in (0, T )× ω.

Without loss of generality, let us assume that λi,k > 0, for all k ≥ 1 and
i = 1, 2. Under the assumption (12), the sequence Λ = {λ1,k, λ2,k}k≥1 can
be ordered increasingly and then satisfies condition (28). Using Proposition
2.4, there exists a family {q1,k(t), q2,k(t)}k≥1 biorthogonal to {e−λ1,kt, e−λ2,kt}k≥1

in L2(0, 1).

Therefore, for all x ∈ ω = (a, b) and k ≥ 1, one has :

0 =

∫ T

0

B∗ ψ(t, x) q1,k(t) dt = b1〈ψ0, φ1,k〉L2ϕ1,k(x),

0 =

∫ T

0

B∗ ψ(t, x) q2,k(t) dt = b2〈ψ0, φ2,k〉L2ϕ2,k(x).

Since the eigenfunctions {ϕ1,k}k≥1, {ϕ2,k}k≥1 has exactly k + 1 roots in
[0, 1] (see (32) and (33)), one has necessarily

〈ψ0, φi,k〉L2 = 0, ∀k ≥ 1, i = 1, 2.

By completeness of the eigenfunctions (see (22)), we deduce that ψ0 = 0
on (0, 1). Thus by Proposition 2.3, we deduce that the system (6) is
approximately controllable at any time T > 0.

Remark 3.1. The operator L may contain negative eigenvalues, but by
(17) there exists k′ ∈ N such that for all k ≥ k′, λi,k > 0, taking m large
enough and λ′i,k = λi,k + m > 0, we obtain a strictly positive increasing
sequence.

3.2 Approximate controllability for the system (7)
Let us fix T > 0 and consider the system (7) (without assumption (10), on the
support of the function q).

Necessary condition Let us assume that condition (12) does not hold, i.e.,
that there are k0, j0 ∈ N such that λ1,k0

= λ2,j0 = λ. Let us take

ψ0(x) = aφ1,k0
(x) + b φ2,j0(x), ∀x ∈ (0, 1), (a, b) ∈ R2.

Thus the solution of the adjoint problem (23) associated to ψ0 is given by

ψ(t, x) = a e−λ(T−t) φ1,k0
(x) + b e−λ(T−t) φ2,j0(x), ∀(t, x) ∈ QT .
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Then

B∗∂xψ(t, 0) = a b1 e
−λ(T−t) ϕ′1,k0

(0) + b b2 e
−λ(T−t) ϕ′2,j0(0), ∀t ∈ (0, T ).

Taking
a = b2 ϕ

′
2,j0(0) and b = −b1 ϕ′1,k0

(0),

we obtain B∗∂xψ(t, 0) = 0 on (0, T ). On the other hand, from (9), (15)
and (19), we deduce ϕ′i,k(0) 6= 0, for all k ≥ 1, and ψ 6= 0. So, system (7)
is not approximately controllable at time T > 0.

Sufficient condition Let us now suppose that condition (12) holds. Let us
take ψ0 ∈ H1

0 (0, 1;R2) and assume that the solution of the adjoint problem
(23) associated to ψ0 satisfies

B∗∂xψ(t, 0) = 0, ∀t ∈ (0, T ),

which implies that∑
k≥1

(
b1e
−λ1,k(T−t)〈ψ0, φ1,k〉L2 ϕ′1,k(0)

+b2e
−λ2,k(T−t)〈ψ0, φ2,k〉L2 ϕ′2,k(0)

)
= 0, in (0, T ).

The same arguments of the previous subsection lead to

0 =

∫ 1

0

B∗∂xψ(t, 0) q1,k(t) dt = b1ϕ
′
1,k(0)〈ψ0, ϕ1,k〉L2 , ∀k ∈ N,

0 =

∫ 1

0

B∗∂xψ(t, 0) q2,k(t) dt = b2ϕ
′
2,k(0)〈ψ0, ϕ2,k〉L2 , ∀k ∈ N,

where {q1,k, q2,k}k≥1 is the biorthogonal family to {e−λ1,kt, e−λ2,kt}k≥1

in L2(0, T ). As before, ϕ′i,k(0) 6= 0, for all k ≥ 1. By completeness
of eigenfunctions (see (22)), we deduce that ψ0 = 0 on (0, 1). Then the
continuation property (26) holds. So, the system (7) is approximately
controllable. This ends the proof of the first item of Theorem 1.1.

4 Positive null controllability result
Let us now prove the second part of Theorem 1.1. To this end, we divide the
proof into several steps. We first prove the existence of T0(q), such that systems
(6) and (7) are null controllable, when T > T0(q), using the moment method
(see [9],[10]).

4.1 The positive null controllability result for the system
(6)

Let us take ψ0,k = φi,k, with i=1,2 (see (22)) as the initial datum of the adjoint
system (23), then the associated solutions are given by

ψi,k(t, x) = φi,k(x) e−λi,k(T−t), (t, x) ∈ QT , k ≥ 1, i = 1, 2. (34)
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Direct computations give that, for all k ≥ 1 and i = 1, 2∫∫
QT

u(t, x) 1ω B
∗φi,k(x) e−λi,k(T−t) dt dx = 〈y(T, ·), φi,k〉L2−〈y0, φi,k(·) e−λi,kT 〉L2 ,

where y ∈ L2(0, T ;H1
0 (0, 1;R2))∩C0([0, T ];L2(0, 1;R2)) is the solution of system

(6) associated to y0.
Observe that by completeness of eigenfunctions, given y0 ∈ L2(0, T ;R2), the

control u ∈ L2(QT ) is such that the solution y of system (6) satisfies y(T, ·) = 0
if and only if∫∫

QT

u(T − t, x) 1ω b1 ϕ1,k(x) e−λ1,kt dt dx = 〈y0, φ1,k(·) e−λ1,kT 〉L2 , ∀k ≥ 1,∫∫
QT

u(T − t, x) 1ω b2 ϕ2,k(x) e−λ2,kt dt dx = 〈y0, φ2,k(·) e−λ2,kT 〉L2 , ∀k ≥ 1.

(35)
Assumption (12) and Proposition 2.4 ensure the existence of a biorthogonal
family {q1,k, q2,k}k≥1 to {e−λ1,kt, e−λ2,kt}k≥1 in L2(0, T ), which satisfies the
following estimate

∀ε > 0, ∃Cε such that ‖qi,k‖L2(0,T ) ≤ Cε e(c(Λ)+ε)λi,k ,∀k ≥ 1, i = 1, 2, (36)

where c(Λ) is the condensation index of the sequence Λ = {λ1,k, λ2,k}k≥1 (see
(29)). Following the approach of [1], we restrict the control to the following
form:

ũ(t, x) = u(T − t, x) =
∑
k≥1

(q1,k(t)ϕ1,k(x)m1,k + q2,k(t)ϕ2,k(x)m2,k), (37)

where mi,k are coefficients to be determined. We replace u by (37) in (35), one
gets, formally:

mi,k bi

∫
ω

ϕ2
i,k(x) dx = 〈y0, φi,k(x)e−λi,kT 〉L2 , ∀k ≥ 1 and i = 1, 2.

Since the eigenfunctions {ϕ1,k}k≥1, {ϕ2,k}k≥1 have exactly k+ 1 roots in [0, 1],
then ∫

ω

ϕ2
i,k dx > 0, ∀k ≥ 1, i = 1, 2,

Moreover ∫
ω

sin(kπx)
2
dx −→

k→+∞
b− a > 0.

Using (21), we deduce that there exists C > 0 such that

inf
k≥1
|bi
∫
ω

ϕ2
i,k dx| ≥ C > 0. (38)

Let us define:

mi,k :=
〈y0, φi,k(x)〉L2e−λi,kT

bi
∫
ω
ϕ2
i,k dx

, ∀k ≥ 1, i = 1, 2.
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Let us now prove that ũ ∈ L2(QT ), that is to say, the convergence of the series
(37) in L2(QT ). Estimate (36) of ‖qi,k‖L2(0,T ) and (38), lead to :

‖ũ‖L2(QT ) ≤
Cε‖y0‖L2

C

∑
k≥1

(
e−λ1,k(T−c(Λ)−ε) + e−λ2,k(T−c(Λ)−ε)

)
.

Let T > c(Λ). Taking ε = T−c(Λ)
2 , one has

‖ũ‖L2(QT ) ≤
Cε‖y0‖L2

C

∑
k≥1

2∑
i=1

e−λi,k(
T−c(Λ)

2 ) <∞. (39)

This inequality shows that if T > c(Λ), then u ∈ L2(QT ). We deduce that
system (6) is null controllable at time T > c(Λ). To conclude with Item (a) of
Theorem 1.1, it remains to show that c(Λ) = T0(q), where T0(q) is given by
(13).

Lemma 4.1. Assume that condition (12) holds. Let Λ = {λ1,k, λ2,k, k ∈ N},
then:

c(Λ) = T0(q) = lim sup
k→+∞

− ln |λ1,k − λ2,k|
λ1,k

. (40)

Proof. Observe that from the expressions of λ1,k and λ2,k (see (18)), we deduce:

lim
k→∞

|λ1,k+1 − λ2,k| = lim
k→∞

|λ2,k+1 − λ1,k| = +∞.

and

lim
k→+∞

|λ1,k − λ2,k| =
∣∣∣∣(µ1 − µ2)

∫ 1

0

q(x) dx

∣∣∣∣ .
We deduce by the previous properties that there exists an integer k0 such that
for all k ≥ k0, one has

max
i=1,2

λi,k < min
i=1,2

λi,l, ∀l > k, (l, k) ∈ N2.

Therefore the sequence Λ can be rearranged into an increasing sequence {λk}k≥1

defined by

{λk}1≤k≤2k0−2 = {λ1,k}1≤k≤k0−1 ∪ {λ2,k}1≤k≤k0−1,

such that
λk < λk+1, ∀ 1 ≤ k ≤ 2k0 − 3

and, from the (2k0 − 1)-th term, by
λ2k0+2k−1 = min

i=1,2
λi,k0+k, ∀ k ≥ 0,

λ2k0+2k = max
i=1,2

λi,k0+k, ∀ k ≥ 0.

Without loss of generality, we can assume that k0 = 1, that is to say
Λ := {λk, k ≥ 1}, with

λ2k−1 = min
i=1,2

λi,k and λ2k = max
i=1,2

λi,k, ∀k ≥ 1.
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Observe that we can write λ2k−1 = k2π2 + αk and λ2k = k2π2 + βk, with

lim
k→∞

αk = µi

∫ 1

0

q(x) dx, and lim
k→∞

βk = µj

∫ 1

0

q(x) dx,

for some i, j ∈ {1, 2}. Then there exists M > 0 such that αk, βk ∈ [−M,M ].
Let λk ∈ Λ. Using the expression (30), one has

|C ′(λk)| = 2

λk

∏
j 6=k

∣∣∣∣∣
(

1− λ2
k

λ2
j

)∣∣∣∣∣ .
From the previous expression, we deduce:

ln |C ′(λk)|
λk

=
ln |λk−1 − λk|

λk
+

ln |λk+1 − λk|
λk

+
1

λk
ln

(
2(λk+1 + λk)(λk−1 + λk)

λkλ2
k−1λ

2
k+1

)
+ Fk +Gk,

(41)

where

Fk =
∑
j<k−1

1

λk
ln

(
λ2
k

λ2
j

− 1

)
and Gk =

∑
j>k+1

1

λk
ln

(
1− λ2

k

λ2
j

)
.

From the definition of λk, one gets

lim
k→∞

1

λk
ln

(
2(λk+1 + λk)(λk−1 + λk)

λkλ2
k−1λ

2
k+1

)
= 0.

On the other hand, assume that one has:

lim
k→+∞

Fk = lim
n→+∞

Gk = 0. (42)

Coming back to (41) we deduce

lim sup
k→+∞

− ln |C ′(λk)|
λk

= lim sup
k→+∞

− (ak + bk),

where
ak =

ln |λk−1 − λk|
λk

and bk =
ln |λk+1 − λk|

λk
.

Since lim
k→∞

b2k = lim
k→∞

a2k−1 = 0, one has

lim sup
k→+∞

− (a2k + b2k) = lim sup
k→+∞

− ln |λ1,k − λ2,k|
λ2k

,

lim sup
k→+∞

− (a2k−1 + b2k−1) = lim sup
k→+∞

− ln |λ1,k − λ2,k|
λ2k−1

.

This implies the identity (40) and would finalyze the proof of Lemma 4.1. Ther-
fore, our next task will be to prove (42).

14



1. Study of Fk: Notice that

|Fk| ≤
∑
j<k−1
λk>

√
2λj

1

λk
ln

(
λ2
k

λ2
j

− 1

)
+

∑
j<k−1
λk<

√
2λj

1

λk
ln

(
λ2
j

λ2
k − λ2

j

)
,

The first term in the right-hand side of the previous inequality, is estimated by

∑
j<k−1
λk>

√
2λj

1

λk
ln

(
λ2
k

λ2
j

− 1

)
≤

∑
j<k−1
λk>

√
2λj

1

λk
ln

(
λ2
k

λ2
1

− 1

)
=
k − 1

λk
ln

(
λ2
k

λ2
1

− 1

)
≤ 2(k−1)

lnλk/λ1

λk
,

and the second term is estimated by

∑
j<k−1
λk<

√
2λj

1

λk
ln

(
λ2
j

λ2
k − λ2

j

)
≤

∑
j<k−1
λk<

√
2λj

1

λk
ln

(
λ2
j

λ2
k − λ2

k−2

)
≤ k − 1

λk
ln

(
λ2
k

λ2
k − λ2

k−2

)
.

Therefore,
lim

k→+∞
|Fk| = 0.

2. Study of Gk: Notice that

|Gk| =

∣∣∣∣∣∣
∑
j>k+1

1

λk
ln

(
1− λ2

k

λ2
j

)∣∣∣∣∣∣ ≤
∑
j>k+1

1

λk
ln

(
λ2
j

λ2
j − λ2

k

)
=
∑
j>k+1

1

λk
ln

(
1 +

λ2
k

λ2
j − λ2

k

)
.

Using the inequality ln(1 + x) ≤ x, when x > 0, one has

|Gk| ≤
∑
j>k+1

1

λk
ln

(
1 +

λ2
k

λ2
j − λ2

k

)
≤
∑
j>k+1

λk
(λj − λk)(λj + λk)

≤
∑
j>k+1

1

(λj − λk)
.

(43)
Let us analyse the series in the right-hand side of inequality (43). This series
can be written as∑

j>k+1

1

(λj − λk)
=

∑
j=2n−1≥k+2

1

(λ2n−1 − λk)
+

∑
j=2n≥k+2

1

(λ2n − λk)
.

Thus, from the assumptions on the sequences {λ1,k}k≥1 and {λ2,k}k≥1, we can
write:

|G2k−1| ≤
∑

n≥k+1

1

(n2π2 + αn − k2π2 − αk)
+
∑

n≥k+1

1

(n2π2 + βn − k2π2 − αk)

and

|G2k| ≤
∑

n≥k+2

1

(n2π2 + αn − k2π2 − βk)
+
∑

n≥k+1

1

(n2π2 + βn − k2π2 − βk)
.

It is not difficult to see that if k ≥ 4M−π2

2π2 , then

0 ≤ 1

n2π2 + x− k2π2 − y
≤ 2

n2π2 − k2π2
, ∀n ≥ k + 1, ∀x, y ∈ [−M,M ].
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Taking into account that αn, βn ∈ [−M,M ] for any n ≥ 1, from the previous
inequality, one has:

|G2k−1| ≤ 4
∑

n≥k+1

1

n2π2 − k2π2
= 4
∑
i≥1

1

(k + i)2π2 − k2π2
=

4

π2

∑
i≥1

1

i2 + 2ki

≤ 4

π2

[
1

1 + 2k
+

∫ +∞

1

1

t2 + 2kt
dt

]
=

4

π2

[
1

1 + 2k
+

1

2k
ln(1 + 2k)

]
.

A similar inequality can be obtained for |G2k|. In particular, we can infer

lim
k→∞

|G2k−1| = lim
k→∞

|G2k| = 0.

This ends the proof.

4.2 Positive null controllability result for system (7)
Let us now analyze the null controllability of system (7). To this end, assume
that T0(q) < +∞ ( T0(q) is given in (13) and satisfies (40)) and fix T > T0(q).
Our objective is, again, to formulate the null controllability for system (7) as a
moment problem for the control v ∈ L2(0, T ).

Let us take ψ0 = φi,k, k ∈ N∗, with i = 1, 2. Then the corresponding
solutions of the adjoint system (23) are given by (34). Thus, given y0 ∈
H−1(0, 1;R2), v ∈ L2(0, T ) drives the solution y of system (7) to zero at time
T if and only if v ∈ L2(0, T ) satisfies∫ T

0

v(T − t) bi ϕ′i,k(0) e−λi,kt dt = −〈y0, φi,k(x)e−λi,kT 〉H−1,H1
0
, (44)

for any k > 1, and i = 1, 2. As in the previous subsection (under condition
(12)), we will solve the moment problem (44) using the biorthogonal family
{q1,k, q2,k}k≥1 to {e−λ1,kt, e−λ2,kt}k≥1 in L2(0, T ) provided by Proposition 2.4.
We seek a solution of (44) under the form

ṽ(t) = v(T − t) =
∑
k≥1

q1,k(t) d1,k + q2,k(t) d2,k, (45)

where di,k is obtained formally by replacing (45) in (44):

di,k =
−〈y0, φi,k(x)〉H−1,H1

0
e−λi,kT

bi ϕ′i,k(0)
, ∀k ≥ 1, i = 1, 2.

It remains to prove that ṽ ∈ L2(0, T ). Using (45) one has

||ṽ||L2(0,T ) ≤ ||y0||H−1

∑
k≥1

(
||φ1,k||H1

0

b1|ϕ′1,k(0)|
e−λ1,kT ||q1,k||L2(0,T )

+
||φ2,k||H1

0

b2|ϕ′2,k(0)|
e−λ2,kT ||q2,k||L2(0,T )

)
,

(46)

Using the asymptotic behavior of eigenfunctions (see (21)), one has

ϕ′i,k(0) =
√

2πk +O(1), i = 1, 2,

||ϕ′i,k||L2 = (π2k2 +O(1))
1
2 , i = 1, 2,

(47)
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as k →∞ uniformly for x ∈ [0, 1] and q ∈ L2(0, 1). Moreover, from the estimate
of {qi,k, k ∈ N} (see (31)), inequality (46) implies that for all ε > 0, there exists
Cε > 0, such that

||ṽ||L2(0,T ) ≤ Cε||y0||H−1

∑
k≥1

||φ1,k||H1
0

b1|ϕ′1,k(0)|
e−λ1,k(T−c(Λ)−ε)

+
||φ2,k||H1

0

b2|ϕ′2,k(0)|
e−λ2,k(T−c(Λ)−ε).

Since T > T0(q) = c(Λ), taking ε = T−c(Λ)
2 , we deduce that ṽ ∈ L2(0, T )

and system (7) is then null controllable at time T . This ends the positive null
controllability result for system (7).

5 Negative null controllability result for system
(6) and (7)

In this section, we prove Item (b) of Theorem 1.1. Let us assume that T0(q) > 0.
Arguing by contradiction, we prove the negative null controllability result of the
systems (6) and (7) when T < T0(q).

5.1 Negative null controllability result for system (6)
By Proposition 2.3, system (6) is null controllable at time T if and only if any
solution ψ of the adjoint system (23) satisfies the observability inequality (25).
Let us consider

ψ0,k := aφ1,k + b φ2,k, ∀k ≥ 1,

with a, b ∈ R. So, the corresponding solution ψk of the adjoint system (23) is

ψk(t, x) = a e−λ1,k(T−t) φ1,k(x) + b e−λ2,k(T−t) φ2,k(x), ∀(t, x) ∈ QT . (48)

From (25), if system (6) is null controllable at time T , there exists C > 0 such
that for all k ≥ 1 and (a, b) ∈ R2 one has:

a2 e−2λ1,kT+b2 e−2λ2,kT ≤ C
∫ T

0

∫
ω

∣∣∣b1 aϕ1,k e
−λ1,k(T−t) + b2 b ϕ2,k e

−λ2,k(T−t)
∣∣∣2 dx dt.

In terms of quadratic forms, the previous inequality is equivalent to

e−2LkT ≤ C Qk,T , ∀k ≥ 1, (49)

where

Lk :=

(
λ1,k 0
0 λ2,k

)
and Qk,T :=

∫ T

0

e−Lk(T−t)B′ke
−Lk(T−t) dt, ∀k ≥ 1,

with

B′k :=

(
b21 ||ϕ1,k||2L2(ω) b1 b2〈ϕ1,k, ϕ2,k〉L2(ω)

b1 b2〈ϕ1,k, ϕ2,k〉L2(ω) b22 ||ϕ2,k||2L2(ω)

)
, ∀k ≥ 1.
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Consider the function η defined by

η(s) :=
esT − 1

s
, ∀s > 0. (50)

Then, inequality (49) can be equivalently written as

1

C
I ≤ Ck, ∀k ≥ 1, (51)

where

Ck :=

(
b21‖ϕ1,k‖2L2(ω)η(2λ1,k) b1b2〈ϕ1,k, ϕ2,k〉L2(ω)η(λ1,k + λ2,k)

b1b2〈ϕ1,k, ϕ2,k〉L2(ω)η(λ1,k + λ2,k) b22‖ϕ2,k‖2L2(ω)η(2λ2,k)

)
.

The following computations are closely related to [3, Sec. 2.2]. Inequality
(51) is equivalent to

inf
k≥1

σk := inf
k≥1

inf
x 6=0

(Ckx, x)

‖x‖2
≥ C > 0,

where C is a positive constant. Clearly σk is the smallest eigenvalue of Ck. As
Ck ∈ L(R2), in particular,

detCk
TrCk

≤ σk ≤
2 detCk
TrCk

, ∀k ≥ 1,

where Tr(Ck) denotes the trace of matrix Ck. The objective is to prove that if
T < T0(q) and for a suitable sequence {k(n)}n∈N, one has

lim
n→∞

detCk(n)

TrCk(n)
= 0, (52)

in order to contradict (51) and then deduce that the system (6) is not null
controllable at time T . To this end, we will study the asymptotic behavior of
detCk
TrCk

which depends on the spectrum of (L,D(L)) (see Proposition 2.1). We
have

detCk = b1
2 b2

2
(
‖ϕ1,k‖2L2(ω)‖ϕ2,k‖2L2(ω)η(2λ1,k)η(2λ2,k)

−〈ϕ1,k, ϕ2,k〉2L2(ω)η(λ1,k + λ2,k)2
)
,

(53)

and
TrCk = b1

2||ϕ1,k‖2L2(ω)η(2λ1,k) + b2
2‖ϕ2,k‖2L2(ω)η(2λ2,k). (54)

Recall that, under assumption (9), one has b1b2 6= 0 and µ1 6= µ2. Let us consider
the function

g(s) := ln(η(s)) = ln
esT − 1

s
.

Appliying a Taylor-formula for any s1, s2 > 0, with s1 ≤ s2, one gets

g(2s1) = g(s1 + s2) + (s1 − s2)g′(s1 + s2) +
(s1 − s2)2

2
g′′(s1),

g(2s2) = g(s1 + s2)− (s1 − s2)g′(s1 + s2) +
(s1 − s2)2

2
g′′(s2),
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where s1, s2 ∈ [2s1, 2s2]. So,

g(2s1) + g(2s2) = 2g(s1 + s2) +
(s1 − s2)2

2
(g′′(s1) + g′′(s2)),

but
inf

s∈[2s1,2s2]
g′′(s) ≤ g′′(s1) + g′′(s2)

2
≤ sup
s∈[2s1,2s2]

g′′(s).

Since g′′ is continuous, there exists s ∈ [2s1, 2s2], such that g′′(s1)+g′′(s2)
2 =

g′′(s̄). We deduce that

η(2s1)η(2s2) = η(s1 + s2)2e(s1−s2)2(ln(η(s̄))′′), ∀s1, s2 > 0, s ∈ [2s1, 2s2].

Let us denote by ζ(s) = ln(η(s))′′ for all s > 0. Then

ζ(s) =
1

s2
− T 2

(esT/2 − e−sT/2)2
and

T 2

T 2s2 + 24
≤ ζ(s) ≤ 1

s2
. (55)

Indeed, observe that

eTs/2 − e−Ts/2 = Ts+
T 3s3

24
+
T 5s5

5! 32
+ ... ≥ Ts+

T 3s3

24
=
Ts

24
(24 + T 2s2),

then

ζ(s) ≥ 1

s2
− 242

s2(24 + T 2s2)2
=
T 4s4 + 48T 2s2

s2(24 + T2s2)2
≥ T 4s4 + 24T 2s2

s2(24 + T 2s2)2

=
T 2

T 2s2 + 24
, ∀s > 0.

In particular,

η(2λ1,k) η(2λ2,k) = η(λ1,k + λ2,k)2 e(λ1,k−λ2,k)2ζ(λ′k), ∀k ≥ 1, (56)

with

λ′k ∈ [λ1,k, λ2,k] and
T 2

T 2λ2
2,k + 24

≤ ζ(λ′k) ≤ 1

λ2
1,k

, ∀k ≥ 1, if λ1,k < λ2,k,

λ′k ∈ [λ2,k, λ1,k] and
T 2

T 2λ2
1,k + 24

≤ ζ(λ′k) ≤ 1

λ2
2,k

, ∀k ≥ 1, if λ2,k < λ1,k.

Coming back to (53) and using the previous expressions, obtain that

detCk = b21 b
2
2η(2λ1,k) η(2λ2,k)

(
‖ϕ1,k‖2L2(ω)‖ϕ2,k‖2L2(ω)

−〈ϕ1,k, ϕ2,k〉2L2(ω)e
−(λ1,k−λ2,k)2ζ(λ′k)

)
.

Since lim
k→∞

(λ1,k − λ2,k)2ζ(λ′k) = 0 (see (18) and (55)), let us write

e−(λ1,k−λ2,k)2ζ(λ′k) = 1−(λ1,k−λ2,k)2ζ(λ′k)−1

2
(λ1,k−λ2,k)2o

(
(λ1,k − λ2,k)2ζ(λ′k)

)
.
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Thus from the expression of detCk and TrCk (see (54)), we deduce

detCk
TrCk

= NkMk, ∀k ≥ 1, (57)

where

Nk :=
b1

2b2
2η(2λ1,k)

b1
2||ϕ1,k‖2L2(ω)η(2λ1,k) + b2

2‖ϕ2,k‖2L2(ω)η(2λ2,k)
, (58)

and

Mk := η(2λ2,k)
(

detGk + (λ1,k − λ2,k)2 < ϕ1,k, ϕ2,k >
2
L2(ω) ζ(λ′k)

[
1

+
1

2
o
(
(λ1,k − λ2,k)2ζ(λ′k)

)])
.

(59)

In the previous expression Gk is the Gram matrix of (1ωB
∗φ1,k, 1ωB

∗φ2,k) in
L2(0, 1;R2), i.e.,

Gk :=

(
‖ϕ1,k‖2L2(ω) 〈ϕ1,kϕ2,k〉L2(ω)

〈ϕ1,k, ϕ2,k〉L2(ω) ‖ϕ2,k‖2L2(ω)

)
, ∀k ≥ 1.

Let us now study the behavior of detGk for k large enough. We assume that
Supp q ⊂ (b, 1), the case Supp q ⊂ (0, a) can be treated in the same way. Then
(see (20), (32) and (33))

ϕi,k(x) = αi,k sin
√
λi,kx, ∀x ∈ ω,

with

αi,k =

√
2√

1 +Oi( 1
k )

=
√

2 +Oi(
1

k
), i = 1, 2.

Let us denote by Rk :=
√
λ1,k −

√
λ2,k. Then, for any x ∈ ω, one has

ϕ1,k(x) = α1,k sin((
√
λ2,k +Rk)x) = α1,k sin (

√
λ2,kx) +Rkfk(x)

=
α1,k

α2,k
ϕ2,k(x) +Rkfk(x), ∀k ≥ 1, x ∈ ω,

where fk is given by

fk(x) = α1,k

sin((
√
λ2,k +Rk)x)− sin

√
λ2,k x

Rk
, ∀x ∈ ω, ∀k ≥ 1.

Observe that fk can be written as

fk(x) = α1,k x cos(Θk,x x) ∀x ∈ ω,

for Θk,x ∈ R. In particular, for a positive constant C, one gets

|fk(x)| ≤ C, ∀x ∈ ω, ∀k ≥ 1.
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Therefore

||ϕ2,k||2L2(ω)||ϕ1,k||2L2(ω) =
α2

1,k

α2
2,k

||ϕ2,k||4L2(ω) +R2
k||ϕ2,k||2L2(ω)‖fk‖

2
L2(ω)

+ 2
α1,k

α2,k
Rk〈fk, ϕ2,k〉L2(ω)||ϕ2,k||2L2(ω)

and

〈ϕ2,k, ϕ1,k〉2L2(ω) =
α2

1,k

α2
2,k

||ϕ2,k||4 +R2
k 〈fk, ϕ2,k〉2L2(ω)

+ 2
α1,k

α2,k
Rk ||ϕ2,k||2〈fk, ϕ2,k〉L2(ω).

We can conclude
detGk = R2

k Ik, (60)

where
Ik = ||ϕ2,k||2L2(ω)||fk||

2
L2(ω) − 〈fk, ϕ2,k〉2L2(ω)

satisfies |Ik| ≤ C for any k ≥ 1, with C a positive constant. In particular, we
deduce

detGk = O(R2
k) = O

(
(λ1,k − λ2,k)2

(
√
λ1,k +

√
λ2,k)2

)
, as k →∞. (61)

Coming back to the expressions of Nk and Mk given by (58) and (59), we
observe that

lim
k→∞

η(2λ1,k)

η(2λ2,k)
= 1, (62)

(η given in (50)). We deduce that
lim
k→∞

Nk = lim
k→∞

b21 b
2
2 η(2λ1,k)

b12||ϕ1,k‖2
L2(ω)

η(2λ1,k)+b22‖ϕ2,k‖2
L2(ω)

η(2λ2,k)

=
b21 b

2
2

2(b−a)(b21+b22)
.

(63)

On the other hand, by (61), one has

Mk = η(2λ2,k)(λ1,k − λ2,k)2

[
O

(
1

(
√
λ1,k +

√
λ2,k)2

)

+〈ϕ1,k, ϕ2,k〉L2(ω)ζ(λ′k)(1 + o
(
(λ1,k − λ2,k)2ζ(λ′k)

)
)

]
.

Observe that

η(2λ2,k)(λ1,k − λ2,k)2 =
1− e−2λ2,kT

2λ2,k
e

2λ2,k(T+
ln |λ1,k−λ2,k|

λ2,k
)
.

Recall we have assumed that T ∈ (0, T0(q)). In particular T0(q) > 0. From the
definition of c(Λ) and Lemma 4.1, there exists a subsequence {kn}n∈N such that

T0(q) = c(Λ) = lim
n→+∞

− ln |λ1,kn − λ2,kn |
λ2,kn

∈ [0,+∞].
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We are going to assume T0(q) < +∞. The case c(Λ) = +∞ is obvious and we
also get a contradiction. Then, for any ε > 0, there exists k1 such that

T +
ln |λ1,kn − λ2,kn |

λ2,kn

< ε+ T − T0(q), ∀n ≥ k1. (64)

Choosing ε = T−T0(q)
2 , we deduce that

e
2λ2,kn (T+

ln |λ1,kn
−λ2,kn

|
λ2,kn

) ≤ e2λ2,kn (
T−T0(q)

2 ).

Finally, since T < T0(q), one has

lim
n→∞

Mkn = 0.

This limit together with (63) prove (52). Thus, system (6) is not null controllable
at time T . This proves the negative result in item 2 of Theorem 1.1 for system
(6).

5.2 Negative null controllability result for system (7)
Let us now prove the negative null controllability result for the system (7).
Assume that T0(q) > 0 and let 0 < T < T0(q). By contradiction, we will prove
that system (7) is not null controllable at time T .

Using Proposition 2.3 again, system (7) is null controllable at time T if and
only if there exists C > 0 such that the observability inequality (27) holds
for any solution ψ of the adjoint system (23). Let us work with intial data
ψ0,k = aφ1,k + b φ2,k, with k ∈ N∗ and (a, b) ∈ R2. Then, the associated
solution of the adjoint system (23) is given by (48) and we deduce that the
observability inequality (27) becomes

A1,k ≤ CA2,k, ∀k ≥ 1, ∀(a, b) ∈ R2,

with

A1,k := ||ψ(0, ·)||2H1
0 (0,1,R2) = a2 c1,k e

−2λ1,k(T ) + b2 c2,k e
−2λ2,k(T ),

where (see (22))

ci,k := 1 + ||ϕ′i,k||2L2 , ∀k ≥ 1, i = 1, 2

and

A2,k :=

∫ T

0

|B∗∂xψ(t, 0)|2 dt

=

∫ T

0

∣∣∣b1 aϕ′1,k(0) e−λ1,k(T−t) + b2 b ϕ
′
2,k(0) e−λ2,k(T−t)

∣∣∣2 dt.
In terms of quadratic forms, the previous inequality is equivalent to

e−2LkT ≤ C
∫ T

0

e−Lk(T−t)B̃ke
−Lk(T−t) dt, ∀k ≥ 1, ∀k ≥ 1, (65)
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where Lk = diag(λ1,k, λ2,k) and

B̃k :=

 b21
c1,k

ϕ′1,k(0)
2 b1 b2√

c1,k c2,k
ϕ′1,k(0)ϕ′2,k(0)

b1 b2√
c1,k c2,k

ϕ′1,k(0)ϕ′2,k(0)
b22
c2,k

ϕ′2,k(0)
2

 , ∀k ≥ 1.

Computing the integral at the right-hand side of (65), we deduce that it can be
written in the following form:

I ≤ C Hk, ∀k ≥ 1, (66)

where

Hk :=

 b21
c1,k

ϕ′1,k(0)
2
η(2λ1,k) b1b2√

c1,kc2,k
ϕ′1,k(0)ϕ′2,k(0)η(λ1,k + λ2,k)

b1b2√
c1,kc2,k

ϕ′1,k(0)ϕ′2,k(0)η(λ1,k + λ2,k)
b22
c2,k

ϕ′2,k(0)
2
η(2λ2,k)

,
with η defined by (50). Let σ̃k be the smallest eigenvalue of Hk, then

2 detHk

TrHk
≥ σ̃k ≥

detHk

TrHk
, ∀k ≥ 1.

Let us analyse the behavior of detHk
TrHk

. One has

detHk =
b21b

2
2

c1,kc2,k
ϕ′1,k(0)

2
ϕ′2,k(0)

2
(η(2λ1,k)η(2λ2,k)− η(λ1,k + λ2,k)2),

T rHk =
b21
c1,k

ϕ′1,k(0)
2
η(2λ1,k) +

b22
c2,k

ϕ′2,k(0)
2
η(2λ2,k).

Same computations as in the previous subsection (see (56)) give

detHk =
b21b

2
2

c1,kc2,k
ϕ′1,k(0)

2
ϕ′2,k(0)

2
η(2λ1,k)η(2λ2,k)(λ1,k − λ2,k)2ζ(λ′k)

×
[
1 +

1

2
o
(
(λ1,k − λ2,k)2ζ(λ′k)

)]
,

where λ′k ∈ [λ1,k, λ2,k] if λ1,k < λ2,k, or λ′k ∈ [λ2,k, λ1,k] if λ2,k < λ1,k. Then,

detHk

TrHk
=

b21b
2
2ϕ
′
1,k(0)

2
ϕ′2,k(0)

2
η(2λ1,k)η(2λ2,k)

c1,kc2,k(
b21
c1,k

ϕ′1,k(0)
2
η(2λ1,k) +

b22
c2,k

ϕ′2,k(0)
2
η(2λ2,k))

× (λ1,k − λ2,k)2ζ(λ′k)

[
1 +

1

2
o
(
(λ1,k − λ2,k)2ζ(λ′k)

)]
.

(67)

By (47), one has

lim
k→∞

ϕ′i,k(0)
2

ci,k
= 2, i = 1, 2

and this limit together with (62) gives

lim
k→∞

b21b
2
2ϕ
′
1,k(0)

2
ϕ′2,k(0)

2
η(2λ1,k)

c1,kc2,k(
b21
c1,k

ϕ′1,k(0)
2
η(2λ1,k) +

b22
c2,k

ϕ′2,k(0)
2
η(2λ2,k))

= 2
b21b

2
2

b21 + b22
.
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Observe that

η(2λ2,k)(λ1,k − λ2,k)2ζ(λ′k) = e
2λ2,k(T+

ln |λ1,k−λ2,k|
λ2,k

)
ζ(λ′k)

1− e−2λ2,kT

2λ2,k
.

From the definition of T0(q), there exists a subsequence {kn}n∈N∗ which satisfies
(64). If we take ε = T−T0(q)

2 and T < T0(q) in (67), we obtain

lim
n→∞

detHkn

TrHkn

= 0,

which gives a contradiction with (66). This ends the proof of Theorem 1.1.

6 A complementary result
This section is devoted to giving a complementary result on the minimal time
T0(q) ∈ [0,+∞] associated to the null controllability of the system (7). Let us fix
µ1 = 0, µ2 = 1 and consider the application q ∈ L2(0, 1) 7−→ T0(q) ∈ [0,+∞].
We are going to prove that this application is onto, that is to say that one
can expect any minimal time. We first recall a result related to the inverse
Sturm-Liouville problem.

It is well known that, for all q ∈ L2(0, 1) the Dirichlet problem{
−u′′ + q u = κu in (0, 1),
u(0) = 0, u(0) = 0

(68)

has a sequence κk = κk(q) of simple eigenvalues, with k ≥ 1, such that

κ1 < κ2 < ... < κk < ..., with lim
k→∞

κk = +∞.

We denote by gk(x) = gk(x, κk, q), the corresponding normalized eigenfunc-
tions in L2(0, 1). Given q ∈ L2(0, 1), the direct Dirichlet problem is to determine
the eigenvalues {κk}k∈N∗ and the corresponding eigenfunction u 6= 0 of (68).
Observe that the corresponding inverse problem is the following one: Given the
sequence {αk}k≥1 ⊂ (0,+∞), we want to determine q ∈ L2(0, 1) such that the
sequence of eigenvalues of (68) is

κk = αk, ∀k ≥ 1.

The following result, due to P. Trubowitz (see [16]), provides a positive
answer to the previous inverse problem with a particular class of eigenvalues:

Theorem 6.1. The increasing sequence {κk}k≥1, is the Dirichlet spectrum of
problem (68) for some q ∈ L2(0, 1) if and only if, for a constant C, one has

κk = π2k2 + C + rk, with
∑
k≥1

r2
k < +∞. (69)

The following result is related to the minimal time of boundary null control-
lability T0(q) of the system (7).One has:
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Theorem 6.2. For any τ ∈ [0,+∞], there exists µ1, µ2 ∈ R and q ∈ L2(0, 1),
such that the minimal time T0(q) associated to the system (7) is T0(q) = τ .

Proof. Let us fix τ ∈ [0,+∞] and take µ1 = 0 and µ2 = 1 in (7). Let us consider
γ = {γk}k∈N∗ ⊂ `2, given by

γk =


e−

1
k if τ = 0,

e−τπ
2k2

if τ ∈ (0,+∞),

e−τk
3

if τ = +∞,

for all k ∈ N∗. Clearly the sequence λ2,k = π2k2 + γk, k ∈ N, satisfies (69)
for C = 0. Applying Theorem 6.1, we deduce the existence of q(γ) ∈ L2(0, 1)
associated to the Dirichlet problem (68) with κk = λ2,k, for any k ≥ 1. On the
other hand, let us introduce the following boundary control problem

∂ty1 −∆y1 = 0 in QT := (0, T )× (0, 1),

∂ty2 −∆y2 + q(γ) y2 = 0 in QT ,
y1(·, 0) = b1v(t), y2(·, 0) = b2v(t), on (0, T ),

y1(·, 1) = y2(·, 1) = 0, on (0, T ),

y1(T, ·) = y1,0, y2(T, ·) = y2,0 in (0, 1),

where v ∈ L2(0, T ) is the control force. In this case, λ1,k = π2k2, λ2,k =
π2k2 + γk, k ≥ 1, and

T0(q) = lim sup
k→+∞

− ln |π2k2 − λ2,k|
π2k2

= lim sup
k→+∞

− ln |γk|
π2k2

= τ.

This ends the proof.

7 Comments, further result and open problems
1. In this work, we proved a necessary and sufficient condition of approximate

and null controllability for system (6) with distributed controls under the
geometrical assumption (10). It would be interesting to prove an analogous
result to Theorem 1.1 without this geometrical assumption for the function
q, i.e., when

Supp q ⊂ [0, a] ∪ [b, 1].

2. The null controllability results obtained here for systems (6) and (7) re-
main valid for q ∈ L∞(0, 1). Assumption q ∈ L2(0, 1) is used in section
6, when, for a given τ ∈ [0,+∞] we provide a potential q ∈ L2(0, 1), for
which the minimal time of null controllability of system (7) is equal to
τ . This result is obtained using the inverse spectral theory (see Theorem
6.1). We can also apply the inverse spectral theory for the distributed
system, but Theorem 6.1 does not give information on the localization of
the support of q ∈ L2(0, 1).
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3. The methods used here for studying the controllability of the system (7),
either for the positive result or negative one, require a careful study of
the spectrum of the Strum-Liouville operator (see [14], [16]). Thanks
to Proposition 2.1, the null controllability result of system (7) can be
generalized if we consider the following problem:

∂ty + Ly = 0 in QT ,

y(·, 0) = B v(t), y(·, 1) = 0 on (0, T ),

y(0, ·) = y0 in (0, 1),

where the operator (L,D(L)) and B ∈ R2 are respectively given by:

L :=

(
−∆ + q1 0

0 −∆ + q2

)
, D(L) = H2(0, 1;R2) ∩H1

0 (0, 1;R2),

with q1, q2 ∈ L2(0, 1) and B = (b1, b2)T .
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