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VARIATIONAL INFERENCE FOR PROBABILISTIC POISSON PCA1

BY JULIEN CHIQUET, MAHENDRA MARIADASSOU AND STÉPHANE ROBIN

AgroParisTech, INRA and Université Paris-Saclay

Many application domains, such as ecology or genomics, have to deal
with multivariate non-Gaussian observations. A typical example is the joint
observation of the respective abundances of a set of species in a series of sites
aiming to understand the covariations between these species. The Gaussian
setting provides a canonical way to model such dependencies but does not ap-
ply in general. We consider here the multivariate exponential family frame-
work for which we introduce a generic model with multivariate Gaussian
latent variables. We show that approximate maximum likelihood inference
can be achieved via a variational algorithm for which gradient descent eas-
ily applies. We show that this setting enables us to account for covariates and
offsets. We then focus on the case of the Poisson-lognormal model in the con-
text of community ecology. We demonstrate the efficiency of our algorithm
on microbial ecology datasets. We illustrate the importance of accounting for
the effects of covariates to better understand interactions between species.

1. Introduction. Principal component analysis (PCA) is among the oldest
and most popular tool for multivariate analysis. It basically aims at reducing the
dimension of a large dataset made of continuous variables [Anderson (2003),
Mardia, Kent and Bibby (1979)] in order to ease its interpretation and visualiza-
tion. The methodology exploits the dependency structure between the variables to
exhibit the few synthetic variables that best summarize the information content of
the whole dataset, the principal components. In that sense PCA can be viewed as a
way to better understand the dependency structure between the variables. From a
purely algebraic point of view, PCA can be seen as a matrix-factorization problem
where the data matrix is decomposed as the product of a loading matrix and a score
matrix [Eckart and Young (1936)].

For statistical purposes PCA can also be cast in a probabilistic framework.
Probabilistic PCA (pPCA) is a model-based version of PCA originally defined
in a Gaussian setting in which the scores are treated as random hidden variables
[Tipping and Bishop (1999), Minka (2000)]. It is closely related to factor analy-
sis. As it involves hidden variables, maximum-likelihood estimates (MLE) can be
obtained via an EM algorithm [Dempster, Laird and Rubin (1977)]. One major
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interest of the probabilistic approach is that it allows to combine dimension reduc-
tion with other modeling tools, such as regression on some available covariates.
Because observed variables can be affected by the variations of such covariates,
the correction for their potential effects is desirable to avoid the presence of spuri-
ous correlations between the responses.

The Gaussian setting is obviously convenient as the dependency structure is en-
tirely encoded in the covariance matrix, but pPCA has been extended to more gen-
eral settings. Indeed, in many applications [Royle and Wikle (2005), Srivastava and
Chen (2010)] Gaussian models need to be adapted to handle specific measurement
types, such as binary or count data. For count data the multivariate Poisson distri-
bution seems a natural counterpart of the multivariate normal. However, no canon-
ical form exists for this distribution [Johnson, Kotz and Balakrishnan (1997)], and
several alternatives have been proposed in the literature including Gamma-Poisson
[Nelson (1985)] and lognormal-Poisson [Aitchison and Ho (1989), Izsák (2008)].
The latter takes advantage of the properties of the Gaussian distribution to display
a larger panel of dependency structure than the former, but maximum likelihood-
based inference raises some issues as the MLE of the covariance matrix is not
always positive definite.

A series of works have contributed to extend PCA to a broader class of dis-
tributions, typically in the exponential family. The matrix factorization point of
view has been adopted to satisfy a positivity constraint of the parameters [Lafond
(2015)] and to minimize the Poisson loss function [Cao and Xie (2015)] or more
general losses [Lee and Seung (2001)] consistent with exponential family noise.
Sparse extensions have also been proposed [Witten, Tibshirani and Hastie (2009),
Liu, Dobriban and Singer (2016)]. In a model-based context Collins, Dasgupta
and Schapire (2001) suggest to minimize a Bregman divergence to get estimates
of the scores. The divergence is chosen according to the distribution at hand, and
a generic alternating minimization scheme is proposed. Salmon et al. (2014) con-
sider a similar framework and use matrix factorization for the minimization of
Bregman divergence. In both cases the scores are considered as fixed parame-
ters. Mohamed, Ghahramani and Heller (2009) cast the same model in a Bayesian
context and use Monte Carlo sampling for the inference. Acharya, Ghosh and
Zhou (2015) consider Bayesian inference of the Gamma-Poisson distribution.
A Bayesian version of PCA (where both loadings and scores are treated as ran-
dom) is considered in Li and Tao (2010).

Landgraf (2015) reframes exponential family PCA as an optimization prob-
lem with some rank constraints and develops both a convex relaxation and a
maximization-minimization algorithm for binomial and Poisson families. Finally,
Zhou et al. (2012) and Zhou (2016) consider factor analysis in the more complex
setting of negative-binomial families. Our approach differs from the previous ones
as we only consider scores as random variables, whereas we consider the loadings
as fixed parameters in the exact analog of Tipping and Bishop’s pPCA.
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As recalled above, in pPCA, the scores are treated as hidden variables. One of
the main issue of non-Gaussian pPCA arises from the fact that their conditional
distribution given the observed data is often intractable which hampers the use of
an expectation–minimization (EM) strategy. Variational approximations [Jaakkola
and Jordan (2000), Wainwright and Jordan (2008)] have become a standard tool
to approximate such conditional distributions. Karlis (2005) uses such an approx-
imation for the inference of the one-dimensional Poisson-lognormal model and
derives a variational EM (VEM) algorithm. Hall, Ormerod and Wand (2011) pro-
vide a theoretical analysis of this approximation for the same model and prove
the consistency of the estimators. Indeed, even the conditional distribution of one
single hidden coordinate (given all others) is unknown which makes regular Gibbs
sampling inaccessible. As a consequence Lee and Seung (2001) use moment es-
timates, whereas in a Bayesian context Li and Tao (2010) resort to a variational
approximation of the conditional distribution.

Our contribution. We define a general framework for pPCA in the simple
exponential family. The model we consider combines dimension reduction (via
pPCA) and regression in order to account for known effects and focus on the
remaining dependency structure. Scores are assumed to be Gaussian to allow a
large panel of dependency structures. We put a special emphasis on the analysis
of count data. We adopt a frequentist setting rather than a Bayesian approach to
avoid nonscalable, computing-heavy Monte Carlo sampling. We use a variational
approximation of the conditional distribution of the scores given the observed data
to derive a variational lower bound of the likelihood. Since only the scores are as-
sumed to be random, we can prove that this bound is biconcave, that is, concave
in the model parameters and in the variational parameters but not jointly concave
in general. Biconcavity allows us to design a gradient-based method rather than a
(variational) EM algorithm traditionally used in this setting.

We illustrate the interest of our model on two examples of microbial ecology.
We show that the proposed algorithm is efficient for large datasets such as these
encountered in metagenomics. We also show the importance of accounting for
covariates and offset in order to go beyond first-order effects. More specifically,
we show how the proposed modeling allows us to distinguish between correlations
that are caused by known covariates from those corresponding to an unknown
structure and requiring further investigations.

The paper is organized as follows: in Section 2 we introduce pPCA for the
exponential family and the variational framework that we consider. Section 3 gen-
eralizes the model in the manner of a generalized linear model in order to han-
dle covariates and offsets. Section 4 is dedicated to the inference and optimiza-
tion strategy. Section 5 details the special Poisson case, and Section 6 devises the
visualization, an important issue for non-Gaussian PCA methods. Finally, Sec-
tion 7 considers applications to two examples from metagenomics: the impact of
a pathogenic fungi on microbial communities from tree leaves, and the impact of
weaning on piglets gut microbiota.
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2. A variational framework for probabilistic PCA in the exponential fam-
ily. We start this section by stating the probabilistic framework associated to
Gaussian probabilistic PCA. Then we show how it can be naturally extended to
other exponential families. We finally derive variational lower bounds for the like-
lihood of pPCA and its gradient which are the building blocks of our inference
strategy.

2.1. Gaussian probabilistic PCA (pPCA). The probabilistic version of prin-
cipal component analysis or pPCA [Minka (2000), Mohamed, Ghahramani and
Heller (2009), Tipping and Bishop (1999)] relates a sample of p-dimensional ob-
servation vectors Y i to a sample of q-dimensional vectors of latent variables W i

in the following way:

(1) Y i = μ + BW i + εi , εi ∼N
(
0p, σ 2Ip

)
.

The parameter μ allows the model to have main effects. The p × q matrix B
captures the dependence between latent and observed variables. Furthermore, the
latent vectors are conventionally assumed to have independent Gaussian com-
ponents with unit variance, that is, to say W i ∼ N (0q, I q). This ensures that
there is no structure in the latent space. Model (1) can thus be restated as Y i ∼
N (μ,BBᵀ + σ 2Ip).

In the following we consider an alternative formulation stated in a hierarchical
framework. Despite its seemingly more complex nature, it lends itself nicely to
generalizations. Formally,

latent space (W i )i=1,...,n i.i.d., W i ∼ N (0q, I q)

parameter space Zi = μ + BW i ,

observation space (Yij |Zij )i=1,...,n;j=1,...,p indep., Yij |Zij ∼ N
(
Zij , σ

2)
.

(2)

In equation (2) Zi is a linear transform of W i , and the last layer Y i |Zi simply
corresponds to observation noise. Informally, the latent variables W i (in R

q ) are
mapped to a linear subspace of the parameter space R

p via the Zi which are then
pushed into the observation space using Gaussian emission laws. The main idea of
this paper is to replace Gaussian emission laws with univariate natural exponential
families.

Note that the diagonal nature of the covariance matrix of εi specified in (1)
now means that, conditionally on Zi , all components of Y i are independent. This
is why we may consider univariate variables Yij |Zij in Formulation (2). Although
the observation noises are conditionally independent, the coordinates of a given Y i

are not which makes the model genuinely multivariate. This is further emphasized
in Section 5.1.

The loading matrix B is a convenience parameter that is useful for both op-
timization and visualization of the model but not identifiable per se. Indeed any
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orthogonal transformation of B leads to the same model. Denoting � = BBᵀ,
Model (2) can be rephrased as

(Zi )i=1,...,n i.i.d., Zi ∼ N (μ,�),

(Yij |Zij )i=1,...,n;j=1,...,p indep., Yij |Zij ∼ N
(
Zij , σ

2)
.

As a consequence, the identifiable parameters of the model are μ and �.
Hereafter and unless stated otherwise, index i refers to observations and ranges

in {1, . . . , n}, index j refers to variables and ranges in {1, . . . , p} and index k refers
to factors and ranges in {1, . . . , q}.

2.2. Natural exponential family (NEF). The work in this study is based on
essential properties of univariate natural exponential families (NEF) where the
parameter is in canonical form. They include normal distribution with known vari-
ance, Poisson distribution, gamma distribution with known shape parameter (and
therefore exponential distribution as a particular example) and binomial distribu-
tion with known number of trials. The probability density (or mass function) of a
NEF can be written

(3) f (x|λ) = exp
(
xλ − b(λ) − a(x)

)
,

where λ is the canonical parameter and b and a are known functions. The function
b is well known to be convex (and analytic) over its domain and the mean and
variance are easily deduced from b as

Eλ[X] = b′(λ) and Vλ[X] = b′′(λ).

The canonical link function g is defined such that g(b′(λ)) = λ. The maximum
likelihood estimate λ̂ of λ from a single observation x is given by λ̂ = λ̂(x) = g(x)

and satisfies

E
λ̂(x)

[X] = b′(λ̂(x)
) = x.

2.3. Probabilistic PCA for the exponential family. We now extend pPCA from
the Gaussian setting to more general NEF. The connection between the two ver-
sions is exactly the same as the connection between linear models and general-
ized linear models (GLM). Intuitively, we assume that (i) there exists a (low) q-
dimensional (linear) subspace in the natural canonical parameter space where
some latent variable Zi lie, and (ii) observations Y i are generated in the obser-
vation space according to some NEF distribution with parameter Z. The latter is
linked to E[Y i |Zi] through the canonical link function g. In the Gaussian case the
link function is the identity and the parameter space can be identified with the ob-
servation space but this is not the case in general for other families. Formally, we
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extend Model (2) to

(W i )i=1,...,n i.i.d., W i ∼ N (0q, I q),

Zi = μ + BW i ,

(Yij |Zij )i=1,...,n;j=1,...,p indep.,

p(Yij |Zij ) = exp
(
YijZij − b(Zij ) − a(Yij )

)
.

(4)

Note in particular that g(E[Yij |Zij ]) = g(b′(Zij )) = Zij and that an unconstrained
estimate Z̃ij of Zij is Z̃ij = g(Yij ). The vector μ corresponds to main effects, B to
rescaled loadings in the parameter spaces and W i to scores of the ith observation
in the low-dimensional latent subspace. The model specified in (4) is the same as
the one specified in (2) but for the last data emission layer. Similar to Model (2), the
first two lines of Model (4) can be combined into Zi i.i.d. such that Zi ∼ N (μ,�)

with � = BBᵀ.

REMARK 1. As stated previously, B is only identifiable through BBᵀ and
therefore at best up to rotations in R

q . Note that this limitation is shared with
standard PCA. Intuitively, PCA finds a good q-dimensional affine approximation
subspace μ + Span(B) of Y , but without additional constraints infinitely many
bases B can be used to parametrize this subspace. Orthogonality constraints and
ordering of the principal components in decreasing order of variance are necessary
to uniquely specify B . Imposing them in standard PCA additionally allows one to
leverage Eckart and Young’s theorem and reduce a q-dimensional approximation
to a series of q unidimensional problems. It also entails nestedness: the best q-
dimensional approximation is nested within the best q + 1-dimensional one and so
on. There is unfortunately no equivalent in exponential PCA. We therefore do not
force B to be orthogonal in our model. For visualization however, we perform or-
thogonalization to ensure consistency of the graphical outputs with standard PCA
(see Section 6).

2.4. Likelihood. Note Y (resp. W ) the n × p (resp. n × q) matrix obtained
by stacking the row vectors Y

ᵀ
i (resp. W

ᵀ
i ). Conversely, for any matrix A, Ai

refers to the ith row of A considered as a column vector. In matrix expression
Z = 1nμ

ᵀ + WBᵀ. The observation matrix Y only depends on Z through μ, B
and W, and the complete log-likelihood is therefore

logp(Y ,W ;μ,B) =
n∑

i=1

logp(Y i |W i;μ,B) + logp(W i )

=
n∑

i=1

[ p∑
j=1

Yij

(
μj + B

ᵀ
jW i

) − b
(
μj + B

ᵀ
jW i

)

− a(Yij ) −
q∑

k=1

W 2
ik + log(2π)

2

]
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which can be stated in the following compact matrix form:

logp(Y ,W ;μ,B) = 1ᵀn
[
Y � (

1nμ
ᵀ + WBᵀ) − b

(
1nμ

ᵀ + WBᵀ)]1p

− ‖W‖2
F

2
− nq

2
log(2π) − K(Y ),

(5)

where the function a and b are applied componentwise to vectors and matrices, �
is the Hadamard product, and K(Y ) = 1ᵀna(Y )1p is a constant depending only on
Y and not scaling with q .

We do not know how to integrate out W and therefore cannot derive an an-
alytic expression of logp(Y ;μ,B). Numerical approximation using Hermite-
Gauss quadrature or MCMC techniques are possible but rely on computing np

expectations of the form E[eaᵀu−b(α+cᵀu)] for u ∼ N (0, I q), with b nonlinear, a
and c arbitrary vectors and α a scalar depending on μ and B . This is likely to
become computationally prohibitive as the dimension q of the latent integration
space increases. A standard EM algorithm relying on EW |Y [logp(Y ,W ;μ,B)]
is similarly not possible as it requires at least first and second order of p(Wi |Yi)

which are unknown in general and as hard to compute as the previous expectations.
We resort instead to a variational strategy and integrate out W under a tractable ap-
proximation of p(W |Y ).

2.5. Variational bound of the likelihood. Consider any product distribution
p̃ = ⊗n

i=1 p̃i on the Zi . The variational approximation relies on maximizing the
following lower bound over a tractable set for p̃:

logp(Y ;μ,B) ≥ Jq(p̃,μ,B),

where

Jq(p̃,μ,B) � logp(Y ;μ,B) − KL
(
p̃(W ) ‖ p(W |Y ;μ,B)

)
= Ep̃

[
logp(Y ,W ;μ,B) − log p̃(W )

]
=

n∑
i=1

Ep̃i

[
logp(W i ) + logp(Y i |W i;μ,B) − log p̃i(W i )

]
,

(6)

with term-by-term inequality

logp(Y i;μ,B) ≥ Jq(p̃i,μ,B)

� Ep̃i

[
logp(W i ) + logp(Y i |W i;μ,B) − log p̃i(W i )

]
.

In our variational approximation, we choose here the set Q of product distribu-
tion of q-dimensional multivariate Gaussian with diagonal covariance matrices:

Q =
{
p̃ � p̃M,S; p̃(w) =

n∏
i=1

p̃i(wi )

}

where p̃i = N
(
mi ,diag(si � si )

)
, (mi , si ) ∈ R

q ×R
q
+.

(7)
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The n × q matrices M and S are obtained by respectively stacking m
ᵀ
i and s

ᵀ
i .

Note that, by construction, p(W |Y ) is a product distribution and that the approxi-
mation only stems from the functional form of each p̃i , that is, multivariate normal
with diagonal variance-covariance matrix. For such p̃ = p̃M,S , results on first- and
second-order moments of multivariate Gaussian show that

Jq(μ,B,mi , si ) � Jq(p̃i,μ,B)

= Y
ᵀ
i (μ + Bmi ) − 1

2

[‖mi‖2
2 + ‖si‖2

2
] + 1

2

(
2ᵀq log(si) + q

)
− 1ᵀpEp̃i

[
b(μ + BW i )

] − K(Y ).

Therefore,

Jq(μ,B,M,S)� Jq(p̃M,S,μ,B) =
n∑

i=1

Jq(μ,B,mi , si )

= 1ᵀn
[
Y � (

1nμ
ᵀ + MBᵀ) −Ep̃

[
b
(
1ᵀnμ + WBᵀ)]]1p

− 1

2
1ᵀn

[
M � M + S � S − 2 log(S) − 1n,q

]
1q − K(Y ).

(8)

Depending on the natural exponential family and thus the exact value of b in
(8), we may have a fully explicit variational bound for the complete likelihood
which paves the way for efficient optimization. In particular this is the case with
the Poisson distribution that we investigate in further details in Section 5.

Before moving on to actual inference, we show how the framework introduced
above can be extended to account for covariates and offsets.

3. Accounting for covariates and offsets. Multivariate analyses typically
aim at deciphering dependencies between variables. Variations induced by the ef-
fect of covariates may be confounded with these dependencies. Therefore, it is
desirable to account for such effects to focus on the residual dependencies. The
rational of our approach is to postulate the existence of a model similar to linear
regression in the parameter space. We consider the general framework of linear
regression with multivariate outputs, which encompasses multivariate analysis of
variance.

3.1. Model and likelihood. Suppose that each observation i is associated to a
known d-dimensional covariate vector Xi . We assume that the covariates act lin-
early in the parameter space through a p × d regression matrix �, that is, Xi is
linearly related to Zi . It can be also useful to add an offset to model different sam-
pling efforts and/or exposures. There is usually one known offset parameter Oij

per observation Yij, and this offset can be readily incorporated in our framework.
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Thus, a natural generalization of (4) accounting for covariates and offsets is

(W i )i=1,...,n i.i.d. W i ∼ N (0q, I q)

Zi = Oi + �Xi + BW i ,

(Yij |Zij )i=1,...,n;j=1,...,p indep.,

p(Yij |Zij ) = exp
(
YijZij − b(Zij ) − a(Yij )

)
,

(9)

where a column of ones can be added to the data matrix X to get an intercept in
the model. The log-likelihood can be computed from (9) like before to get

logp(Y ,W ;B,�,O)

= 1ᵀn
[
Y � (O + X�ᵀ + WBᵀ) − b(O + X�ᵀ + WBᵀ)

]
1p

− ‖W‖2
F

2
− nq

2
log(2π) − K(Y ),

(10)

where the focus of inference is on B and � while O is known.

3.2. Variational bound of the likelihood. We can use the variational class Q
previously defined in (7) to lower bound the likelihood from equation (10). We
first introduce the instrumental matrix A which appears in many equations:

(11)
A = Ep̃

[
b(O + X�ᵀ + WBᵀ)

]
= E

[
b
(
O + X�ᵀ + (M + S � U)Bᵀ)] = E

[
b(V )

]
,

where V = (O + X�ᵀ + (M + S � U)Bᵀ), and U is a n × q matrix with unit
variance independent Gaussian components. V can be interpreted as the variational
counterpart of Z.

Since O is known, we drop it from the arguments of Jq and obtain the following
lower bound which extends the bound from equation (8):

Jq(�,B,M,S) = 1ᵀn
(
Y � (O + X�ᵀ + MBᵀ) − A

)
1p

− 1

2
1ᵀn

[
M � M + S � S − 2 log(S) − 1n,q

]
1q − K(Y ).

(12)

4. Inference. As usual in the variational framework we aim to maximize the
lower bound Jq , which we call the objective function in an optimization perspec-
tive. The optimization shall be performed on �, B , M , S. We only give results in
the most general case (12) with covariates and offsets. All other cases are deduced
by setting O = 0n×p and/or X = 1n hereafter.

4.1. Inference strategy. We first highlight the biconcavity of the objective
function Jq . The major part of the proof is postponed to the Appendix.
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PROPOSITION 1. The variational objective function Jq(�,B,M,S) is con-
cave in (�,B) for (M,S) fixed and vice versa.

PROOF. Fix (M,S) in (12). The nonexplicit part of Jq , that is, to say −1ᵀnA1p ,
is concave in (�,B) thanks to Lemma 2 (see the Appendix). By inspection the
explicit part of Jq involves linear, quadratic and concave functions of (�,B) and
is also concave. The objective Jq is therefore concave in (�,B). The same is true
for (M,S) when fixing (�,B). �

A standard approach for maximizing biconcave functions is block coordinate
descents, of which the Expectation–Maximization (EM) algorithm is a popular
representative in the latent variable setting. It is especially powerful when we
have access to closed formula for both the optimal (M,S) given (�,B) (E-step)
and the optimal (�,B) given (M,S) (M-step). However, the nonlinear nature
of Ep̃[b(O + X�ᵀ + WBᵀ)] combined with careful inspection of the objective
function Jq shows that setting the derivatives of Jq to zero, even after fixing the
variational or model parameters, does not lead to closed formula for (M,S) nor for
(B,�). Nevertheless, since we may derive convenient expressions for the gradient
∇Jq (see next Section 4.2), we propose to rely on the globally convergent method
of moving asymptotes (MMA) algorithm for gradient-based local optimization in-
troduced by Svanberg (2002) and implemented in the NLOPT optimization library
[Johnson (2011)]. In the general case (12), the total number of parameters to opti-
mize Jq(�,B,M,S) is p(d +q)+2nq . We use box constraints for the variational
parameters S [i.e., the standard deviations in (7) and thus only defined on R

q
+]. The

starting point is chosen according to the exact value of b.

4.2. Blockwise gradients of Jq . The blockwise gradient of Jq(�,B,M,S)

can be expressed compactly in matrix notations. We skip the tedious but straight-
forward derivations and present only the resulting partial gradients. We introduce
A′ = E[b′(V )], the natural counterpart to matrix A given in (11). Intuitively, A′

ij

is the conditional expectation of Yij under p̃i . On top of that, we need two other
matrices denoted A′

1 and A′
2, defined as follows:

A′
1 = E

[
b′(V )ᵀ(S � U)

]
, A′

2 = E
[(

b′(V )B
) � U

]
.

With those matrices the derivatives of Jq can be expressed compactly as

∂Jq

∂�
= (

Y − A′)ᵀX,
∂Jq

∂B
= (

Y − A′)ᵀM − A′
1,

∂Jq

∂M
= (

Y − A′)B − M,
∂Jq

∂S
= [

S� − A′
2 − S

]
,

(13)

where the n × q matrix S� is the elementwise inverse of S, that is, S�
ij = S−1

ij for
all i = 1, . . . , n, q = 1, . . . ,Q.
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In the following the resulting parameter estimates will be denoted by �̂ and B̂ ,
and the optimal variational parameters will be denoted by M̃ and S̃. We use differ-
ent notation on purpose in order to distinguish model parameters from variational
ones.

4.3. About missing data. When the data are missing at random (MAR), the
sampling does not disturb the inference and it is sufficient to maximize the like-
lihood on the observed part of the data [Little and Rubin (2014)]. Our model
can easily handle missing data under MAR conditions as follows: note � ⊂
{1, . . . , n} × {1, . . . , p} the set of observed data and � the matrix where �ij = 1 if
(i, j) ∈ � and 0 otherwise. With this matrix � the likelihood can be adapted from
equation (10), and one has

logp(Y ,W ;B,�,O)

= 1ᵀn
((

Y � (O + X�ᵀ + WBᵀ) − b(O + X�ᵀ + WBᵀ)
) � �

)
1p

− ‖W‖2
F

2
− nq

2
log(2π) − tr

(
�ᵀa(Y )

)
.

The corresponding variational bound Jq and its partial derivatives are then simple
adaptations from equations (12) and (13) where Y (resp. A, A′) is replaced with
Y � � (resp. A � �, A′ � �).

Note that it is strictly equivalent for the optimization method to use (Y −A′)��
or to impute missing Yij with A′

ij before using equation (13). Since A′ is computed
as part of the gradient computation at each step, imputation of missing data is
essentially a free by-product of the optimization method. Finally, note that A′

ij =
Ep̃i

[Yij ] so that the imputation makes intuitive sense. We are imputing Yij with
its conditional expectation under the current variational parameters. Addressing
not MAR conditions requires to take into account the sampling process leading to
missing data in order to correctly unbias the estimation. This is out of the scope of
this paper.

4.4. Variance estimation. As mentioned above, only � and � are identifiable
parameters, and an estimate of the later needs to be derived. Recall that Model
(9) can be rephrased as Zi ∼ N (O i + �Xi ,�). It can be checked that the corre-
sponding variational lower bound is maximal for

�̂ = 1

n

∑
i

Ep̃

[
(Zi − Oi − �̂Xi )(Zi − Oi − �̂Xi )

ᵀ].
Since Ep̃(Zi ) = Oi + �̂Xi + M̃ iB̂

ᵀ and Vp̃(Zi ) = B̂ diag(s̃i � s̃i )B̂
ᵀ, we get

�̂ = B̂

(
1

n
M̃

ᵀ
M̃ + S̄

)
B̂

ᵀ
,

where S̄ = n−1 diag[1ᵀn(S̃ � S̃)]. Observe that �̂ has rank q by construction.
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4.5. Model selection. The dimension q of the latent space itself needs to be es-
timated. To this aim, we adopt a penalized-likelihood approach, replacing the log-
likelihood by its lower bound Jq . We consider two classical criteria: BIC [Schwarz
(1978)] and ICL [Biernacki, Celeux and Govaert (2000)]. We recall that ICL uses
the conditional entropy of the latent variables given the observations as an addi-
tional penalty with respect to BIC. The difference between BIC and ICL measures
the uncertainty of the representation of the observations in the latent space.

Because the true conditional distribution p(W |Y ) is intractable, we replace it
with its variational approximation p̃(W ) to evaluate this entropy. The number of
parameters in our model is p(q + d) and the entropy of each Wi under p̃i is
q log(2πe)/2 + ∑

j log(sij ). Based on this we define the following approximate
BIC and ICL criteria:

BIC(q) = Jq − 1

2
p(d + q) log(n),

ICL(q) = Jq − 1

2
p(d + q) log(n) − nq

2
log(2πe) − 1ᵀn log(S)1q .

(14)

5. Poisson family. Each term of the expectation matrix A in (11) can be re-
duced to computing expectations of the form E[b(a + cU)] for a convex analytic
function b, a standard Gaussian U ∼ N (0,1) and arbitrary scalars (a, c) ∈ R

2. It
can therefore be computed numerically efficiently using Gauss–Hermite quadra-
ture [see, e.g., Press et al. (1989)]. However in the special case of Poisson-
distributed observations, b(x) = ex and most of the expectations can be computed
analytically leading to explicit formulas for equations (11), (12) and (13).

5.1. Some features of Poisson pPCA. The Poisson pPCA inherits some prop-
erties of the Poisson-lognormal distribution which states that the response vector
Y i for sample i is generated such that Zi ∼ N (μi ,�) and the (Yij )j are indepen-
dent conditionally on Zi with Yij |Zij ∼ P(exp(Zij )). The moments of the Yij ’s
are then

EYij = e
μj+σ 2

j /2
, VYij = EYij + (

e
σ 2

j − 1
)
(EYij )

2,

Cov(Yij , Yik) = (
eσjk − 1

)
EYijEYik.

Consequently, the Poisson-lognormal model displays both overdispersion of each
coordinate with respect to a Poisson distribution and pairwise correlations of arbi-
trary signs. In Poisson pPCA� is further assumed to have a low rank.

5.2. Explicit form of A, Jq , and ∇Jq . In the Poisson case the variational ex-
pectation of the nonlinear part involving b—the matrix of conditional expectations
A—is equal to A′ and can be expressed as

A = A′ = exp
(
O + X�ᵀ + MBᵀ + 1

2
(S � S)(B � B)ᵀ

)
.
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The lower bound Jq and matrices A′
1,A

′
2 appearing in (13) can be expressed sim-

ply from A as

A′
1 = [

Aᵀ(S � S)
] � B, A′

2 = 2
[
A(B � B)

] � S.

5.3. Implementation details. We implemented our inference algorithm for the
Poisson family in the R package PLNmodels, the last version of which is available
on github (https://github.com/jchiquet/PLNmodels). Maximization of the varia-
tional bound Jq is done using the implementation found in the nlopt library
[Johnson (2011)] of the globally convergent method of moving asymptotes algo-
rithm for gradient-based local optimization [Svanberg (2002)]. We interface this
algorithm to R [R Development Core Team (2008)] via the nloptr package [Ypma
(2017)] and careful tuning of the parameters. All graphics are produced using the
ggplot2 package [Wickham (2009)].

The choice of a good starting value is crucial in iterative procedures as it helps
the algorithm to start in the attractor field of a good local maximum and can
substantially speed-up convergence. Here we initialize (�,B) by fitting a lin-
ear model to log(1 + Y ) then extracting the regression coefficients �LM and the
variance-covariance matrix �LM of the Pearson residuals. We set �0 = �LM and
B0 = (�

(q)
LM)1/2 where �

(q)
LM is the best rank q approximation of �LM, as given by

keeping the first q-dimensions of a SVD of �LM. We set the other starting values
as M0 = S0 = 0n×q .

6. Visualization.

6.1. Specific issues in non-Gaussian PCA. PCA is routinely used to visualize
samples in a low dimensional space. Vizualisation in exponential PCA shares many
similarities with visualization in standard PCA, but important differences arise
from the lack of validity of Eckart and Young’s (1936) theorem in this setting:

(i) In general, the parameter space R
p defined in (4) is different from the

observation space N
p , as opposed to the special case of Gaussian PCA.

(ii) Since principal components are not reconstructed incrementally, the corre-
sponding subspaces need not be nested.

(iii) The lack of constraints on B means that raw scores may be correlated in
the latent space, unlike their counterparts in standard PCA.

To address point (i), we provide representations in the parameter space as it has
the Euclidean geometry with which practitioners are most familiar. Point (ii) is
an inherent consequence of nonlinearity that has some consequences in terms of
interpretation. Indeed, the “axis of maximum variance” of model with rank q is
not the same as the first axis of model with rank q + 1. As for point (iii), we use an
orthonormal coordinate system to represent samples in the Euclidean parameters
rather than the “raw” results of the algorithms. The samples positions Z can be

https://github.com/jchiquet/PLNmodels
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estimated with Z̃ := O + X̂�
ᵀ + M̃B̂

ᵀ. Z̃ is useful to assess goodness of fit and
quality of the dimension reduction whereas P̃ = M̃B̂

ᵀ is used to visualize and
explore structure not already captured by the covariates.

6.2. Quality of the dimension reduction. A first important criterion in PCA is
the amount of information that is preserved by the q-dimensional reduction. To this
aim, we define a pseudo R2 criterion, which compares the model at play to both a
null model with no latent variables and a saturated model with one parameter per
observation.

Formally, we define the matrix �(q) = [λ(q)
ij ] where entry λ

(q)
ij := Z̃ij serves as

an estimate of the canonical parameter of the distribution of Yij given in (3). We
can thus define the log-likelihood �q of the observed data with

�q =
n∑

i=1

p∑
j=1

[
Yijλ

(q)
ij − exp

(
λ

(q)
ij

)] − K(Y ).

We can compare it to the log-likelihood of the saturated model �max [replacing
λ

(q)
ij with λmax

ij := log(Yij )] and the log-likelihood �min of the null model chosen
here as a Poisson regression GLM with no latent structure (replacing λij with
λmin

ij := oij + �̂Xi , where �̂ is estimated using a standard GLM). The resulting

pseudo R2 is defined as

(15) R2
q = (�q − �min)/(�max − �min).

This R2 is a bit imperfect as it assumes Poisson counts, unlike the Poisson-
lognormal in our model, but it is necessary to compute equivalents to percentage
of variance explained to which practitioners have grown accustomed.

6.3. Visualizing the latent structure. The matrix P̃ = M̃B̂
ᵀ encodes positions

of the samples in the latent space using B̂ as basis and M̃ as principal compo-
nents. Since B̂ is not constrained whatsoever, the raw components are neither or-
thogonal nor sorted in decreasing order of variation. We therefore decompose P̃
as P̃ = M̃vizB̂

ᵀ
viz with columns of B̂viz orthogonal and columns of M̃viz sorted in

decreasing order of variation and use M̃viz as principal components for visualiza-
tion purposes. Since P̃ is already of low-rank q , this is achieved simply by doing
a standard PCA of P̃ . Note also that using either (B̂viz,M̃viz) or (B̂,M̃) leaves �̂
unchanged.

We then decompose the total variance along each component j as in standard
PCA. The overall contribution of axis j is then dj × R2

q , where dj is the fraction
of variance in the latent space explained by component j . Following the same
line, we may plot the correlations between the columns of P̃ and the components
arising from its PCA to help with the interpretation of these components in terms
of original variables.
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7. Illustrations. In order to highlight the scalability of our variational ap-
proach for generalized pPCA and its flexibility for the inclusion of covariates, we
analyze two microbiome sequence count datasets below. They consist in counts
of microbial species (OTUs or operational taxonomic units) in a series of samples.
Note that an intrinsic limitation of this sampling technology and of all marker-gene
based metabarcoding analysis methods is that they do not give access to absolute
cell counts in a sample. Indeed, these methods consist in sampling the DNA in the
biological sample and only a fixed number of DNA fragments, referred to as the
“sequencing depth,” is observed. Consequently, any multivariate analysis of such
data aims to describe the dependencies between relative abundances [Tsilimigras
and Fodor (2016), Gloor et al. (2017)], although some additional measures can be
made to recover approximate absolute abundances [Smets et al. (2015), Vandeputte
et al. (2017)].

Because of the different technical steps involved in library preparation, the se-
quencing depth is generally independent of the total cell count in the sample, and
its variations across samples have no biological meaning. Therefore, the sequenc-
ing depth itself constitutes a nuisance parameter that we need to account for to
avoid spurious correlations. To correct for varying depths across samples, we as-
sume that average counts scale linearly with sequencing depth, although more so-
phisticated normalizations exist [Chen et al. (2018)]. In subsequent analysis the
sequencing depth is just another covariate with a special status as we know its re-
gression coefficient, and we therefore include it as an offset in the model. Offset
is computed as the total sequencing depth before any filter is applied to OTUs. By
doing so the observed counts within a sample are not linearly constrained to sum
to sequencing depth.

7.1. Impact of weaning on piglet microbiome.

Description of the experiment. We considered the metagenomic dataset intro-
duced in Mach et al. (2015). The dataset was obtained by sequencing the bacterial
communities collected from the feces of 31 piglets at 5 points after birth (n = 155).
The communities were sequenced using the hypervariable V3-V4 region of the
16S rNRA gene as metabarcoding marker gene and sequences were processed and
clustered at the 97% identity level to form p = 4031 OTUs [see Mach et al. (2015)
for details of bioinformatics preprocessing]. The dataset is thus a 155×4031 count
table where entry (i, j) measures the relative abundance of OTU j in sample i as
the number of sequences (originating from sample i) falling in sequence cluster j .
One aim of this experiment is to understand the impact of weaning on gut micro-
biota. Weaning, and more generally diet changes, are well documented to strongly
impact the gut microbiota and we therefore use weaning status as ground truth to
check whether our method can recover known structure. We also use the exam-
ple to test scalability and study how the method behaves when the number p of
variables increases.
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FIG. 1. Dataset from Mach et al. (2015). Running times averaged over 4 replicates of the PLNPCA
function in R PLNmodels package. Single core Intel i7-4600U CPU 2.33 GHz, R 3.4.1, Linux Ubuntu
16.04.

Numerical experiments. To test the impact of the number of variables on the
dimension of the latent subspace, we inferred q on nested subsets of the count
table. We selected only the 3000, 2000, 1000, 500 and 100 most abundant OTUs
and fitted a model with appropriate offset to each subset. The offsets were chosen
as log-total read count of each sample, computed on the full OTU table. It reflects
the fact that, et ceteris paribus, observed counts should be roughly twice as high
in communities sequenced twice more. For context, the 2500 least abundant OTUs
exhibit very high sparsity (less than 1% of nonnull counts): each has total abun-
dance lower than 5 and more than half (1287) are seen only once. It is customary
to remove such OTUs using abundance-based filters in microbiome studies. We
expect them to behave like high-dimensional noise and strongly degrade structure
recovery.

Figure 1 shows that running times increase sublinearly with q and linearly with
p, as expected. Figure 2 additionnally shows that low count OTUs act as high
dimensional noise and hamper our ability to recover fine structure in the latent
space, (the pseudo R2 goes down from 95% and 68% and q̂ from 27 to 8) just like
it would in high dimensional Gaussian PCA.

Impact of weaning. We focus on results obtained on the 500 most abundant
OTUs, which account for 90.3% of the total counts. We emphasize than even do-
ing so, the count table remains quite sparse, with 67% of null counts and 60% of
positive counts lower than or equal to 5. The ICL criteria on this subset selects
q̂ = 25 (R2 = 89.4%). The main structure present in the latent subspace is the
strong and systematic impact of weaning (Figure 3, left), almost entirely captured
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FIG. 2. Dataset from Mach et al. (2015). The minimum overall abundance of included OTUs (left
panel), quality of approximation R2

q (central panel) and selected value q̂ (right panel) decreases
when OTUs with low abundance are added to the dataset.

by Axis 1. The variable factor map highlights OTUs from two specific bacterial
families: Lactobacillaceae (red) and Prevotellaceae (blue). The former are typi-
cally found in dairy products and thought to be transmitted to the piglets via breast
milk. As expected, they are enriched in suckling piglets and negatively correlated
with Axis 1. The latter produce enzymes that are essential to degrade cereals in-
troduced in the diet after weaning. As reported in Mach et al. (2015), they are
enriched after weaning and positively correlated with Axis 1. The method is thus

FIG. 3. Individual (left) and variable (right) maps corresponding to the first principal plane of the
q-dimensional approximation. Weaning has a strong and systematic effect on gut microbiota com-
position, well captured by Axis 1. Bacterial families Prevotellaceae (red) and the Lactobacillaceae
(blue) are two families well known to be affected by weaning and have a high correlation with Axis 1.
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able to recover well known structures, cope with sparse count tables and account
for varying sequencing depths.

7.2. Oak powdery mildew pathobiome.

Description of the experiment. We considered the metagenomic dataset intro-
duced in Jakuschkin et al. (2016). Similar to the Mach et al. (2015) dataset, it
consists of microbial communities sampled on the surface of n = 116 oak leaves.
Communities were sequenced with both the hypervariable V6 region of 16S rRNA
as marker-gene for bacteria and the ITS1 as marker-gene for fungi. Sequences
were cleaned, clustered at the 97% identity level to create OTUs and only the most
abundant ones were kept [see Jakuschkin et al. (2016) for details of OTU picking
and selection] resulting in a total of p = 114 OTUs (66 bacterial ones and 44 fun-
gal ones). One aim of this experiment is to understand the association between the
abundance of the fungal pathogenic species E. alphitoides, responsible for the oak
powdery mildew, and the other species. Furthermore, the leaves were collected on
three trees with different resistance levels to the pathogen. In addition to the sam-
pling tree, several covariates, all thought to potentially structure the community,
were measured for each leaf: orientation, distance to ground, distance to trunk,
direction, etc.

We emphasize that our goal slightly differs from that of Jakuschkin et al. (2016)
as these authors were interested in reconstructing the ecological network of the
species, whereas our purpose is to summarize the species’ dependency structure
in low dimension. Our approach also differs from a methodological viewpoint as
we jointly estimate the effect of the covariates � and the dependency structure �
while they first corrected the observed counts for the effect of the covariates using
a regression model before feeding the residuals from that regression to a network
inference method. This two-steps procedure fails both to account for the fact that
� is estimated and to propagate uncertainty from the first step to the second one.

Importance of the offset. The abundances Yij (where i denotes the leaf and
j the OTUs) were measured separately for fungi and bacteria resulting in differ-
ent sampling efforts for the two types of OTUs: the median total abundance were
respectively 668 for bacteria and 2166 for fungi. To account for this, we define
a different offset Oij term for each OTU type. Offsets are still computed as the
log-total sums of reads, including those of filtered out OTUs, for each OTU type.

Model selection. The three trees from which the leafs where collected were
respectively susceptible, intermediately resistant (hereafter “intermediate”) and re-
sistant to mildew. We first fitted a null Poisson-lognormal model M0 as defined in
(9) with only an offset term. Alternatively, we considered model M1 involving two
covariates: the tree from which each leaf was collected from, and the orientation
(0 = south-east, 1 = north-west) of its branch.
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FIG. 4. Dataset from Jakuschkin et al. (2016). (a) Model selection criteria Jq , BICq and ICLq for
model M0 (left) and M1 (right); (b) R2

q criterion and entropy of p̃(W ).

Figure 4(a) displays the lower bound J , the BIC and the ICL for model M0
(left) and M1 (right) as a function of the number of axes q considered. We ob-
serve that the Jq is always increasing and that both BIC and ICL criteria behave
similarly. According to the ICL criterion, we selected q̂0 = 28 (ICL = −38,619)
latent dimensions for model M0 and q̂ = 25 (ICL = −38,472) for model M1. This
suggest that the two models (with their respective optimal dimension) provide a
very similar fit.

We looked at the approximate posterior entropy in panel left of Figure 4(b):
we observed that it is minimal near to the respective optimum in terms of model
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FIG. 5. Dataset from Jakuschkin et al. (2016). Scatter plot of the leaves on the first two principal
components (left: M0, right: M1) with colors corresponding to either tree status (a) or distance to
ground (b). Accounting for tree status reveals an ecological gradient along distance to ground.

selection. This indicates that the selected dimensions are also optimal in terms of
uncertainty on the latent variables.

Effect of the covariates. The choice between model M0 and M1 is mostly a
matter of the type of dependency we analyze with each of them, as the former
does not account for the covariates whereas the latter does. This is illustrated in
Figure 5(a) (top) when plotting the first principal plane. In model M0 (left), the
leafs collected on each tree are clearly separated. As expected, taking the tree as a
covariate (right) removes the tree effect from the principal plane.
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Adding covariates in the model also allows us to explore second-order struc-
turing effects that are masked by the strong first-order effect of the sampling tree.
Figure 5(a) (bottom) thus shows that in addition to sampling tree, communities
are structured by the distance of the leaf to the ground. The effect of covariates
on the abundance of E. alphitoides were also consistent: the estimated parameters
θij associated with the intermediate and resistant trees were −3.94 and −7.05,
respectively, taking the susceptible tree as a reference.

We compared the respective estimates of � under M0 (denoted �̂0) and un-
der M1 (�̂1) focusing on the correlations between E. alphitoides and the other
OTUs. �̂0 contains correlations between OTUs that are either due to marginal co-
variations between them or to the effect of the covariates, whereas the correlations
in �̂1 are corrected from the effect of covariates. We first observed a reduction of
the variances (median = 0.175, mean = 0.303 in �̂0; median = 0.087, mean =
0.176 in �̂1), which proves the strong effect of covariates on the abundance of
the different OTUs. We then ranked all species according to their correlation with
the pathogene and found very different rankings M0 and M1 (Kendall’s τ = 0.41),
showing that the covariates drastically change the apparent relationship between
OTU abundances.

Percentage of variance. We now comment on use of the R2
q criterion defined

in Section 6 to evaluate the proportion of variability captured by a model with q

latent dimensions. R2
q compares the pseudo-likelihood �m

q obtained with q latent
dimensions under model Mm (m = 0,1) with the likelihoods �m

min and �m
max. We

know that �0
max = �1

max whereas �0
min < �1

min because �0
min only relies on the offsets

whereas �1
min accounts for both the offsets and the covariates. As a consequence,

R2
q tends to be higher under M0 than under M1 for a given q . Right panel of Fig-

ure 4(b) compares the genuine R2
q under models M0 and M1 and the corrected

version of R2
q under model M1 using �0

min in place of �1
min. As expected, the cor-

rected version of R2
q is always higher under M1 than under M0. We also observe

that, for both models, the proportion of variability captured by the latent space
is quite high: R2

28 = 97.21% for M0 and R2
25 = 97.02% for M1. We recall that

q̂0 = 28 and q̂1 = 25 should both be compared with p = 114.

Variance of the variational conditional distribution. We recall that Sij is the
approximate conditional standard deviation of Wij given the data. This parameter
measures the precision of the location of individual i along the j th latent dimen-
sion. We can derive from them the approximate conditional variance of each Zij

as [B diag(si � si )B
ᵀ]jj . Figure 6 shows that this variance is much higher when

the corresponding abundance Yij is low. Indeed, any large negative values of Zij

yields a Poisson parameter close to zero and in turn a null Yij . As a consequence,
large negative Zij cannot be predicted accurately. This is a natural consequence of
the nonlinear nature of the exponential transform: large swaths of the parameter
space are compressed to small regions of the observation space.
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FIG. 6. Variational approximate conditional standard error of the Zij (y axis) as a function of the
abundance Yij (x axis).

APPENDIX: CONVEXITY LEMMAS

LEMMA 1. For any vectors θ , x, m, s and b (with matching dimensions) and
convex function f , if u ∼ N (0, I ) and w = m + s � u ∼ N (m,diag(s � s)), then
the map g : (θ,m, s,b) 
→ E[f (θᵀx + bᵀw)] is convex in (θ,b) for (m, s) fixed
and vice versa.

PROOF. Note Z = θᵀx + bᵀw = (θᵀx + bᵀm) + bᵀ(s � u). The first-order
derivative of g is

∇(θ ,b,m, s) = E
[
f ′(Z)

[
x m + s � u b b � u

]ᵀ]
.

The second-order partial derivatives of g are:

�1(θ ,b) = E

[
f ′′(Z)

[
xxᵀ x(m + u � s)ᵀ

(m + s � u)xᵀ (m + s � u)(m + s � u)ᵀ

]]
,

�2(m, s) = E

[
f ′′(Z)

[
bbᵀ b(b � u)ᵀ

(b � u)bᵀ (b � u)(b � u)ᵀ

]]
.

And the associated quadratic form �1(v,w) = (v,w)ᵀ�1(θ ,b)(v,w) and �2(v,

w) = (v,w)ᵀ�2(m, s)(v,w) can be simplified to

�1(v,w) = E
[
f ′′(Z)

(
xᵀv + (m + s � u)ᵀw

)2] ≥ 0,

�2(v,w) = E
[
f ′′(Z)

(
bᵀv + (b � u)ᵀw

)2] ≥ 0.

The Hessians �1 and �2 are thus semidefinite positive, which ends the proof. �
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LEMMA 2. For any matrices �, X, M , S and B (with matching dimensions)
and convex function f , if U = [U1, . . . ,Un]ᵀ where the U i are i.i.d. and U i ∼
N (0, I ) and W = M + S � U . The map g : (�,M,S,B) 
→ 1ᵀnE[f (X�ᵀ +
WBᵀ)]1p is convex in (�,B) for (M,S) fixed and vice versa.

PROOF. The function g is a sum of functions of the form gij : (�,M,S,B) 
→
E[f (X

ᵀ
i �j + B

ᵀ
j (M i + Si � U)]. The result follows from Lemma 1. �
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