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Minimal time of null controllability of two parabolic equations

We consider a one-dimensional 2 × 2 parabolic equations, simultaneously controllable by a localized function in their source term. We also consider a simultaneous boundary control. In each case, we prove the existence of minimal time T0(q) of null controllability, that is to say, the corresponding problem is null controllable at any time T > T0(q) and not null controllable for T < T0(q). We also prove that one can expect any minimal time associated to the boundary control problem.

Introduction

Let us fix T > 0 and ω = (a, b) ⊂ (0, 1), and consider the parabolic systems:

     ∂ t y -∆y + q(•)Hy = 1 ω B u
in Q T := (0, T ) × (0, 1), y(•, 0) = 0, y(•, 1) = 0 on (0, T ), y(0, •) = y 0 in (0, 1),

and      ∂ t y -∆y + q(•)Hy = 0 in Q T , y(•, 0) = B v, y(•, 1) = 0 on (0, T ),

y(0, •) = y 0 in (0, 1), (2) 
In systems (1) and ( 2), q ∈ L 2 (0, 1) is a given function, H is a real matrix, B ∈ R 2 is a given vector, 1 ω denotes the characteristic function of ω, y 0 ∈ L 2 (0, 1; R 2 ) is the initial datum for system [START_REF] Allonsius | Spectral analysis of discrete elliptic operators and applications in control theory[END_REF] and y 0 ∈ H -1 (0, 1; R 2 ) for system [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF], u ∈ L 2 (Q T ) and v ∈ L 2 (0, T ) are the control forces.

It is well known that the system (1) (resp., the system (2)) is well-posed for any T > 0 (resp., admits a unique solution by transposition) (see [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]), i.e., for any (y 0 , u) ∈ L 2 (0, 1; R 2 ) × L 2 (Q T ) (resp., (y 0 , v) ∈ H -1 (0, 1; R 2 ) × L 2 (0, T )) there exists a unique solution

y ∈ L 2 (0, T ; H 1 0 (0, 1; R 2 )) ∩ C 0 ([0, T ]; L 2 (0, 1; R 2 )) (resp., y ∈ L 2 (Q T ; R 2 ) ∩ C 0 ([0, T ]; H -1 (0, 1; R 2 ))).
Note that the rank of the control operator B is one and we are interested in studying the approximate controllability and null controllability for systems [START_REF] Allonsius | Spectral analysis of discrete elliptic operators and applications in control theory[END_REF] and [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF].

1. We say that system (1) (resp., system [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]) is approximately controllable in L 2 (0, 1; R 2 ) (resp., H -1 (0, 1; R 2 )) at time T if for every y 0 , y d ∈ L 2 (0, 1; R 2 ) (resp., y 0 , y d ∈ H -1 (0, 1; R 2 )) and ε > 0, there exists u ∈ L 2 (Q T ) (resp., v ∈ L 2 (0, T )) such that the solution y to system (1) (resp., system (2)) satisfies y(T, •) -y d L 2 (0,1;R 2 ) ≤ ε (resp., y(T, •) -y d H -1 (0,1;R 2 ) ≤ ε.)

2. We say that system (1) (resp., system (2)) is null controllable at time T if for every y 0 ∈ L 2 (0, 1; R 2 )) (resp., y 0 ∈ H -1 (0, 1; R 2 ), ) there exists u ∈ L 2 (Q T ) (resp., v ∈ L 2 (0, T )) such that y(T, •) = 0 in L 2 (0, 1; R 2 ) (resp., y(T, •) = 0 in H -1 (0, 1; R 2 )).

Systems ( 1) and ( 2) are a particular class of general n × n parabolic systems

   ∂ t y -D∆y + A(t, x)y = 1 ω B u in Q T := (0, T ) × Ω, y = Cu1 Γ0 on (0, T ) × ∂Ω, y(0, •) = y 0 in Ω, (3) 
where ω and Γ 0 are respectively open subsets of a smooth bounded domain Ω ⊂ R N , N ≥ 1, and of its boundary ∂Ω, D = diag(d 1 , ..., d n ) ∈ L(R n ), with n ≥ 1, A(t, x) = (a i,j (t, x)) 1≤i,j≤n ∈ L ∞ (Q T ) n 2 is the coupling matrix and B, C ∈ L(R m ; R n ), with m ≤ n, are the control matrices. Concerning the scalar case (n = 1), H.O. Fattorini and D.L. Russell prove in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF] the null controllability in the one-dimentional case (N = 1), using the moment method. The N -dimentional case has been established simultaneously by G. Lebeau and L. Robbiano in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and by A. Fursikov and O. Yu. Imanuvilov in [START_REF] Fursikov | Controllability of evolution equations[END_REF] using Carleman inequalities. The case where A is a constant matrix, has been considered in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF], where the authors prove a necessary and sufficient condition for the approximate and null controllability. In [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF], a cascade structure of the matrix A(t, x) has been considered and the null controllability for n × n systems has been established by Carleman inequalities, under the following assumptions on the coupling terms: there exists a nonempty open set ω 0 ⊆ ω and a positive constant c 0 such that a i,i-1 > c 0 > 0 in (0, T ) × ω 0 or -a i,i-1 > c 0 > 0 in (0, T ) × ω 0 , ∀i ∈ {2, ..., n}.

(4) This condition implies in particular that Supp a i,i-1 ∩ ω = ∅ for all 2 ≤ i ≤ n. The null controllability in the general case Supp a i,i-1 ∩ ω = ∅ remains an open problem. One of the recent steps in this direction has been established for two parabolic equations (n = 2) in [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF], where the authors analyze the distributed and boundary controllability of system (3) under the following assumption on the structure:

D := I d , A(x) := 0 q(x) 0 0 , C := B := 0 1
and Ω := (0, 1).

Under the assumptions

Supp q ∩ ω = ∅,

1 0 q(x)| sin(kπx)| 2 dx + a 0 q(x)| sin(kπx)| 2 dx = 0, D := diag(1, d), d > 0 and d = 1, A := 0 1 0 0 , C := 0 1
and Ω := (0, 1).

The authors prove the existence of a minimal time of null controllability, given by the index of condensation (see Definition 2.1 below) of the sequence of eigenvalues Λ = {k 2 π 2 , d kπ 2 } k≥0 of the system. Systems ( 1) and ( 2) are particular cases of system (3) with N = 1, n = 2, m = 1, D := I d , A(t, x) := H q(x), with H ∈ L(R 2 ) and Ω = (0, 1).

In this paper we consider the case when H is a diagonalizable matrix with two distinct real eigenvalues µ 1 , µ 2 ∈ R. System (1) and ( 2) have been studied in [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF] when the matrix H has λ = 0 as a unique eigenvalue. The approach followed in this paper is close to that developed in [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF]. However, due to the structure of the matrix H, new and interesting mathematical difficulties arise.

Remark 1.1. In the case when q(x) = q is constant, it is shown in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF] that system (1) is null controllable if and only if the Kalman rank condition

det B, H B = 0, (5) 
holds. For system (2), this condition ( 5) is necessary for both approximate and null controllability (see [START_REF] Khodja | Recent results on the controllability of linear coupled parabolic problems: a survey Math[END_REF]Remark 25]).

In the case when q ∈ L 2 (0, 1) is a given function, observe that conditions q ≡ 0 and (5) are necessary for both approximate controllability and null controllability for systems (1) and (2).

After an appropriate change of variables, observe that the controllability of systems (1) and ( 2) is equivalent to the controllability of the following systems:

     ∂ t y + Ly = 1 ω B u in Q T := (0, T ) × (0, 1), y(•, 0) = 0, y(•, 1) = 0 on (0, T ), y(0, •) = y 0 in (0, 1), (6) 
and

     ∂ t y + Ly = 0 in Q T , y(•, 0) = B v(t), y(•, 1) = 0 on (0, T ), y(0, •) = y 0 in (0, 1), (7) 
where the operator (L, D(L)) and the vector B ∈ R 2 are respectively given by:

L := -∆ + µ 1 q 0 0 -∆ + µ 2 q , D(L) = H 2 (0, 1; R 2 ) ∩ H 1 0 (0, 1; R 2 ), (8) 
and

B = (b 1 , b 2 ) T = (0, 0), with b 1 , b 2 a real coefficients. Remark 1.2.
Note that in this case, the Kalman rank condition (5) and condition q ≡ 0 read as

q ≡ 0 and b 1 b 2 (µ 1 -µ 2 ) = 0, (9) 
for ( 6) when L is given by [START_REF] Coron | Control and nonlinearity[END_REF]. Following Remark 1.1, ( 9) is necessary for the null controllability of system (1) at time T > 0. In fact, the algebraic Kalman condition [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF] and condition (4), i.e., there exists a nonempty open subset ω 0 ⊆ ω and a positive constant c 0 > 0, such that q(x) > c 0 or q(x) < -c 0 in ω 0 , imply the approximate and null controllability of system (1) at time T > 0. On the other hand, if Supp q ∩ ω = ∅, the distributed controllability of system (1) has been studied in [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF] when H has a unique eigenvalue, λ = 0, with geometric multiplicity 1.

We can also deduce that conditions [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] are necessary for the controllability of (7) when L is given by [START_REF] Coron | Control and nonlinearity[END_REF]. Again, the controllability of (2) has been studied in [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF] when H has λ = 0 as a unique eigenvalue with geometric multiplicity 1.

The main novelty of this paper is to consider H with different eigenvalues and Supp q ⊂ [0, a] or Supp q ⊂ [b, 1],

for system [START_REF] Khodja | Recent results on the controllability of linear coupled parabolic problems: a survey Math[END_REF]. We are going to see that, under assumption (10), it appears a minimal time T 0 (q) ∈ [0, +∞].

Let us denote by σ(L i ) = {λ i,k } k≥1 , with i = 1, 2, the set of eigenvalues corresponding to the operators (L i , D(L i )) for i = 1, 2, defined by

L i = -∂ xx + µ i q, D(L i ) = H 2 (0, 1) ∩ H 1 0 (0, 1). (11) 
The main result of this paper is the following one:

Theorem 1.1. Let us consider (L, D(L))
given by (8), B ∈ R 2 and q ∈ L 2 (0, 1), a given function. Let us assume that conditions (9) hold. In addition, let us suppose that (10) is satisfied for system [START_REF] Khodja | Recent results on the controllability of linear coupled parabolic problems: a survey Math[END_REF]. Then, one has:

1. Systems (6) and [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] are approximately controllable at time T if and only

if σ(L 1 ) ∩ σ(L 2 ) = ∅. ( 12 
)
2. Assume that condition [START_REF] Fursikov | Controllability of evolution equations[END_REF] holds and define

T 0 (q) := lim sup n→+∞ - ln |λ 1,n -λ 2,n | λ 1,n . (13) 
Then, (a) If T > T 0 (q) systems ( 6) and [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] are null controllable at time T . (b) If T < T 0 (q) systems ( 6) and (7) are not null controllable at time T .

Remark 1.3. The controllability result of system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] has been already proved in [4, Th 2.5, p. 12] by means of condensation grouping. In fact, we will prove that T 0 (q) may take any value of [0, +∞] (see Remark 6). For the sake of completeness we will provide a proof of the controllability result of system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]. Remark 1.4. To prove the approximate controllability result, we carry out an analysis of the properties of the eigenfunctions of (L, D(L)) (see section 2.1) for system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] and, under the geometrical condition (10) on the function q ∈ L 2 (0, 1) for system [START_REF] Khodja | Recent results on the controllability of linear coupled parabolic problems: a survey Math[END_REF]. We establish a necessary and sufficient condition (12) that characterizes the approximate controllability property for systems ( 6) and [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]. Thus, ( 12) is a necessary condition for the null controllability of these systems at time T > 0. Observe that this condition does not depend on the final time T . Remark 1.5. From the expressions of eigenvalues λ 1,k , λ 2,k of (L, D(L)) (see ( 18)), we can deduce that, under assumption

1 0 q(x) dx = 0, (14) 
there exists k ∈ N * such that

λ 1,k = λ 2,l , ∀k, l ≥ k ,
In particular, condition [START_REF] Fursikov | Controllability of evolution equations[END_REF] holds (apart from a finite number of Fourier modes) and we can deduce that T 0 (q) = 0. As a consequence, under condition [START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF], we deduce the existence of a finite-dimensional space X ⊂ L 2 (0, 1; R 2 ) such that one has the null controllability of ( 6) and [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] at any time T > 0 if y 0 ∈ X ⊥ . Remark 1.6. In the case of boundary controllability, we will see in section 6, that there exists a function q ∈ L 2 (0, 1), such that T 0 (q) > 0. In fact, T 0 (q) may take any value in [0, +∞]. This paper is organized as follows: In Section 2, we recall some preliminary results related to the spectrum of the operator (L, D(L)), some characterizations of the controllability and a result on the existence of biorthogonal families to real exponentials. Section 3 is devoted to studying the approximate controllability of systems ( 6) and [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]. In Section 4, we prove the existence of a time T 0 (q) such that systems (6) and ( 7) are null controllable for any T > T 0 (q). Finally, in Section 5, we prove that systems (6) and [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] are not null controllable when T < T 0 (q).

Preliminary results

In this paper, we denote by •, • H -1 ,H 1 0 the usual duality pairing between H -1 (0, 1; R 2 ) and H 1 0 (0, 1; R 2 ) and by •, • L 2 the scalar product of either L 2 (0, 1; R 2 ) or L 2 (0, 1; R), with norm denoted by • L 2 .

In this section, we give some spectral properties of the operator (L, D(L)) which will be used later. We also recall some controllability properties of systems ( 6) and [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] and we finish by recalling a known result on the existence and bounds of biorthogonal families to real exponentials.

Spectral properties

Theorem 2.1. Let q ∈ L 2 (0, 1), λ ∈ C and consider the following initial value problem:

-p + q p = λ p in (0, 1),

p(0) = 0, p (0) = 1. (15) 
Then, problem (15) admits a unique solution p ∈ H 2 (0, 1) which is the solution of the Volterra equation:

p(x) = sin( √ λx) √ λ + x 0 sin( √ λ(x -t)) √ λ q(t) p(t) dt, ∀x ∈ (0, 1). ( 16 
)
We denote by p(•, λ, q) the solution of ( 15), corresponding to λ ∈ C and the function q ∈ L 2 (0, 1). We now recall some well-known properties concerning the spectrum of the Sturm-Liouville problem.

Proposition 2.1. The operators (L i , D(L i )), given by [START_REF] Fernández-Cara | Boundary controllability of parabolic coupled equations[END_REF], with i = 1, 2, are selfadjoint and admit an increasing sequence of eigenvalues σ(L i ) := {λ i,k } k≥1 ⊂ R, i = 1, 2, with the following properties:

λ i,1 < λ i,2 < ... < λ i,k < λ i,k+1 < ..., with lim k→+∞ λ i,k = +∞, (17) 
and

λ i,k = π 2 k 2 + µ i 1 0 q(x) dx -µ i 1 0 cos(2kx) q(x) dx + O 1 k , (18) 
for k → ∞. Furthermore, if ϕ i,k is the normalized eigenfunction associated to λ i,k with i=1,2, then, the sequence {ϕ i,k } k≥1 is an orthonormal basis of L 2 (0, 1). Moreover

ϕ i,k (x) = p(x, λ i,k , µ i q) ||p(•, λ i,k , µ i q)|| L 2 , ∀k ≥ 1, x ∈ (0, 1), with i = 1, 2, (19) 
with the following asymptotic behavior:

     p(x, λ i,k , µ i q) = sin( √ λ i,k x) √ λ i,k + O 1 k 2 , ||p(•, λ i,k , µ i q)|| L 2 = 1 √ 2λ i,k 1 + O 1 k , (20) 
and

ϕ i,k (x) = √ 2 sin(kπx) + O 1 k , ϕ i,k (x) = √ 2πk cos(kπx) + O(1), (21) 
as k → ∞ uniformly for x ∈ [0, 1].
For a proof of the previous results, we refer to ([14, Th 4.4, p.125, Th 4.10, p.134 and Th 4.11, p.135 ], [START_REF] Pöschel | Inverse spectral theory[END_REF]Th 4,p. 35]).

We deduce that the spectrum of (L, D(L)) is {λ 1,k , λ 2,k ; k ∈ N * }, and the corresponding eigenfunctions are given by:

φ 1,k = ϕ 1,k 0 and φ 2,k = 0 ϕ 2,k , ∀k ≥ 1. (22) 
Moreover the sequence

{φ 1,k , φ 2,k , k ∈ N * } is an orthonormal basis of L 2 (0, 1; R 2 ).

Controllability properties

Let us introduce the adjoint problem associated to systems ( 6) and ( 7):

     -∂ t ψ + Lψ = 0 in Q T , ψ(•, 1) = 0, ψ(•, 0) = 0 on (0, T ), ψ(T, •) = ψ 0 in (0, 1), (23) 
where

ψ 0 ∈ L 2 (0, 1; R 2 ) or ψ 0 ∈ H 1 0 (0, 1, R 2
) is a given initial datum. Let us first see that system (23) is well posed, in the following sense:

Proposition 2.2. For all ψ 0 ∈ L 2 (0, 1; R 2 ) system (23) admits a unique solu- tion ψ ∈ L 2 (0, T ; H 1 0 (0, 1, R 2 )) ∩ C 0 ([0, T ]; L 2 (0, 1; R 2 )), given by ψ(t, •) = k≥1 e -λ 1,k (T -t) ψ 0 , φ 1,k L 2 φ 1,k + e -λ 2,k (T -t) ψ 0 , φ 2,k L 2 φ 2,k . Moreover, if ψ 0 ∈ H 1 0 (0, 1; R 2 ), then the solution satisfies ψ ∈ L 2 (0, T ; H 2 (0, 1; R 2 ) ∩ H 1 0 (0, 1; R 2 )) ∩ C 0 ([0, T ]; H 1 0 (0, 1; R 2 )).
The next proposition, provides a general characterizations of the controllability properties related to systems ( 6) and ( 7).

Proposition 2.3.

1. System (6) is approximately controllable at time T > 0 if and only if, the following unique continuation property holds:

"If ψ is the solution of the adjoint problem (23) associated to ψ 0 ∈ L 2 (0, 1; R 2 ) and B * ψ = 0 in (0, T ) × ω, then, one has ψ 0 ≡ 0 in (0, 1)." (24) 
2. System (6) is null controllable at time T > 0, if and only if there exists C > 0 such that the observability inequality

||ψ(0, •)|| 2 L 2 ≤ C (0,T )×ω |B * ψ(t, x)| 2 dx dt (25) 
holds for every ψ 0 ∈ L 2 (0, 1; R 2 ), where ψ is the corresponding solution of (23).

3. System [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] is approximately controllable at time T > 0, if and only if, the following unique continuation property holds:

"If ψ is the solution of the adjoint problem (23) associated to ψ 0 ∈ H 1 0 (0, 1; R 2 )and B * ∂ x ψ(t, 0) = 0 on (0, T ), then, one has ψ 0 ≡ 0 in (0, 1)." (26) 
4. System [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] is null controllable at time T > 0, if and only if, there exists C > 0 C such that the observability inequality

||ψ(0, •)|| 2 H 1 0 (0,1;R 2 ) ≤ C T 0 |B * ∂ x ψ(t, 0)| 2 dt (27)
holds for every ψ 0 ∈ H 1 0 (0, 1; R 2 ), where ψ is the associated solution of (23).

For a proof of the previous results see for instance [START_REF] Coron | Control and nonlinearity[END_REF], [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] or [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF].

Biorthogonal family and condensation index

In this subsection, we study the existence of a biorthogonal family to the real exponentials in L 2 (0, T ).

Let us consider a sequence

Λ = {λ k } k≥1 ⊂ R * + satisying      λ k < λ k+1 , ∀k ≥ 1, k≥1 1 λ k < +∞. . ( 28 
)
Definition 2.1. The index of condensation of the sequence Λ = {λ k } k≥1 is defined by:

c(Λ) = lim sup k→+∞ 1 λ k ln 1 |C (λ k )| ∈ [0, +∞], (29) 
where

C(λ) := k≥1 1 - λ 2 λ 2 k ( 30 
)
is called the interpolation function.

This definition was introduced by V. Bernstein in [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] to study the overconvergence of Dirichlet series (see [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] and [START_REF] Shackell | Overconvergence of Dirichlet series with complex exponents[END_REF]).

Proposition 2.4. Let us consider a sequence Λ = {λ k } k≥1 ∈ R * + satisfying (28). Then, there exists a biorthogonal family {q k } k≥1 in L 2 (0, T ) to {e -λ k t } k≥1 , i.e., T 0 q k (t) e -λj t dt = δ k,j , ∀k, j ∈ N.
Moreover, for any ε > 0, there exists a constant C ε > 0 such that

q k L 2 ≤ C ε e (c(Λ)+ε)λ k , ∀k ≥ 1 (31)
where c(Λ) is given by (29) .

For a proof of this result, we refer to [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF].

Approximate controllability

This section is devoted to the proof of the first item of Theorem 1.1. To study the approximate controllability of systems ( 6) and ( 7), we use the properties of the spectrum of the operator (L, D(L)) (see ( 8)) given by Proposition 2.1.

Approximate controllability for system (6)

We recall that ϕ i,k is given by [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF] with p(•, λ i,k , µ i q) given by (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and ( 16))

p(x, λ i,k , µ i q) = sin( λ i,k x) λ i,k + µ i x 0 sin( λ i,k (x -s)) λ i,k q(s) p(s) ds,
for any x ∈ (0, 1), k ≥ 1 and i = 1, 2. In particular

-p (•, λ i,k , µ i q) + µ i q(•) p(•, λ i,k , µ i q) = λ i,k p(•, λ i,k , µ i q) in (0, 1),
and p(1, λ i,k , µ i q) = p(0, λ i,k , µ i q) = 0. Using an integration by parts in

1 0 sin λ i,k (x -s) λ i,k (-p (s)+µ i q(s) p(s)) ds = λ i,k 1 0 sin λ i,k (x -s) λ i,k p(s) ds,
one gets

µ i 1 0 sin λ i,k (x -s) λ i,k q(s) p(s) ds = - sin( λ i,k x) λ i,k + p i,k (1) sin( λ i,k (x -1)) λ i,k ,
where p i,k (1) = p (1, λ i,k , µ i q). Then we can write for all x ∈ (0, 1)

and k ∈ N * that p(x, λ i,k , µ i q) = p i,k (1) sin( λ i,k (x -1)) λ i,k +µ i x 1 sin( λ i,k (x -s)) λ i,k q(s)p(s) ds.
Using [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF], we deduce that if Supp q ⊂ (0, a) then the eigenfunctions of (L i , D(L i )), with i=1,2, satisfy

ϕ i,k (x) = p i,k (1) sin( λ i,k (x -1)) λ i,k ||p(•, λ i,k , µ i q)|| L 2 = ϕ i,k (1) sin( λ i,k (x -1)) λ i,k , ∀x ∈ ω, (32) 
and if Supp q ⊂ (b, 1) then

ϕ i,k (x) = sin( λ i,k x) λ i,k ||p(•, λ i,k , µ i q)|| L 2 , ∀x ∈ ω. (33) 
In this subsection, we assume that Supp q ⊂ (b, 1), the case Supp q ⊂ (0, a) can be treated in the same way.

Necessary condition Let us fix T > 0 and assume that condition [START_REF] Fursikov | Controllability of evolution equations[END_REF] does not hold, i.e., there exist k 0 , j 0 ∈ N such that λ 1,k0 = λ 2,j0 = λ. Thus

ϕ 1,k0 (x) = α j0,k0 ϕ 2,j0 (x), ∀x ∈ ω, with α j0,k0 = ||p(•, λ 2,j0 , µ 1 q)|| L 2 ||p(•, λ 1,k0 , µ 2 q)|| L 2 .
Let us consider

ψ 0 := b 2 φ 1,k0 -α j0,k0 b 1 φ 2,j0 , with {φ i,k } k≥1 , i = 1, 2,
given by ( 22). Then, the associated solution of the adjoint problem ( 23) is given by

ψ(t, x) = e λ(T -t) b 2 φ 1,ko (x)-e λ(T -t) b 1 α j0,k0 φ 2,j0 (x), ∀(t, x) ∈ (0, T )×ω.
In particular, if (t, x) ∈ (0, T ) × ω, this function satisfies

B * ψ(t, x) = e -λ(T -t) (b 1 b 2 ϕ 1,k0 (x) -b 1 b 2 α j0,k0 ϕ 2,j0 (x)) = 0,
but ψ 0 = 0. We deduce by Proposition 2.3 that the system (6) is not approximately controllable at time T > 0.

Sufficient condition Let us now assume that (12) holds and consider ψ 0 ∈ L 2 (0, 1; R 2 ), such that the corresponding solution to the adjoint problem (23) satisfies

B * ψ(t, x) = 0, in (0, T ) × ω. Using Proposition 2.2, ψ ∈ L 2 (0, T, H 1 0 (0, 1, R 2 )) ∩ C 0 ([0, T ]; L 2 (0, 1, R 2 )) and k≥1 b 1 e -λ 1,k (T -t) ψ 0 , φ 1,k L 2 ϕ 1,k +b 2 e -λ 2,k (T -t) ψ 0 , φ 2,k L 2 ϕ 2,k = 0 in (0, T ) × ω.
Without loss of generality, let us assume that λ i,k > 0, for all k ≥ 1 and i = 1, 2. Under the assumption [START_REF] Fursikov | Controllability of evolution equations[END_REF], the sequence Λ = {λ 1,k , λ 2,k } k≥1 can be ordered increasingly and then satisfies condition (28). Using Proposition 2.4, there exists a family {q 1,k (t), q 2,k (t)} k≥1 biorthogonal to {e -λ 1,k t , e -λ 2,k t } k≥1 in L 2 (0, 1).

Therefore, for all x ∈ ω = (a, b) and k ≥ 1, one has :

0 = T 0 B * ψ(t, x) q 1,k (t) dt = b 1 ψ 0 , φ 1,k L 2 ϕ 1,k (x), 0 = T 0 B * ψ(t, x) q 2,k (t) dt = b 2 ψ 0 , φ 2,k L 2 ϕ 2,k (x).
Since the eigenfunctions {ϕ 1,k } k≥1 , {ϕ 2,k } k≥1 has exactly k + 1 roots in [0, 1] (see (32) and (33)), one has necessarily

ψ 0 , φ i,k L 2 = 0, ∀k ≥ 1, i = 1, 2.
By completeness of the eigenfunctions (see ( 22)), we deduce that ψ 0 = 0 on (0, 1). Thus by Proposition 2.3, we deduce that the system ( 6) is approximately controllable at any time T > 0.

Remark 3.1. The operator L may contain negative eigenvalues, but by [START_REF] Shackell | Overconvergence of Dirichlet series with complex exponents[END_REF] there exists k ∈ N such that for all k ≥ k , λ i,k > 0, taking m large enough and λ i,k = λ i,k + m > 0, we obtain a strictly positive increasing sequence.

Approximate controllability for the system (7)

Let us fix T > 0 and consider the system (7) (without assumption [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF], on the support of the function q). Necessary condition Let us assume that condition [START_REF] Fursikov | Controllability of evolution equations[END_REF] does not hold, i.e., that there are k 0 , j 0 ∈ N such that λ 1,k0 = λ 2,j0 = λ. Let us take

ψ 0 (x) = a φ 1,k0 (x) + b φ 2,j0 (x), ∀x ∈ (0, 1), (a, b) ∈ R 2 .
Thus the solution of the adjoint problem (23) associated to ψ 0 is given by

ψ(t, x) = a e -λ(T -t) φ 1,k0 (x) + b e -λ(T -t) φ 2,j0 (x), ∀(t, x) ∈ Q T .
Then

B * ∂ x ψ(t, 0) = a b 1 e -λ(T -t) ϕ 1,k0 (0) + b b 2 e -λ(T -t) ϕ 2,j0 (0) 
, ∀t ∈ (0, T ).

Taking a = b 2 ϕ 2,j0 (0) and b = -b 1 ϕ 1,k0 (0),
we obtain B * ∂ x ψ(t, 0) = 0 on (0, T ). On the other hand, from ( 9), ( 15) and ( 19), we deduce ϕ i,k (0) = 0, for all k ≥ 1, and ψ = 0. So, system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] is not approximately controllable at time T > 0.

Sufficient condition Let us now suppose that condition [START_REF] Fursikov | Controllability of evolution equations[END_REF] holds. Let us take ψ 0 ∈ H 1 0 (0, 1; R 2 ) and assume that the solution of the adjoint problem (23) associated to ψ 0 satisfies

B * ∂ x ψ(t, 0) = 0, ∀t ∈ (0, T ), which implies that k≥1 b 1 e -λ 1,k (T -t) ψ 0 , φ 1,k L 2 ϕ 1,k (0) +b 2 e -λ 2,k (T -t) ψ 0 , φ 2,k L 2 ϕ 2,k (0) = 0, in (0, T ).
The same arguments of the previous subsection lead to

0 = 1 0 B * ∂ x ψ(t, 0) q 1,k (t) dt = b 1 ϕ 1,k (0) ψ 0 , ϕ 1,k L 2 , ∀k ∈ N, 0 = 1 0 B * ∂ x ψ(t, 0) q 2,k (t) dt = b 2 ϕ 2,k (0) ψ 0 , ϕ 2,k L 2 , ∀k ∈ N,
where {q 1,k , q 2,k } k≥1 is the biorthogonal family to {e -λ 1,k t , e -λ 2,k t } k≥1 in L 2 (0, T ). As before, ϕ i,k (0) = 0, for all k ≥ 1. By completeness of eigenfunctions (see ( 22)), we deduce that ψ 0 = 0 on (0, 1). Then the continuation property (26) holds. So, the system ( 7) is approximately controllable. This ends the proof of the first item of Theorem 1.1.

Positive null controllability result

Let us now prove the second part of Theorem 1.1. To this end, we divide the proof into several steps. We first prove the existence of T 0 (q), such that systems (6) and ( 7) are null controllable, when T > T 0 (q), using the moment method (see [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF], [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF]).

The positive null controllability result for the system (6)

Let us take ψ 0,k = φ i,k , with i=1,2 (see ( 22)) as the initial datum of the adjoint system (23), then the associated solutions are given by

ψ i,k (t, x) = φ i,k (x) e -λ i,k (T -t) , (t, x) ∈ Q T , k ≥ 1, i = 1, 2. (34) 
Direct computations give that, for all k ≥ 1 and i = 1, 2

Q T u(t, x) 1 ω B * φ i,k (x) e -λ i,k (T -t) dt dx = y(T, •), φ i,k L 2 -y 0 , φ i,k (•) e -λ i,k T L 2 ,
where y ∈ L 2 (0, T ;

H 1 0 (0, 1; R 2 ))∩C 0 ([0, T ]; L 2 (0, 1; R 2 ))
is the solution of system (6) associated to y 0 .

Observe that by completeness of eigenfunctions, given y 0 ∈ L 2 (0, T ; R 2 ), the control u ∈ L 2 (Q T ) is such that the solution y of system (6) satisfies y(T, •) = 0 if and only if

Q T u(T -t, x) 1 ω b 1 ϕ 1,k (x) e -λ 1,k t dt dx = y 0 , φ 1,k (•) e -λ 1,k T L 2 , ∀k ≥ 1, Q T u(T -t, x) 1 ω b 2 ϕ 2,k (x) e -λ 2,k t dt dx = y 0 , φ 2,k (•) e -λ 2,k T L 2 , ∀k ≥ 1.
(35) Assumption ( 12) and Proposition 2.4 ensure the existence of a biorthogonal family {q 1,k , q 2,k } k≥1 to {e -λ 1,k t , e -λ 2,k t } k≥1 in L 2 (0, T ), which satisfies the following estimate

∀ε > 0, ∃ C ε such that q i,k L 2 (0,T ) ≤ C ε e (c(Λ)+ε)λ i,k , ∀k ≥ 1, i = 1, 2, (36) 
where c(Λ) is the condensation index of the sequence Λ = {λ 1,k , λ 2,k } k≥1 (see (29)). Following the approach of [START_REF] Allonsius | Spectral analysis of discrete elliptic operators and applications in control theory[END_REF], we restrict the control to the following form:

ũ(t, x) = u(T -t, x) = k≥1 (q 1,k (t)ϕ 1,k (x)m 1,k + q 2,k (t)ϕ 2,k (x)m 2,k ), (37) 
where m i,k are coefficients to be determined. We replace u by (37) in (35), one gets, formally:

m i,k b i ω ϕ 2 i,k (x) dx = y 0 , φ i,k (x)e -λ i,k T L 2 , ∀k ≥ 1 and i = 1, 2. Since the eigenfunctions {ϕ 1,k } k≥1 , {ϕ 2,k } k≥1 have exactly k + 1 roots in [0, 1], then ω ϕ 2 i,k dx > 0, ∀k ≥ 1, i = 1, 2, Moreover ω sin(kπx) 2 dx -→ k→+∞ b -a > 0.
Using (21), we deduce that there exists C > 0 such that

inf k≥1 |b i ω ϕ 2 i,k dx| ≥ C > 0. (38) 
Let us define:

m i,k := y 0 , φ i,k (x) L 2 e -λ i,k T b i ω ϕ 2 i,k dx , ∀k ≥ 1, i = 1, 2.
Let us now prove that ũ ∈ L 2 (Q T ), that is to say, the convergence of the series (37) in L 2 (Q T ). Estimate (36) of q i,k L 2 (0,T ) and (38), lead to :

ũ L 2 (Q T ) ≤ C ε y 0 L 2 C k≥1 e -λ 1,k (T -c(Λ)-ε) + e -λ 2,k (T -c(Λ)-ε) . Let T > c(Λ). Taking ε = T -c(Λ)
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, one has

ũ L 2 (Q T ) ≤ C ε y 0 L 2 C k≥1 2 i=1 e -λ i,k ( T -c(Λ) 2 ) < ∞. (39) 
This inequality shows that if T > c(Λ), then u ∈ L 2 (Q T ). We deduce that system (6) is null controllable at time T > c(Λ). To conclude with Item (a) of Theorem 1.1, it remains to show that c(Λ) = T 0 (q), where T 0 (q) is given by ( 13).

Lemma 4.1. Assume that condition (12) holds. Let Λ = {λ 1,k , λ 2,k , k ∈ N}, then:

c(Λ) = T 0 (q) = lim sup k→+∞ - ln |λ 1,k -λ 2,k | λ 1,k . (40) 
Proof. Observe that from the expressions of λ 1,k and λ 2,k (see ( 18)), we deduce:

lim k→∞ |λ 1,k+1 -λ 2,k | = lim k→∞ |λ 2,k+1 -λ 1,k | = +∞.
and

lim k→+∞ |λ 1,k -λ 2,k | = (µ 1 -µ 2 ) 1 0 q(x) dx .
We deduce by the previous properties that there exists an integer k 0 such that for all k ≥ k 0 , one has

max i=1,2 λ i,k < min i=1,2 λ i,l , ∀l > k, (l, k) ∈ N 2 .
Therefore the sequence Λ can be rearranged into an increasing sequence {λ k } k≥1 defined by

{λ k } 1≤k≤2k0-2 = {λ 1,k } 1≤k≤k0-1 ∪ {λ 2,k } 1≤k≤k0-1 , such that λ k < λ k+1 , ∀ 1 ≤ k ≤ 2k 0 -3
and, from the (2k 0 -1)-th term, by

   λ 2k0+2k-1 = min i=1,2 λ i,k0+k , ∀ k ≥ 0, λ 2k0+2k = max i=1,2 λ i,k0+k , ∀ k ≥ 0.
Without loss of generality, we can assume that k 0 = 1, that is to say

Λ := {λ k , k ≥ 1}, with λ 2k-1 = min i=1,2 λ i,k and λ 2k = max i=1,2 λ i,k , ∀k ≥ 1.
Observe that we can write λ 2k-1 = k 2 π 2 + α k and λ 2k = k 2 π 2 + β k , with

lim k→∞ α k = µ i 1 0
q(x) dx, and lim k→∞

β k = µ j 1 0 q(x) dx,
for some i, j ∈ {1, 2}. Then there exists

M > 0 such that α k , β k ∈ [-M, M ]. Let λ k ∈ Λ.
Using the expression (30), one has

|C (λ k )| = 2 λ k j =k 1 - λ 2 k λ 2 j .
From the previous expression, we deduce:

ln |C (λ k )| λ k = ln |λ k-1 -λ k | λ k + ln |λ k+1 -λ k | λ k + 1 λ k ln 2(λ k+1 + λ k )(λ k-1 + λ k ) λ k λ 2 k-1 λ 2 k+1 + F k + G k , (41) 
where

F k = j<k-1 1 λ k ln λ 2 k λ 2 j -1 and G k = j>k+1 1 λ k ln 1 - λ 2 k λ 2 j .
From the definition of λ k , one gets

lim k→∞ 1 λ k ln 2(λ k+1 + λ k )(λ k-1 + λ k ) λ k λ 2 k-1 λ 2 k+1 = 0.
On the other hand, assume that one has:

lim k→+∞ F k = lim n→+∞ G k = 0. (42) 
Coming back to (41) we deduce

lim sup k→+∞ - ln |C (λ k )| λ k = lim sup k→+∞ -(a k + b k ),
where

a k = ln |λ k-1 -λ k | λ k and b k = ln |λ k+1 -λ k | λ k . Since lim k→∞ b 2k = lim k→∞ a 2k-1 = 0, one has lim sup k→+∞ -(a 2k + b 2k ) = lim sup k→+∞ - ln |λ 1,k -λ 2,k | λ 2k , lim sup k→+∞ -(a 2k-1 + b 2k-1 ) = lim sup k→+∞ - ln |λ 1,k -λ 2,k | λ 2k-1 .
This implies the identity (40) and would finalyze the proof of Lemma 4.1. Therfore, our next task will be to prove (42).

Study of F

k : Notice that |F k | ≤ j<k-1 λ k > √ 2λ j 1 λ k ln λ 2 k λ 2 j -1 + j<k-1 λ k < √ 2λ j 1 λ k ln λ 2 j λ 2 k -λ 2 j ,
The first term in the right-hand side of the previous inequality, is estimated by

j<k-1 λ k > √ 2λ j 1 λ k ln λ 2 k λ 2 j -1 ≤ j<k-1 λ k > √ 2λ j 1 λ k ln λ 2 k λ 2 1 -1 = k -1 λ k ln λ 2 k λ 2 1 -1 ≤ 2(k-1) ln λ k /λ 1 λ k ,
and the second term is estimated by

j<k-1 λ k < √ 2λ j 1 λ k ln λ 2 j λ 2 k -λ 2 j ≤ j<k-1 λ k < √ 2λ j 1 λ k ln λ 2 j λ 2 k -λ 2 k-2 ≤ k -1 λ k ln λ 2 k λ 2 k -λ 2 k-2
.

Therefore, lim

k→+∞

|F k | = 0. 2. Study of G k : Notice that |G k | = j>k+1 1 λ k ln 1 - λ 2 k λ 2 j ≤ j>k+1 1 λ k ln λ 2 j λ 2 j -λ 2 k = j>k+1 1 λ k ln 1 + λ 2 k λ 2 j -λ 2 k .
Using the inequality ln(1 + x) ≤ x, when x > 0, one has

|G k | ≤ j>k+1 1 λ k ln 1 + λ 2 k λ 2 j -λ 2 k ≤ j>k+1 λ k (λ j -λ k )(λ j + λ k ) ≤ j>k+1 1 (λ j -λ k )
.

(43) Let us analyse the series in the right-hand side of inequality (43). This series can be written as

j>k+1 1 (λ j -λ k ) = j=2n-1≥k+2 1 (λ 2n-1 -λ k ) + j=2n≥k+2 1 (λ 2n -λ k ) .
Thus, from the assumptions on the sequences {λ 1,k } k≥1 and {λ 2,k } k≥1 , we can write:

|G 2k-1 | ≤ n≥k+1 1 (n 2 π 2 + α n -k 2 π 2 -α k ) + n≥k+1 1 (n 2 π 2 + β n -k 2 π 2 -α k )
and

|G 2k | ≤ n≥k+2 1 (n 2 π 2 + α n -k 2 π 2 -β k ) + n≥k+1 1 (n 2 π 2 + β n -k 2 π 2 -β k )
.

It is not difficult to see that if k ≥ 4M -π 2 2π 2 , then 0 ≤ 1 n 2 π 2 + x -k 2 π 2 -y ≤ 2 n 2 π 2 -k 2 π 2 , ∀n ≥ k + 1, ∀x, y ∈ [-M, M ].
Taking into account that α n , β n ∈ [-M, M ] for any n ≥ 1, from the previous inequality, one has:

|G 2k-1 | ≤ 4 n≥k+1 1 n 2 π 2 -k 2 π 2 = 4 i≥1 1 (k + i) 2 π 2 -k 2 π 2 = 4 π 2 i≥1 1 i 2 + 2ki ≤ 4 π 2 1 1 + 2k + +∞ 1 1 t 2 + 2kt dt = 4 π 2 1 1 + 2k + 1 2k ln(1 + 2k) .
A similar inequality can be obtained for |G 2k |. In particular, we can infer

lim k→∞ |G 2k-1 | = lim k→∞ |G 2k | = 0.
This ends the proof.

Positive null controllability result for system (7)

Let us now analyze the null controllability of system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]. To this end, assume that T 0 (q) < +∞ ( T 0 (q) is given in [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF] and satisfies (40)) and fix T > T 0 (q). Our objective is, again, to formulate the null controllability for system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] as a moment problem for the control v ∈ L 2 (0, T ).

Let us take

ψ 0 = φ i,k , k ∈ N * , with i = 1, 2.
Then the corresponding solutions of the adjoint system (23) are given by (34). Thus, given y 0 ∈ H -1 (0, 1; R 2 ), v ∈ L 2 (0, T ) drives the solution y of system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] to zero at time

T if and only if v ∈ L 2 (0, T ) satisfies T 0 v(T -t) b i ϕ i,k (0) e -λ i,k t dt = -y 0 , φ i,k (x)e -λ i,k T H -1 ,H 1 0 , (44) 
for any k > 1, and i = 1, 2. As in the previous subsection (under condition ( 12)), we will solve the moment problem (44) using the biorthogonal family {q 1,k , q 2,k } k≥1 to {e -λ 1,k t , e -λ 2,k t } k≥1 in L 2 (0, T ) provided by Proposition 2.4. We seek a solution of (44) under the form

ṽ(t) = v(T -t) = k≥1 q 1,k (t) d 1,k + q 2,k (t) d 2,k , (45) 
where d i,k is obtained formally by replacing (45) in (44):

d i,k = -y 0 , φ i,k (x) H -1 ,H 1 0 e -λ i,k T b i ϕ i,k (0) , ∀k ≥ 1, i = 1, 2.
It remains to prove that ṽ ∈ L 2 (0, T ). Using (45) one has

||ṽ|| L 2 (0,T ) ≤ ||y 0 || H -1 k≥1 ||φ 1,k || H 1 0 b 1 |ϕ 1,k (0)| e -λ 1,k T ||q 1,k || L 2 (0,T ) + ||φ 2,k || H 1 0 b 2 |ϕ 2,k (0)| e -λ 2,k T ||q 2,k || L 2 (0,T ) , (46) 
Using the asymptotic behavior of eigenfunctions (see ( 21)), one has

ϕ i,k (0) = √ 2πk + O(1), i = 1, 2, ||ϕ i,k || L 2 = (π 2 k 2 + O(1)) 1 2 , i = 1, 2, (47) 
as k → ∞ uniformly for x ∈ [0, 1] and q ∈ L 2 (0, 1). Moreover, from the estimate of {q i,k , k ∈ N} (see (31)), inequality (46) implies that for all ε > 0, there exists

C ε > 0, such that ||ṽ|| L 2 (0,T ) ≤ C ε ||y 0 || H -1 k≥1 ||φ 1,k || H 1 0 b 1 |ϕ 1,k (0)| e -λ 1,k (T -c(Λ)-ε) + ||φ 2,k || H 1 0 b 2 |ϕ 2,k (0)| e -λ 2,k (T -c(Λ)-ε) . Since T > T 0 (q) = c(Λ), taking ε = T -c(Λ)
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, we deduce that ṽ ∈ L 2 (0, T ) and system ( 7) is then null controllable at time T . This ends the positive null controllability result for system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF].

5 Negative null controllability result for system (6) and [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] In this section, we prove Item (b) of Theorem 1.1. Let us assume that T 0 (q) > 0.

Arguing by contradiction, we prove the negative null controllability result of the systems ( 6) and ( 7) when T < T 0 (q).

Negative null controllability result for system (6)

By Proposition 2.3, system (6) is null controllable at time T if and only if any solution ψ of the adjoint system (23) satisfies the observability inequality (25).

Let us consider

ψ 0,k := a φ 1,k + b φ 2,k , ∀k ≥ 1,
with a, b ∈ R. So, the corresponding solution ψ k of the adjoint system (23) is

ψ k (t, x) = a e -λ 1,k (T -t) φ 1,k (x) + b e -λ 2,k (T -t) φ 2,k (x), ∀(t, x) ∈ Q T . (48) 
From (25), if system (6) is null controllable at time T , there exists C > 0 such that for all k ≥ 1 and (a, b) ∈ R 2 one has:

a 2 e -2λ 1,k T +b 2 e -2λ 2,k T ≤ C T 0 ω b 1 a ϕ 1,k e -λ 1,k (T -t) + b 2 b ϕ 2,k e -λ 2,k (T -t) 2 dx dt.
In terms of quadratic forms, the previous inequality is equivalent to

e -2 L k T ≤ C Q k,T , ∀k ≥ 1, (49) 
where

L k := λ 1,k 0 0 λ 2,k and Q k,T := T 0 e -L k (T -t) B k e -L k (T -t) dt, ∀k ≥ 1, with B k := b 2 1 ||ϕ 1,k || 2 L 2 (ω) b 1 b 2 ϕ 1,k , ϕ 2,k L 2 (ω) b 1 b 2 ϕ 1,k , ϕ 2,k L 2 (ω) b 2 2 ||ϕ 2,k || 2 L 2 (ω)
, ∀k ≥ 1.

Consider the function η defined by

η(s) := e sT -1 s , ∀s > 0. (50) 
Then, inequality (49) can be equivalently written as

1 C I ≤ C k , ∀k ≥ 1, (51) 
where

C k := b 2 1 ϕ 1,k 2 L 2 (ω) η(2λ 1,k ) b 1 b 2 ϕ 1,k , ϕ 2,k L 2 (ω) η(λ 1,k + λ 2,k ) b 1 b 2 ϕ 1,k , ϕ 2,k L 2 (ω) η(λ 1,k + λ 2,k ) b 2 2 ϕ 2,k 2 
L 2 (ω) η(2λ 2,k )
.

The following computations are closely related to [3, Sec. 2.2]. Inequality (51) is equivalent to

inf k≥1 σ k := inf k≥1 inf x =0 (C k x, x) x 2 ≥ C > 0,
where C is a positive constant. Clearly σ k is the smallest eigenvalue of

C k . As C k ∈ L(R 2 ), in particular, det C k T rC k ≤ σ k ≤ 2 det C k T rC k , ∀k ≥ 1,
where T r(C k ) denotes the trace of matrix C k . The objective is to prove that if T < T 0 (q) and for a suitable sequence {k(n)} n∈N , one has

lim n→∞ det C k(n) T rC k(n) = 0, (52) 
in order to contradict (51) and then deduce that the system (6) is not null controllable at time T . To this end, we will study the asymptotic behavior of

det C k
T rC k which depends on the spectrum of (L, D(L)) (see Proposition 2.1). We have

det C k = b 1 2 b 2 2 ϕ 1,k 2 L 2 (ω) ϕ 2,k 2 L 2 (ω) η(2λ 1,k )η(2λ 2,k ) -ϕ 1,k , ϕ 2,k 2 L 2 (ω) η(λ 1,k + λ 2,k ) 2 , (53) 
and

T rC k = b 1 2 ||ϕ 1,k 2 L 2 (ω) η(2λ 1,k ) + b 2 2 ϕ 2,k 2 
L 2 (ω) η(2λ 2,k ). (54) 
Recall that, under assumption ( 9), one has b 1 b 2 = 0 and µ 1 = µ 2 . Let us consider the function g(s) := ln(η(s)) = ln e sT -1 s .

Appliying a Taylor-formula for any s 1 , s 2 > 0, with s 1 ≤ s 2 , one gets

g(2s 1 ) = g(s 1 + s 2 ) + (s 1 -s 2 )g (s 1 + s 2 ) + (s 1 -s 2 ) 2 2 g (s 1 ), g(2s 2 ) = g(s 1 + s 2 ) -(s 1 -s 2 )g (s 1 + s 2 ) + (s 1 -s 2 ) 2 2 g (s 2 ),
where

s 1 , s 2 ∈ [2s 1 , 2s 2 ]. So, g(2s 1 ) + g(2s 2 ) = 2g(s 1 + s 2 ) + (s 1 -s 2 ) 2 2 (g (s 1 ) + g (s 2 )), but inf s∈[2s1,2s2] g (s) ≤ g (s 1 ) + g (s 2 ) 2 ≤ sup s∈[2s1,2s2] g (s).
Since g is continuous, there exists s ∈ [2s 1 , 2s 2 ], such that g (s1)+g (s2) 2 = g (s). We deduce that

η(2s 1 )η(2s 2 ) = η(s 1 + s 2 ) 2 e (s1-s2) 2 (ln(η(s)) ) , ∀s 1 , s 2 > 0, s ∈ [2s 1 , 2s 2 ].
Let us denote by ζ(s) = ln(η(s)) for all s > 0. Then

ζ(s) = 1 s 2 - T 2 (e sT /2 -e -sT /2 ) 2 and T 2 T 2 s 2 + 24 ≤ ζ(s) ≤ 1 s 2 . (55) 
Indeed, observe that

e T s/2 -e -T s/2 = T s + T 3 s 3 24 + T 5 s 5 5! 32 + ... ≥ T s + T 3 s 3 24 = T s 24 (24 + T 2 s 2 ), then ζ(s) ≥ 1 s 2 - 24 2 s 2 (24 + T 2 s 2 ) 2 = T 4 s 4 + 48 T 2 s 2 s 2 (24 + T 2s 2 ) 2 ≥ T 4 s 4 + 24 T 2 s 2 s 2 (24 + T 2 s 2 ) 2 = T 2 T 2 s 2 + 24
, ∀s > 0.

In particular,

η(2λ 1,k ) η(2λ 2,k ) = η(λ 1,k + λ 2,k ) 2 e (λ 1,k -λ 2,k ) 2 ζ(λ k ) , ∀k ≥ 1, (56) 
with

λ k ∈ [λ 1,k , λ 2,k ] and T 2 T 2 λ 2 2,k + 24 ≤ ζ(λ k ) ≤ 1 λ 2 1,k , ∀k ≥ 1, if λ 1,k < λ 2,k , λ k ∈ [λ 2,k , λ 1,k ] and T 2 T 2 λ 2 1,k + 24 ≤ ζ(λ k ) ≤ 1 λ 2 2,k , ∀k ≥ 1, if λ 2,k < λ 1,k .
Coming back to (53) and using the previous expressions, obtain that [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] and (55)), let us write

det C k = b 2 1 b 2 2 η(2λ 1,k ) η(2λ 2,k ) ϕ 1,k 2 L 2 (ω) ϕ 2,k 2 L 2 (ω) -ϕ 1,k , ϕ 2,k 2 L 2 (ω) e -(λ 1,k -λ 2,k ) 2 ζ(λ k ) . Since lim k→∞ (λ 1,k -λ 2,k ) 2 ζ(λ k ) = 0 (see
e -(λ 1,k -λ 2,k ) 2 ζ(λ k ) = 1-(λ 1,k -λ 2,k ) 2 ζ(λ k )- 1 2 (λ 1,k -λ 2,k ) 2 o (λ 1,k -λ 2,k ) 2 ζ(λ k ) .
Thus from the expression of det C k and T rC k (see ( 54)), we deduce

det C k T rC k = N k M k , ∀k ≥ 1, (57) 
where

N k := b 1 2 b 2 2 η(2λ 1,k ) b 1 2 ||ϕ 1,k 2 L 2 (ω) η(2λ 1,k ) + b 2 2 ϕ 2,k 2 L 2 (ω) η(2λ 2,k ) , (58) 
and

M k := η(2λ 2,k ) det G k + (λ 1,k -λ 2,k ) 2 < ϕ 1,k , ϕ 2,k > 2 L 2 (ω) ζ(λ k ) 1 + 1 2 o (λ 1,k -λ 2,k ) 2 ζ(λ k ) . (59) 
In the previous expression G k is the Gram matrix of (

1 ω B * φ 1,k , 1 ω B * φ 2,k ) in L 2 (0, 1; R 2 ), i.e., G k := ϕ 1,k 2 L 2 (ω) ϕ 1,k ϕ 2,k L 2 (ω) ϕ 1,k , ϕ 2,k L 2 (ω) ϕ 2,k 2 L 2 (ω)
, ∀k ≥ 1.

Let us now study the behavior of det G k for k large enough. We assume that Supp q ⊂ (b, 1), the case Supp q ⊂ (0, a) can be treated in the same way. Then (see (20), ( 32) and (33))

ϕ i,k (x) = α i,k sin λ i,k x, ∀x ∈ ω, with α i,k = √ 2 1 + O i ( 1 k ) = √ 2 + O i ( 1 k ), i = 1, 2.
Let us denote by R k := λ 1,k -λ 2,k . Then, for any x ∈ ω, one has

ϕ 1,k (x) = α 1,k sin(( λ 2,k + R k )x) = α 1,k sin ( λ 2,k x) + R k f k (x) = α 1,k α 2,k ϕ 2,k (x) + R k f k (x), ∀k ≥ 1, x ∈ ω,
where f k is given by

f k (x) = α 1,k sin(( λ 2,k + R k )x) -sin λ 2,k x R k , ∀x ∈ ω, ∀k ≥ 1.
Observe that f k can be written as

f k (x) = α 1,k x cos(Θ k,x x) ∀x ∈ ω, for Θ k,x ∈ R.
In particular, for a positive constant C, one gets

|f k (x)| ≤ C, ∀x ∈ ω, ∀k ≥ 1.
Therefore

||ϕ 2,k || 2 L 2 (ω) ||ϕ 1,k || 2 L 2 (ω) = α 2 1,k α 2 2,k ||ϕ 2,k || 4 L 2 (ω) + R 2 k ||ϕ 2,k || 2 L 2 (ω) f k 2 L 2 (ω) + 2 α 1,k α 2,k R k f k , ϕ 2,k L 2 (ω) ||ϕ 2,k || 2 L 2 (ω)
and

ϕ 2,k , ϕ 1,k 2 L 2 (ω) = α 2 1,k α 2 2,k ||ϕ 2,k || 4 + R 2 k f k , ϕ 2,k 2 L 2 (ω) + 2 α 1,k α 2,k R k ||ϕ 2,k || 2 f k , ϕ 2,k L 2 (ω) .
We can conclude det

G k = R 2 k I k , (60) 
where

I k = ||ϕ 2,k || 2 L 2 (ω) ||f k || 2 L 2 (ω) -f k , ϕ 2,k 2 L 2 (ω)
satisfies |I k | ≤ C for any k ≥ 1, with C a positive constant. In particular, we deduce

det G k = O(R 2 k ) = O (λ 1,k -λ 2,k ) 2 ( λ 1,k + λ 2,k ) 2 , as k → ∞. (61) 
Coming back to the expressions of N k and M k given by ( 58) and (59), we observe that

lim k→∞ η(2λ 1,k ) η(2λ 2,k ) = 1, (62) 
(η given in (50)). We deduce that

     lim k→∞ N k = lim k→∞ b 2 1 b 2 2 η(2λ 1,k ) b1 2 ||ϕ 1,k 2 L 2 (ω) η(2λ 1,k )+b2 2 ϕ 2,k 2 L 2 (ω) η(2λ 2,k ) = b 2 1 b 2 2 2(b-a)(b 2 1 +b 2 2 ) . (63) 
On the other hand, by (61), one has

M k = η(2λ 2,k )(λ 1,k -λ 2,k ) 2 O 1 ( λ 1,k + λ 2,k ) 2 + ϕ 1,k , ϕ 2,k L 2 (ω) ζ(λ k )(1 + o (λ 1,k -λ 2,k ) 2 ζ(λ k ) ) . Observe that η(2λ 2,k )(λ 1,k -λ 2,k ) 2 = 1 -e -2λ 2,k T 2λ 2,k e 2λ 2,k (T + ln |λ 1,k -λ 2,k | λ 2,k
) .

Recall we have assumed that T ∈ (0, T 0 (q)). In particular T 0 (q) > 0. From the definition of c(Λ) and Lemma 4.1, there exists a subsequence {k n } n∈N such that

T 0 (q) = c(Λ) = lim n→+∞ - ln |λ 1,kn -λ 2,kn | λ 2,kn ∈ [0, +∞].
We are going to assume T 0 (q) < +∞. The case c(Λ) = +∞ is obvious and we also get a contradiction. Then, for any ε > 0, there exists k 1 such that

T + ln |λ 1,kn -λ 2,kn | λ 2,kn < ε + T -T 0 (q), ∀n ≥ k 1 . (64) 
Choosing ε = T -T0(q) 2 , we deduce that e 2λ 2,kn (T +

ln |λ 1,kn -λ 2,kn | λ 2,kn
) ≤ e 2λ 2,kn ( T -T 0 (q)

2

) .

Finally, since T < T 0 (q), one has

lim n→∞ M kn = 0.
This limit together with (63) prove (52). Thus, system (6) is not null controllable at time T . This proves the negative result in item 2 of Theorem 1.1 for system (6).

Negative null controllability result for system (7)

Let us now prove the negative null controllability result for the system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]. Assume that T 0 (q) > 0 and let 0 < T < T 0 (q). By contradiction, we will prove that system (7) is not null controllable at time T . Using Proposition 2.3 again, system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] is null controllable at time T if and only if there exists C > 0 such that the observability inequality (27) holds for any solution ψ of the adjoint system (23). Let us work with intial data ψ 0,k = a φ 1,k + b φ 2,k , with k ∈ N * and (a, b) ∈ R 2 . Then, the associated solution of the adjoint system (23) is given by (48) and we deduce that the observability inequality (27) becomes

A 1,k ≤ CA 2,k , ∀k ≥ 1, ∀(a, b) ∈ R 2 , with A 1,k := ||ψ(0, •)|| 2 H 1 0 (0,1,R 2 ) = a 2 c 1,k e -2λ 1,k (T ) + b 2 c 2,k e -2λ 2,k (T ) , where (see (22)) c i,k := 1 + ||ϕ i,k || 2 L 2 , ∀k ≥ 1, i = 1, 2 and 
A 2,k := T 0 |B * ∂ x ψ(t, 0)| 2 dt = T 0 b 1 a ϕ 1,k (0) e -λ 1,k (T -t) + b 2 b ϕ 2,k (0) e -λ 2,k (T -t) 2 dt.
In terms of quadratic forms, the previous inequality is equivalent to

e -2 L k T ≤ C T 0 e -L k (T -t) Bk e -L k (T -t) dt, ∀k ≥ 1, ∀k ≥ 1, (65) 
where L k = diag(λ 1,k , λ 2,k ) and

Bk :=   b 2 1 c 1,k ϕ 1,k (0) 2 b1 b2 √ c 1,k c 2,k ϕ 1,k (0)ϕ 2,k (0) b1 b2 √ c 1,k c 2,k ϕ 1,k (0)ϕ 2,k (0) b 2 2 c 2,k ϕ 2,k (0) 2   , ∀k ≥ 1.
Computing the integral at the right-hand side of (65), we deduce that it can be written in the following form:

I ≤ C H k , ∀k ≥ 1, (66) 
where

H k :=   b 2 1 c 1,k ϕ 1,k (0) 2 η(2λ 1,k ) b1b2 √ c 1,k c 2,k ϕ 1,k (0)ϕ 2,k (0)η(λ 1,k + λ 2,k ) b1b2 √ c 1,k c 2,k ϕ 1,k (0)ϕ 2,k (0)η(λ 1,k + λ 2,k ) b 2 2 c 2,k ϕ 2,k (0) 2 η(2λ 2,k )   ,
with η defined by (50). Let σk be the smallest eigenvalue of H k , then

2 det H k T rH k ≥ σk ≥ det H k T rH k , ∀k ≥ 1.

Let us analyse the behavior of

det H k T rH k . One has det H k = b 2 1 b 2 2 c 1,k c 2,k ϕ 1,k (0) 2 ϕ 2,k (0) 2 (η(2λ 1,k )η(2λ 2,k ) -η(λ 1,k + λ 2,k ) 2 ), T rH k = b 2 1 c 1,k ϕ 1,k (0) 2 η(2λ 1,k ) + b 2 2 c 2,k ϕ 2,k (0) 2 η(2λ 2,k ).
Same computations as in the previous subsection (see (56)) give

det H k = b 2 1 b 2 2 c 1,k c 2,k ϕ 1,k (0) 2 ϕ 2,k (0) 2 η(2λ 1,k )η(2λ 2,k )(λ 1,k -λ 2,k ) 2 ζ(λ k ) × 1 + 1 2 o (λ 1,k -λ 2,k ) 2 ζ(λ k ) , where λ k ∈ [λ 1,k , λ 2,k ] if λ 1,k < λ 2,k , or λ k ∈ [λ 2,k , λ 1,k ] if λ 2,k < λ 1,k . Then, det H k T rH k = b 2 1 b 2 2 ϕ 1,k (0) 2 ϕ 2,k (0) 2 η(2λ 1,k )η(2λ 2,k ) c 1,k c 2,k ( b 2 1 c 1,k ϕ 1,k (0) 2 η(2λ 1,k ) + b 2 2 c 2,k ϕ 2,k (0) 2 η(2λ 2,k )) × (λ 1,k -λ 2,k ) 2 ζ(λ k ) 1 + 1 2 o (λ 1,k -λ 2,k ) 2 ζ(λ k ) . (67) 
By (47), one has

lim k→∞ ϕ i,k (0) 2 c i,k = 2, i = 1, 2
and this limit together with (62) gives

lim k→∞ b 2 1 b 2 2 ϕ 1,k (0) 2 ϕ 2,k (0) 2 η(2λ 1,k ) c 1,k c 2,k ( b 2 1 c 1,k ϕ 1,k (0) 2 η(2λ 1,k ) + b 2 2 c 2,k ϕ 2,k (0) 2 η(2λ 2,k )) = 2 b 2 1 b 2 2 b 2 1 + b 2 2 .
Observe that

η(2λ 2,k )(λ 1,k -λ 2,k ) 2 ζ(λ k ) = e 2λ 2,k (T + ln |λ 1,k -λ 2,k | λ 2,k ) ζ(λ k ) 1 -e -2λ 2,k T 2λ 2,k . 
From the definition of T 0 (q), there exists a subsequence {k n } n∈N * which satisfies (64). If we take ε = T -T0(q) 2 and T < T 0 (q) in (67), we obtain

lim n→∞ det H kn T rH kn = 0,
which gives a contradiction with (66). This ends the proof of Theorem 1.1.

A complementary result

This section is devoted to giving a complementary result on the minimal time T 0 (q) ∈ [0, +∞] associated to the null controllability of the system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]. Let us fix µ 1 = 0, µ 2 = 1 and consider the application q ∈ L 2 (0, 1) -→ T 0 (q) ∈ [0, +∞].

We are going to prove that this application is onto, that is to say that one can expect any minimal time. We first recall a result related to the inverse Sturm-Liouville problem.

It is well known that, for all q ∈ L 2 (0, 1) the Dirichlet problem -u + q u = κ u in (0, 1), u(0) = 0, u(0) = 0 (68) has a sequence κ k = κ k (q) of simple eigenvalues, with k ≥ 1, such that κ 1 < κ 2 < ... < κ k < ..., with lim k→∞ κ k = +∞.

We denote by g k (x) = g k (x, κ k , q), the corresponding normalized eigenfunctions in L 2 (0, 1). Given q ∈ L 2 (0, 1), the direct Dirichlet problem is to determine the eigenvalues {κ k } k∈N * and the corresponding eigenfunction u = 0 of (68). Observe that the corresponding inverse problem is the following one: Given the sequence {α k } k≥1 ⊂ (0, +∞), we want to determine q ∈ L 2 (0, 1) such that the sequence of eigenvalues of (68) is

κ k = α k , ∀k ≥ 1.
The following result, due to P. Trubowitz (see [START_REF] Pöschel | Inverse spectral theory[END_REF]), provides a positive answer to the previous inverse problem with a particular class of eigenvalues: Theorem 6.1. The increasing sequence {κ k } k≥1 , is the Dirichlet spectrum of problem (68) for some q ∈ L 2 (0, 1) if and only if, for a constant C, one has

κ k = π 2 k 2 + C + r k , with k≥1 r 2 k < +∞. ( 69 
)
The following result is related to the minimal time of boundary null controllability T 0 (q) of the system [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]. One has: Theorem 6.2. For any τ ∈ [0, +∞], there exists µ 1 , µ 2 ∈ R and q ∈ L 2 (0, 1), such that the minimal time T 0 (q) associated to the system (7) is T 0 (q) = τ .

Proof. Let us fix τ ∈ [0, +∞] and take µ 1 = 0 and µ 2 = 1 in [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]. Let us consider γ = {γ k } k∈N * ⊂ 2 , given by This ends the proof.

γ k =          e -1 k if τ = 0,
7 Comments, further result and open problems 1. In this work, we proved a necessary and sufficient condition of approximate and null controllability for system [START_REF] Khodja | Recent results on the controllability of linear coupled parabolic problems: a survey Math[END_REF] with distributed controls under the geometrical assumption [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF]. It would be interesting to prove an analogous result to Theorem 1.1 without this geometrical assumption for the function q, i.e., when Supp q ⊂ [0, a] ∪ [b, 1].

2. The null controllability results obtained here for systems ( 6) and ( 7) remain valid for q ∈ L ∞ (0, 1). Assumption q ∈ L 2 (0, 1) is used in section 6, when, for a given τ ∈ [0, +∞] we provide a potential q ∈ L 2 (0, 1), for which the minimal time of null controllability of system ( 7) is equal to τ . This result is obtained using the inverse spectral theory (see Theorem 6.1). We can also apply the inverse spectral theory for the distributed system, but Theorem 6.1 does not give information on the localization of the support of q ∈ L 2 (0, 1).

3. The methods used here for studying the controllability of the system (7), either for the positive result or negative one, require a careful study of the spectrum of the Strum-Liouville operator (see [START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF], [START_REF] Pöschel | Inverse spectral theory[END_REF]). Thanks to Proposition 2.1, the null controllability result of system ( 7) can be generalized if we consider the following problem: where the operator (L, D(L)) and B ∈ R 2 are respectively given by:

L := -∆ + q 1 0 0 -∆ + q 2 , D(L) = H 2 (0, 1; R 2 ) ∩ H 1 0 (0, 1; R 2 ),
with q 1 , q 2 ∈ L 2 (0, 1) and B = (b 1 , b 2 ) T .

e -τ π 2 k 2 ∂ t y 1 -

 21 if τ ∈ (0, +∞), e -τ k 3 if τ = +∞, for all k ∈ N * . Clearly the sequence λ 2,k = π 2 k 2 + γ k , k ∈ N, satisfies(69)for C = 0. Applying Theorem 6.1, we deduce the existence of q(γ) ∈ L 2 (0, 1) associated to the Dirichlet problem (68) with κ k = λ 2,k , for any k ≥ 1. On the other hand, let us introduce the following boundary control problem ∆y 1 = 0 in Q T := (0, T ) × (0, 1),∂ t y 2 -∆y 2 + q(γ) y 2 = 0 in Q T , y 1 (•, 0) = b 1 v(t), y 2 (•, 0) = b 2 v(t), on (0, T ), y 1 (•, 1) = y 2 (•, 1) = 0, on (0, T ), y 1 (T, •) = y 1,0 , y 2 (T, •) = y 2,0 in(0, 1),where v ∈ L 2 (0, T ) is the control force. In this case, λ 1,k = π 2 k 2 , λ 2,k = π 2 k 2 + γ k , k ≥ 1,andT 0 (q) = lim sup k→+∞ -ln |π 2 k 2 -λ 2,k | π 2 k 2 = lim sup k→+∞ -ln |γ k | π 2 k 2 = τ.

∂

  t y + Ly = 0 in Q T , y(•, 0) = B v(t), y(•, 1) = 0 on (0, T ), y(0, •) = y 0 in (0, 1),
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