
HAL Id: hal-01941250
https://hal.science/hal-01941250v1

Submitted on 30 Nov 2018 (v1), last revised 10 Dec 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward performance prediction for Multi-BSP programs
in ML

Victor Allombert, Frédéric Gava, Julien Tesson

To cite this version:
Victor Allombert, Frédéric Gava, Julien Tesson. Toward performance prediction for Multi-BSP pro-
grams in ML. 18th International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP), Nov 2018, Guangzhou, China. �hal-01941250v1�

https://hal.science/hal-01941250v1
https://hal.archives-ouvertes.fr

Toward performance prediction
for Multi-BSP programs in ML

Victor Allombert1, Frédéric Gava2, and Julien Tesson2

1 Université d’Orléans, LIFO, Orléans, France
2 Université Paris-Est Créteil, LACL, Créteil, France

Abstract. bsml and multi-ml are functional parallel programming lan-
guages “à la ml” based of the respectively the bsp and multi-bsp bridging
models. multi-bsp extends bsp to take into account hierarchical archi-
tectures. For both models, it is possible to predict the performances of
algorithms thanks to embedded cost models. To do so, we propose formal
a operational semantics with cost annotations for the two aforementioned
languages. This work has been done in a incremental manner. First we
recall the cost semantics of core-ml language. Then, we adapt it to bsml
and we adapt it to multi-ml. It is then possible to evaluate the cost of
a program following the annotated semantics. Finally, we compare the
theoretical approach with the current implementation on a code example.

Keywords: Semantics, bsp, bsml multi-bsp, Cost, Time prediction

1 Introduction

1.1 Context

The culk synchronous parallelism (bsp) bridging model [19] was designed for
flat parallel architectures. A bridging model is an abstract model of a computer
which provides a conceptual bridge between the physical implementation of the
machine and the abstraction available to a programmer of that machine. But
modern high performance computing (hpc) architectures are now hierarchical
and have multiple layers of parallelism, communication between distant nodes
cannot be as fast as among the cores of a given processor. We now consider the
multi-bsp model [20], an extension of bsp. multi-ml [?] is a multi-bsp exten-
sion of bsml [9], a functional approach for programming bsp algorithms in ml,
bsml being itself an extension of ocaml, a ml language (https://ocaml.org/).

To be compliant with a bridging model eases the way of writing codes that en-
sures efficiency and portability from one architecture to another and also avoid
deadlocks and non-determinism. The multi-bsp bridging model offers a high
level of abstraction and takes into account real communications and synchroni-
sation costs on hierarchical architectures. Thanks to the cost model embedded in
the (multi-)bsp model, it is possible obtain the cost of a given algorithm. Using
the (multi-)bsp parameters of an architecture allows to predict the execution
time of a given code. That can useful for resource bound analysis and find per-
formance bugs thus to provide development-time feedback to hpc programmers.

https://ocaml.org/

We chose ocaml (with our own distributed extensions) as the source lan-
guage “à la ml” for several reasons. For one, ocaml is a widely used language
for functional programming which is quite efficient in practice (sophisticated
compiler and automatic memory management). Moreover, we wanted to demon-
strate that it is possible to define a practical cost semantics for high-level hpc
languages; imperative programming is closer to standard assembly codes which
already have their cost analysis such as wcet [?]. Even if functional program-
ming is currently not the norm for hpc, it is more and more common that main
stream languages (such as java) add functional features. Studying these features
in ml, without having to manage others features (such as java’s objects), is a
classical manner to get them for other languages.

Cost prediction is important for the design of efficient algorithms and is also
important in domains where programs are executed with time constraints (such
as in physical engines such as aeroplanes etc.). In the future, even such domains
would benefit of many-cores architectures (at most). Cost prediction of hpc
programs is thus an important issue to ensure the safety of such systems.

1.2 Example of the methodology: the sequential case

An important first step to study cost prediction of programs is to define the cost
of the construction of the language itself, that is define an operational big-step
semantics that assign a parametric cost to a well-formed expression. Having a
compositionnal cost semantics is also an important issue in order to get modular
and incremental programming: from a software engineering point of view, it
makes senses that the cost of a subprogram does not depend (too much) on the
context, for example, the cost of an array sorting method should depend only
on the size of the input and not when it is called.

The main hypothesis is that the resource consumption of a program is a linear
combination of the number of executions of each construct in the program3. The
semantics models this idea by parameterizing the cost with unknown coefficients
that correspond to each ml construct: the number of executions of each of these
constructs constitutes the majority of the execution time of most ml programs.

Taking the case of the core-ml language. It relies on a minimal set of ml con-
structions. This set is sufficient enough to express all the behaviour that are used
in ml programming. Thus, features such as records, modules, pattern matching,
sum types are excluded. The grammar is:

e ::= cst Constants
| op Operators
| x Variables
| (e e) Application

| let x = e in e Binding
| fun x→ e Function
| rec f x→ e Recursive function
| if e then e else e Conditional

In this grammar, x and f range over an infinite set of identifiers. We also find
the typical ml-like constructors such as let for bindings and also fun and rec

for, respectively, functions and recursive functions. As expected, the application

3 But their combination could be not linear as for algorithms with polynomial or
exponential complexities.

is denoted (e e). For the sake of readability, we take the liberty to use the fa-
miliar infix notation for binary operators, as well as the usual precedence and
associativity rules. When the context is clear, we can avoid the usage of paren-
theses. op stands for the standard operators, such as common computations on
integers. cst stands for constants such as integers, booleans, etc. An expression
is evaluated into a value v which are defined as:

v ::= op | cst | (fun x→ e)[E] | (rec f x→ e)[E]
E ::= {x1 7→ v1, . . . xn 7→ xn}

Values contains constants and closures (a value which stores both a function and
its environment). An environment E is interpreted as a partial mapping with fi-
nite domain from identifiers to values. The extension of E by v in x is written
E] {x 7→ v}. An inference rule can be written as following:

P
E ` e ⇓ v C

That is with the premise P, the expression e is evaluated to the value v at cost
C. The cost (time and memory) consumed by each construct is averaged out to
be a constant. Hence, the execution time of a program C is:

∑
c∈C nc×Tc where

C represents the set of constructs and nc is the count of each construct during
the whole program execution, and Tc is the execution time of the respective
constructs. Estimating the overall time execution of a program (in “seconds”)
from the semantics now consists to estimating each Tc (in µs) using micro-
benchmarking4 and replacing them into the extracted cost C. The inference
rules for core-ml are defined in Fig. 1 and work as follow.

The Csts and Ops rules do not generate any additional cost. Indeed, we
assume that they are static values which are accessible freely. Vars aims to
access a value bound in a memory using the lookup operator (which returns the
corresponding bound value). As this operator access a value stored in a memory,
its cost should be proportional to the path trough different caches-memories.
However, we chose to set such a constant Tvar in order to simplify the rules.

The Closure rule mainly models the way the values are enclosed inside a
function closure. It is done using the select operator which, given an environment
E and a function (code) returns the minimal environment to evaluate such a code.
We assume that the cost of building such an environment is proportional to the
number of free variables (F , define by trivial induction on expressions) of e. It
is an approximation which can be refined by taking into account more ocaml
mechanisms. Recursive functions are build in the same way.

The app, let and if rules are straightforward: we simply propagate the cost
produced by each expressions. Note the modification of the environment for the
application to evaluate the code of the closure. Also, each operator gets a cost
noted c3 in the rule and we note op v the new built value. The “s” on the rules
that are unused here but will be necessary for the bsp’s supersteps. It is also
straightforward to show that ⊕ is commutative.

4 This assumption does not truly holds for most of the relevant platforms (e.g. the
garbage collector and caches-misses) but is still sufficient for our study; We let more
subtle analyses to future works and we will focus on parallelism.

Csts E `s cst ⇓ cst s 0
Ops E `s op ⇓ op s 0

Vars
{x 7→ v} ∈ lookup(x, E)
E `s x ⇓ v s Tvar

Closures
E ′ = select(E ,F(fun x→ e)) n = |v| v ≡ (fun x→ e)[E ′]

E `s fun x→ e ⇓ v s Tdef ⊕ n×Tclo

App1
E `s e1 ⇓ (fun x→ e3)[E ′] s1 c1 E `s1 e2 ⇓ v s2 c2 E ′] {x 7→ v} `s2 e3 ⇓ v′ s3 c3

E `s (e1 e2) ⇓ v′ s3 c1 ⊕ c2 ⊕ c3 ⊕ TFunApp

App2
E `s e1 ⇓ op s1 c1 E `s1 e2 ⇓ v s2 c2 v′ ≡ op v c3

E `s (e1 e2) ⇓ v′ s2 c1 ⊕ c2 ⊕ c3

Let
E `s e1 ⇓ v1 s1 c1 E] {x 7→ v} `s1 e2 ⇓ v2 s2 c2

E `s let x = e1 in e2 ⇓ v2 s2 c1 ⊕ c2 ⊕ Tlet

If1
E `s e1 ⇓ True s1 c1 E `s1 e2 ⇓ v2 s2 c2

E `s if e1then e2 else e3 ⇓ v2 s2 c1 ⊕ c2 ⊕ Tif

If2
E `s e1 ⇓ False s1 c1 E `s e3 ⇓ v3 s3 c3

E `s if e1then e2 else e3 ⇓ v3 s3 c1 ⊕ c3 ⊕ Tif

Fig. 1. The cost semantics of the sequential core-ml language.

1.3 Outlines

In this article we introduce the formal cost semantics of first the bsml (Sec-
tion 2) and then we extend it to multi-ml (Section 3). For both languages, we
first present the model of execution, then the cost model and we give the se-
mantics annotated with costs for core languages that describes the syntax of the
aforementioned languages. Finally, we compare the predicted execution times
with the actual one on a small example (Section 4). After the description of
related works (Section 5) we conclude (Section 6).

2 BSP programming in ML and costs semantics
2.1 The BSP bridging model

local
computations

p0 p1 p2 p3

communication

barrier
next superstep...

...
...

...
Fig. 2. A bsp superstep.

In the bsp model [19], a computer is a set
of p uniform pairs of processor-memory with
a communication network. A bsp program is
executed as a sequence of supersteps (Fig. 2),
each one divided into three successive dis-
jointed phases: (1) each processor only uses
its local data to perform sequential computa-
tions and to request data transfers to other
nodes; (2) the network delivers the requested
data; (3) a global synchronisation barrier oc-

curs, making the transferred data available for the next superstep.
As bsp architecture can be easily mapped on any general purpose parallel ar-

chitecture. Thanks to the bsp cost model it is possible to accurately estimate the
execution time of a bsp program with the bsp parameters. The performance of a

bsp computer is characterised by four parameters: The local processing speed r;
The number of processors p; The time L required for a barrier; The time g for
collectively delivering a 1-relation. g and L can be expressed in fLoating-point
operations (flops) and r in flops per second. To accurately estimate the exe-
cution time of a bsp program, these 4 parameters can be easily benchmarked [3].

A 1-relation is a collective exchange where every processor receives/sends
at most one word. The network can deliver an h-relation in time g × h. The
execution time (cost) of a superstep s is the sum of the maximal local processing
time, the data delivery and the global synchronisation times. It is expressed by
the following formula: Cost(s) = max0≤i<p w

s
i +max0≤i<p h

s
i×g+L where ws

i is
the local processing time on processor i during superstep s and hsi is the maximal
number of words transmitted or received by processor i during superstep s. The
total cost of a bsp program is the sum of its supersteps’s costs.

2.2 The BSML language

bsml [8] uses a small set of primitives and is currently implemented as a li-
brary (http://traclifo.univ-orleans.fr/bsml/) for the ml programming lan-
guage ocaml. An important feature of bsml is its confluent semantics: what-
ever the order of execution of the processors is, the final value will be the same.
Confluence is convenient for debugging since it allows to get an interactive loop
(toplevel). That also simplifies programming since the parallelisation can be done
incrementally from an ocaml program.

A bsml program is built as a ml one but using a specific data structure
called parallel vector. Its ml type is ’a par. A vector expresses that each of the
p processors embeds a value of any type ’a. Fig. 3 resumes the bsml primitives.
Informally, they work as follows: let � e� be the vector holding e everywhere
(on each processor), the� � indicates that we enter into the scope of a vector.
Within a vector, the syntax x can be used to read the vector x and get the
local value it contains. The ids can be accessed with the predefined vector pid.
When a value is referenced within the scope of a parallel vector, its locality is l
(local); otherwise, the locality is b (bsp).

The proj primitive is the only way to extract local values from a vector. Given
a vector, it returns a function such that applied to the pid of a processor, returns
the value of the vector at this processor. proj performs communication to make
local results available globally and ends the current superstep.

The put primitive is another communication primitive. It allows any local
value to be transferred to any other processor. It is also synchronous, and ends
the current superstep. The parameter of put is a vector that, at each processor,
holds a function returning the data to be sent to processor j when applied to j.
The result of put is another vector of functions: at a processor j the function,
when applied to i, yields the value received from processor i by processor j.

http://traclifo.univ-orleans.fr/bsml/

Primitive Type Informal semantics
<< e >> ’a par (if e :’ a) 〈e, . . . , e〉, a vector of size p the number of processors
pid int par A predefined vector: i on processor i
v ’a (if v: ’a par) vi on processor i, assumes v ≡ 〈v0, . . . , vp−1〉
proj ’a par−> (int−>’a) 〈x0, . . . , xp−1〉 7→ (fun i→ xi)
put (int −> ’a)par−> (int−> ’a)par 〈f0, . . . , fp−1〉 7→〈(fun i→fi 0), . . . , (fun i→fi (p−1))〉

Fig. 3. Summary of the bsml primitives.

2.3 Cost semantics

Extension. To obtain core-bsml, we extends the expressions of core-ml with
parallel primitives as follow: e ::= · · · | replicate (fun _→ e) | (proj e) | (put e)
| (apply e e). The distinction made between the syntactic sugar (the � � and
$ notations), used when programming bsml algorithms, and the core parallel
primitives (replicate and apply), available in the semantics only, simplifies
the semantics. Indeed, the syntactic sugar eases the way of programming but it
is not suitable for the semantics as it introduces implicit assumptions. Thus, we
must transform and abstract the syntactic sugar using the core parallel primi-
tives. The transformation applied to switch from the syntactic sugar to the core
parallel primitives is straightforward and produce and equivalent expression. The
parallel vector scope, denoted � e� , is transformed using the replicate core
primitive. Thus, � e� is simply transformed into replicate (fun _ → e).
The $ syntax is transformed using the apply primitive. The transformation
is simple and does not require a complicated expression analysis. To do so,
we build a vector of functions that takes, as argument, the dollar’s annotated
value. Using the apply primitive, we can apply this vector of functions on the
vector of values. For example, the expression � (e x) � is transformed into
apply (replicate (fun _ x→ e x)) x.

Values are also extended with parallel vectors: v ::= · · · | < v1, . . . , vp >. In
the following, to simplify the notations, we indices processors from 1 to p (and
not from 0 to p−1 as common in hpc). We make also the hypothesis that there
exists a special vector named pid=< 1, · · · ,p > (the ids of the processors).

The main modification is about the costs. During a superstep, the asyn-
chronous costs are counting independently and it is only during the barrier that
the maximal of the costs (computation and communication) are to be taken into
account. But a same superstep can be in two different parts of an expression (for
example let x=� 1+1� in ((proj � x+1�) 2) where the begin of the first su-
perstep is in the first part of the let , the next just before the call of the proj and
the second superstep when apply the result of the proj on the constant 2). For
this reason, we extends the costs with vector of costs < c1, . . . , cp >s where each
component i describe the current local cost ci of processor i during the superstep
s. This s is modify only by the rules of synchronous primitives. Nevertheless, we
add the three following equivalences:
1. < c1, . . . , cp >s ⊕ < c′1, . . . , c

′
p >s≡< c1 ⊕ c′1, . . . , cp ⊕ c′p >s, if ci and c′i

does not contains vectors
2. < Top ⊕ c1, . . . , Top ⊕ cp >s≡ Top⊕ < c1, . . . , cp >s, whatever Top
3. 0 ≡< 0, . . . , 0 >s, whatever s
These rules aims to keep using the previous rule of the sequential constructions
of the languages (let, fun, etc.).

Rpl
∀i ∈ {1, . . . ,p} E `s e ⇓ vi s ci if V alid(e, E)

E `s replicate (fun _→ e) ⇓< v1, . . . , vp > s Trpl⊕ < c1, . . . , cp >s

Apply

{
E `s e1 ⇓< f1, . . . , fp > s1 c1
E `s1 e2 ⇓< v1, . . . , vp > s2 c2

∀i ∈ {1, . . . ,p} E `s2 (fi vi) ⇓ v′i s2 c′i

E `s (apply e1 e2) ⇓< v′1, . . . , v
′
p > s2 Tapp ⊕ c1 ⊕ c2⊕ < c′1, . . . , c

′
p >s2

Proj
E `s e ⇓< v1, . . . , vp > s′ c f is such that ∀i ∈ {1, . . . ,p} E ` (f i) ≡ vi
E `s (proj e) ⇓ f s′+1 Tproj ⊕ c⊕HRelation(v1, . . . , vp)×g ⊕ L

Fig. 4. The cost semantics of the core-bsml language.

Lemma 1. The costs with parallel vector of costs form a commutative and as-
sociative group id where 0 is the neutral element inside or outside cost vectors
and where < 0, . . . , 0 >s is the neutral element outside vectors only.

Adding rules. We must now extend our inference rules in order to take into
account the bsp primitives. These rules are given in Fig 4. They work as follow.

The Rpl rule is for building asynchronously a new parallel vector. The ex-
pression e is evaluated for each component, in parallel, making a new vector
of cost for the current superstep s. The valid function is used to forbid nested
vectors and is fully defined in [1]. A type system has been designed to not be
forced to do this check dynamically. Then a construct is linearly add.

The Apply rule works similarly but for two expressions which thus add two
different costs (not necessary vectors and for possibly different supersteps) and
we finally built the vector by computing its components in parallel (on each
processor) making the linear add of a new costs vector.

The Proj rule adds a barrier (L) and thus finishes the superstep (updating
s). From the exchanged computing values, a h-relation is added: g and L are
thus special constructs. The put cost is quite dense because of the number of
communications between all the processors which are done during the evaluation
of the primitive. But the rule is close the proj one. For sake of conciseness, we
do not show it. The way the data sizes are computed by simple induction on the
values (Hrelation): it is rather naive but sufficient to an upper born.

To get the overall execution time E `s e ⇓ v s′ c then it is max(c) ⊕ L
where the function max first apply the three previous equivalences in order to
aggregate (merge) the cost vectors of the same superstep until not merging is
possible. Finally, when the cost (time and memory) consumed by each construct
is statically known in µs then max(< c1, . . . , cp >s) = ci if ∀j 6= i, cj ≤ ci.
Lemma 2. max is idempotent that is ∀c max(max(c)) = max(c).

For example, let x=<<1+1>> in ((proj <<x+1>>) 2) beginning with what-
ever environment E at any superstep s, for a two processors bsp machine, the
cost semantics indicates that the adding cost of such expression is: < T+, T+ >s

⊕Trpl⊕Tapp⊕ < Tvar ⊕T+, Tvar ⊕T+ >s ⊕1×g⊕L⊕Tapp (2 vectors construc-
tions both with an addition; a synchronous primitive; and a final application).
That is to say, in any context, the expression adds T+ during the asynchronous
phase of the current superstep s, finishes it and begins a new superstep. On it
own, the cost of such an expression can be simplify into 2×T+ ⊕ g ⊕ L.

3 Multi-BSP programming in ML and costs semantics

3.1 The Multi-BSP bridging model

multi-bsp is a bridging model [20] which is adapted to hierarchical architec-
tures, mainly clusters of multi-cores. It is an extension of the bsp bridging
model. The structure and abstraction brought by multi-bsp allows to have
portable programs with scalable performance predictions, without dealing with
low-level details of the architectures. This model brings a tree-based view of
nested components (sub-machines) of hierarchical architectures where the low-
est stages (leaves) are processors and every other stage (nodes) contains memory.

Every component can execute code but they have to synchronise in favour
of data exchange. Thus, multi-bsp does not allow subgroup synchronisation of
any group of processors: at a stage i there is only a synchronisation of the sub-
components, a synchronisation of each of the computational units that manage
the stage i−1. So, a node executes some code on its nested components (aka
“children”), then waits for results, does the communication and synchronises the
sub-machine. A multi-bsp algorithm is thus composed by several supersteps,
each step is synchronised for each sub-machine.

Stage i

Stage i−1

n

n.1 n.pi

gi+1

gi

mi

Li

Fig. 5. The Multi-BSP parameters

An instance of multi-bsp is de-
fined by d, the fixed depth of the (bal-
anced and homogeneous) tree architec-
ture, and by 4 parameters for each stage
i of the tree : (pi,gi,Li,mi); described
in Fig. 5: pi is the number of sub-
components inside the i − 1 stage; gi

is the bandwidth between stages i and
i− 1: the ratio of the number of operations to the number of words that can be
transmitted in a second; Li is the synchronisation cost of all sub-components of
a component of i− 1 stage; mi is the amount of memory available at stage i for
each component of this stage.

Thanks to those parameters, the cost of a multi-bsp algorithm can be com-
puted as the sum of the costs of the supersteps of the root node, where the
cost of each of these supersteps is the maximal cost of the supersteps of the
sub-components (plus communication and synchronisation); And so on.

Let Ci
j be the communication cost of a superstep j at stage i: Ci

j=hj×gi+Li

where hj the maximum size of the exchanged messages at superstep j, gi the
communication bandwidth with stage i and Li the synchronisation cost. We can
express the cost T of a multi-bsp algorithms as following:

T =

d−1∑
i=0

(

Ni−1∑
j=0

wi
j + Ci

j)

where d is the depth of the architecture, Ni is the number of supersteps at stage
i, wi

j is the maximum computational cost of the superstep j within stage i.
It is to notice that the bsp and multi-bsp cost models both are a linear

combination of costs for the asynchronous computations and costs of communi-
cations (separated by barriers).

3.2 The Multi-ML language

multi-ml [?,1] (https://git.lacl.fr/vallombert/Multi-ML) is based on the idea
of executing bsml-like codes on every stage of a multi-bsp architecture. This ap-
proach facilitates incremental development from bsml codes to multi-ml ones.
multi-ml follows the multi-bsp approach where the hierarchical architecture is
composed by nodes and leaves. On nodes, it is possible to build parallel vectors,
as in bsml. This parallel data structure aims to manage values that are stored
on the sub-nodes: at stage i, the code let v=� e� evaluates the expression e
on each i− 1 stages.

Inside a vector, we note #x# to copy the value x stored at stage i to the
memory i−1. The (mkpar f) primitive is an alternative way to build a vector using
a function f. Typed (int → α) → α par, it aims to execute the given function to
each processor identifiers (from 0 to pi − 1) of a node locally on it; and then,
distribute the results down to its sub-nodes. The main difference with the� e�
notation is that (mkpar f) aims to reduce costs when the communication costs of e
is high and the execution cost of f and its result is low. As in bsml, we also found
the proj, put primitives and the syntax x, all of them with the same semantics.

We also introduce the concept of multi-function to recursively go through a
multi-bsp architecture. A multi-function is a particular recursive function, de-
fined by the keyword let multi, which is composed by two codes: the node and
the leaf codes. The recursion is initiated by calling the multi-function (recur-
sively) inside the scope of a parallel vector, that is to say, on the sub-nodes. The
evaluation of a multi-function starts (and ends) on the root node. The following
code shows how a multi-function is defined.
let multi mf [args]=
| where node =
| | (∗ BSML code∗)
| | ...
| | � mf [args] �
| | ... in v
| where leaf =
| | (∗ OCaml code ∗)
| | ... in v

After the definition of the multi-function mf on
line 1 where [args] symbolises a set of arguments, we
define the node code (from line 2 to 6). The recursive
call of the multi-function is done on line 5, within the
scope of a parallel vector. The node code ends with a
value v, which is available as a result of the recursive
call from the upper node. The leaf code, from lines
7 to 9 consists of sequential computations.

We also propose another parallel data structure
called tree. A tree is a distributed structure where a value is stored in every nodes
and leaves memories. A tree can be built using a multi-tree-function, with the
let multi tree keyword and can be handled by several primitives of the language.
We do not detail this construction here.

Similarly to bsml and its b and l localities, in multi-ml we introduce m

when a value refers to the multi-bsp locality and s on leaves (sequential).

3.3 Cost semantics

Extension. To obtain core-multi-ml, we extends core-bsml with multi-functions
as follow: e ::= · · · | (downx) | multi f x→ e † e.

https://git.lacl.fr/vallombert/Multi-ML

MultiNode

{
E `s e1 ⇓ln (multi f x→ e′1 † e′2)[E ′] s1 c1
E `s1 e2 ⇓ln v s2 c2

E ′ `0 e′1 ⇓bn+1 v
′ s3 c3

E `s (e1 e2) ⇓ln v′ s3 Tapp ⊕ c1 ⊕ c2 ⊕max(c3)⊕ Ln)

MultiLeaf

{
E `s e1 ⇓ln (multi f x→ e′1 † e′2)[E ′] s1 c1
E `s1 e2 ⇓ln v s2 c2

E ′ `s2 e′2 ⇓n+1 v
′ s2 c3

E `s (e1 e2) ⇓ln v′ s2 Tapp ⊕ c1 ⊕ c2 ⊕ c3)

MultiCall

{
E `s e1 ⇓m (multi f x→ e′1 † e′2)[E ′] s c1
E `s e2 ⇓m v s c2

E ′ `0 e′2 ⇓b1 v′ s3 c3 V alid(v′, E ′)

E `s (e1 e2) ⇓m v′ s Tapp ⊕ c1 ⊕ c2 ⊕max(max(c3))⊕ SizeOf(v′)×g ⊕ L

Fig. 6. The cost semantics of the core-multi-ml language.

The multi-function definition is written with the keyword multi. It takes
one arguments and two expressions separated by the † symbol; the first ar-
gument stands for the node code and the second is for leaf code. The down
primitive aims to transfer a value to all the sub-nodes. The transformation from
the # syntax into the down primitive is obvious and work as other syntactic
sugars of bsml. For example, the expression << e #x# >> is transformed into
apply (replicate (fun _ x → e x))(down x). As the # annotated value is
given as argument of the vector of functions, there are no redundant copies. The
expression << #x# + #x# >> is transformed into a code that copy x to the
sub-nodes, only once. Parallel vectors of values (and costs) now also depend of
their deep level n in the multi-bsp architecture. Closures of multi-functions are
also added. Thus we have v ::= · · · | < v1, . . . , vpn

> | (multi f x→ e † e)[E].

Adding rules. We must now extend our inference rules in order to take into
account the multi-functions and the nested bsml codes. These rules are given in
Fig. 6. They work as follow.

These new rules need some updates of the previous rules. First, the ⇓ is
parameterized by the different levels of execution of multi-ml and the stage n
(beginning from 1). bsml rules has to be trivially updated with this stage in
order to build the right size vectors.

As a node is a particular component where it is possible to express bsp paral-
lelism, we must consider the synchronous costs generated by bsp computations.
Those rules, at a stage n, are used to recurse trough the multi-bsp architec-
ture using the multi-function. Therefore, the max function now first merge the
vectors of the same (sub)superstep and finally we use this following equiva-
lence (for each superstep s): max(n1×T1 ⊕ · · · ⊕ nt×Tm⊕ < c1, . . . , cpn >s) ≡
max(n1T1 ⊕ · · · ⊕ nt×Tt,maxi=1..pn

(ci)) that is we take the maximum between
the computation of the node parent with the max of its own children.

The MultiCall rule is for calling the multi-function at the level m. The
counter of superstep is initiated to 0 as the stage to 1. The code of the node
begins (level b). This rule terminates with a whole and synchronous broadcasting
of the final value v where g = g1 + g2...+ gd (as well for L); This is due to the

model of execution of multi-ml where the code outside multi-function is run
by all the processors in order to manage the whole execution and thus the value
must be known by all the processors. The maximum function allow to get the
right cost of all child. The rule is possible only if v is valid (as in bsml). Our type
system forbids expressions that have not this property [1] and we can assume
that all the evaluated expressions are correct.

The MultiLeaf goes to leaf level. The number of supersteps still the same
when going throw the leaf level (only sequential codes are allow).

The MultiNode is for going throw the hierarchical architecture (inside a
vector) from one node to another one (the child). Thus the stage is incremented.
A final synchronisation is used to finally wait all the child before terminating
the node code (the recursive call of the multi-function). This allow to take the
maximum of computation of the sub supersteps as wanted in the multi-bsp cost
model. In multi-ml, the building of a vector is an asynchronous operation with
a emission of a signal of creation from the node processor to the subnodes (or
leaves). It is thus no longer possible using the second equivalence of the ⊕ which
only becomes commutative between two Ln (barrier) at a stage n.

It is to notice that the Lookup function need also to check the variable at
the right memory. Indeed, a variable define in at the stage n is no available on
another stages. To do this, one must adding indices in the environment E . More
details are available in [1].

Here, only the MultiNode and MultiLeaf rules can be evaluated. The
costs of the multi-function recursive call taking place on both the node and the
leaf is simple. We just add the evaluation cost of e1 and e2, plus the multi-
function call cost, resulting in the recursive call. The MultiNode rule adds the
Ci costs which result from the potential asynchronous computations done on the
node. Thus, we collect all the costs engendered by multi-function recursion. As
expected, this mechanism is not necessary on the MultiLeaf rule, as there is
no parallel computation at this level.

4 Experiments

Thanks to the cost model embedded in the multi-bsp model, it is possible to
estimate the evaluation cost of a multi-ml program. According to the multi-
bsp parameters standing for a machine specification, it is then possible to predict
the execution time of a program.

To verify that the cost estimation retrieved from the multi-bsp cost formulae
is valid, we are going to compare the computation time of a simple algorithm
to the predicted computation cost. To do so, we propose to analyse a matrix
vector product algorithm based on the map/reduce skeleton. Using the multi-
bsp parameters of the targeted architecture able to predict the computation
time of various inputs. Our example has been written in a functional style using
tail-recursive functions but thanks to the ocaml compiler, these functions are
transformed into an efficient imperative version.

4.1 Algorithm description

We consider a simple algorithm to compute the product of a matrix and a vector.
Given a matrixM of dimension n×m, where n stands for the number of lines
and m form the number of columns, and a vector V of dimension n (number of
lines) the computation is the following: M× V = x, such as x = (x0, . . . , xn)
where x is composed by m lines and xi =

∑n
j=0Mij × Vj . Now, to propose a

parallel version of this matrix vector product, we choose to use the map/reduce
skeleton [6]. Using map/reduce algorithms is an easy way to propose parallel
algorithms using simple associative and commutative operators. A map/reduce
algorithms works as following: (1) the data are distributed among the processing
units; (2) the map operator is applied on each piece of data; (3) the reduce
operator is used to combine the results; (4) the final result is thus obtained.

To implement the matrix vector multiplication we define: a map operator
which compute the product of a matrix and a vector; and a reduce operator which
takes i sub-matrices of size (n′,m) and assemble them into a (i× n′,m) matrix.

The bsp cost of the bsp algorithm is: Q(i) × Tmap ⊕ Q(i) × g ⊕ Q(i) ×
Tred⊕L where Q(i) stands for the total amount data stored at processor i. The
multi-bsp cost of the multi-bsp algorithm is: S(0)× Tmap ⊕

∑d
i=1(S(i− 1)×

gi−1 ⊕ Li−1)⊕ S(i)× Tred) where Tmap (resp. Tred) is the time of the mapping
(resp. reducing) and S(i) stands for the total amount data stored at level i; for
example, we haveN×M/2/2 elements on each leaf of a dual-core with two thread
per core. We assume the following size (quantity of memory) of values such as
SizeOf(float) = 64Bytes and SizeOf(float array) = n× SizeOf(float) if
the array contains n elements. We omit small overheads and alternative costs
relative to each level for the sake of simplification. Furthermore, the cost of
serialisation of the data is taken into account in the g parameter.

4.2 Algorithms implementation

The bsml codes or mapping/reducing and their descriptions are available in
[8,9]. In the context of multi-bsp functional programming, we must now write
the map/reduce matrix vector product algorithm using the multi-ml language.
As the multi-ml language uses a tree based hierarchical way of executing code,
the map/reduces algorithms are almost embedded in the syntax of the language.
Indeed, the map phase consists in mapping a function toward the leaves of the
multi-bsp architecture, while the reduce phase is basically the combination of
the results toward the root node.

In the map/reduce implementation, we assume that the values were pre-
viously distributed such as each leaves already contains the sub-matrices and
nodes are empty. Thus, the distribution is handled by a tree data structure of
matrices. As in our implementation a matrix is represented by a one dimension
array, the input data is typed α array tree. The map multi-function is written in
Fig. 7 (left). As expected, we call recursively the multi-function map toward the
leaves. When reached, the leaves are going to apply the map operator f on their

let m_map f tda =
let multi tree map tda =

where node =
let rc = � map tda � in
finally (rc ,[])

where leaf =
f (at tda)

in map tda

let m_reduce op e tda =
let multi tree reduce tda =
where node =

let rc = � reduce tda � in
let sub_vals = to_array rc in
let res = fold_left op e sub_vals in
finally (rc , res)

where leaf =
at tda

in reduce tda ;;

Fig. 7. Codes of the multi-ml mapping (left) and reducing (right).

data stored in tda (the tree distributed array of sub-matrices). Then, we build a
tree which contains the results on leaves.

After reaching the leaves using the recursive calls, the reduce multi-function
simply retrieve the sub-results of its sub-nodes from rc. It transform the parallel
data structure into a local array using to_array and apply the reduce operator of
each sub-matrices. Finally, the resulting matrix is used to propagate the result
to the root node (Fig. 7, right).

4.3 Performance predictions

Benchmarks were performed on the following architecture: mirev2 8 nodes, each
with 2 quad-cores (amd 2376 at 2.3Ghz) with 16GB of memory per node and a
1Gbit/s network. Based on the computation and communication cost of each
phases it is possible to compute the cost of the proposed algorithm. To do
so, we use the multi-bsp parameters which can be estimated using the probe
method [3]. We use the following parameters: g0 = ∞, g1 = 6, g2 = 3 and
g0 = 1100, g1 = 1800, g2 = 0 and L0 = 149000, L1 = 1100, L2 = 1800, L3 = 0.
For bsp we get g = 1500 and L = 21000.

TDef = 2.921
TClo = 0.167

TFunApp = 1.505

TLet = 1.312
TV ar = 0.619
TSet = 1,778

TGet = 1,324
TFloatAdd = 0,881
TFloatMult = 1,317

TBoolAnd = 0.184
TIntEq = 0.284

Table 1. Operator timings in µs.

Thank to a micro-benchmarking library [17] of ocaml, we have estimated
the execution time of the main operators which are used in the map operator:
multiplication, addition, set and get a value from an array. The timings for
each operators are available in Table 1 where Tmult, Tadd, Tset and Tget are
respectively standing for multiplication, addition, affectation and read in an
array. We have neglect the times to build the closures (and apply them) for both
multi-functions and the recursive functions since most of the computations come
from mapping and reducing.

Thus, we have that Tmap = 3×Tget⊕Tset⊕ 2×TFloatMult⊕ 3×TFloatAdd⊕
2×TBoolAnd⊕2×TIntEq+10×TV ar and Tred = Tget⊕Tset⊕5×Tvar⊕TIntAdd⊕
TIntEq. As the cost of such atomic operations are prone to significant variation

because of the compilation optimisation, loops structures and cache mechanisms,
we assume that those costs is “a good approximation” of the average computation
time needed by these operations. A more precise approaches can be found in [12].

The performance prediction compared to the execution time of the matrix
vector multiplication can be found in Fig. 8. We perform the tests for both
bsml and multi-ml. We do not used all the cores since our current multi-ml
implementation needs specific processes to handle nodes (which is not the case
for bsml) and thus we want to be fair for the cost analysis. Note that it is
a too small example and bsml is sometime more efficient than multi-ml. A
comparison between the two languages on bigger examples is available in [2].
The tests has been done for 2 nodes (left) and then for 8 nodes (right).

We can observe that the performance prediction is coherent to the execution
time of the algorithm (and its polynomial complexity). The curves slopes are
similar even not very accurate. This is mainly due to the fact that the sequential
cost of our method is no fine enough. For example, because this is a toy example,
we do not use the cache possibilities of the multi-bsp model and thus multi-
ml suffers for some miss-caches that are not currently predicted. The garbage
collector of ocaml can also disturb the prediction.

5 Related work

The pram [7] family is the oldest way of structuring parallel algorithms. Nev-
ertheless, it is still an accurate way of studying the intrinsic parallelism of al-
gorithmic problems. Close to bsp, the LogP [5] models are, most of the time,
used to study network capabilities and low-level libraries such as mpi. Extensions
of bsp such as [16,18] were proposed to allows sub-synchronisations. Hierarchi-
cal approaches were also proposed in [4]. Parallel algorithmic skeleton are often
use to proposed a cost prediction based on a structured approach, as in [11].
An initial attempt was proposed in [10] to compute the bsp cost. In [15], a
shape analysis techniques developed in the fish programming language is used
to propose language with an accurate, portable cost model. In the sequential
world, Resource Aware ml (raml) [12] allows to automatically and statically
computes the resource-use bounds for ocaml programs. A version for parallel
and sequential composition was also proposed in [13].

Those models seems not adapted to our approach as they do not provide
both simplicity and accuracy for hierarchical architectures with a structured
execution scheme.

6 Conclusion

Overview of the work. In this article we propose a formal semantic with
cost annotations allowing cost prediction of multi-bsp algorithm. We propose
a set of rules adapted to a (core) version of a sequential and purely functional
version of ml. Then, we extend this semantics to allows bsp, and then, multi-
bsp codes. Thanks to this incremental approach, we propose a restrained set of
rules allowing a static cost prediction of multi-bsp algorithms.

0 20 40 60
0

1

2

3

4

Input matrix size (2 nodes)

E
xe
cu
ti
on

ti
m
e
(s
ec
on

ds
)

Prediction multi-ml
Execution multi-ml
Prediction bsml
Execution bsml

0 20 40 60 80 90
0

1

2

3

4

Input matrix size (8 nodes)

E
xe
cu
ti
on

ti
m
e
(s
ec
on

ds
)

Prediction multi-ml
Execution multi-ml
Prediction bsml
Execution bsml

Fig. 8. Performance prediction compared to execution time for bsml and multi-ml.
For 2 nodes (left) and 8 nodes (right).

To expose the usability of the cost model embedded in the semantics, we com-
pare performance prediction and actual benchmarks on several parallel architec-
tures. As our approach is simplified and consider abstract (bsp and multi-bsp)
parameters and is based on the estimated execution time of atomic operation,
it may suffers from accuracy issues dues to the runtime context (such as cache-
misses). We show that our cost estimation is close to the execution time on a
simple map/reduce algorithm apply to a matrix-vector multiplication.

Future work. An interesting use of this cost semantic is to propose a analysis
able to statically infer a cost of a given algorithm. Such an approach is available
for programming imperative bsp algorithm [14] and could be extended to func-
tional multi-bsp programming using an approach similar to the one proposed
in [12]. Thus it would be possible to give the cost of a program at compile time.

References

1. Allombert, V.: Functional Abstraction for Programming Multi-Level Architectures:
Formalisation and Implementation. Ph.D. thesis, UPEC, France (2017)

2. Allombert, V., Gava, F.: Programming BSP and Multi-BSP algorithms in ML.
High-Level Parallel Programming and Applications (2018)

3. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach Using
BSP and MPI. Oxford University Press (2004)

4. Cha, H., Lee, D.: H-BSP: A Hierarchical BSP Computation Model. The Journal
of Supercomputing 18(2), 179–200 (Feb 2001)

5. Culler, D., al.: LogP: Towards a Realistic Model of Parallel Computation. In: Prin-
ciples and Practice of Parallel Programming. pp. 1–12. ACM (1993)

6. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Commun. ACM 51(1), 107–113 (Jan 2008)

7. Fortune, S., Wyllie, J.: Parallelism in Random Access Machines. In: Theory of
Computing. pp. 114–118. ACM (1978)

8. Gava, F.: BSP Functional Programming: Examples of a Cost Based Methodology.
In: Computational Science – ICCS 2008, pp. 375–385 (Jun 2008)

9. Gesbert, L., Gava, F., Loulergue, F., Dabrowski, F.: Bulk synchronous parallel ML
with exceptions. Future Generation Computer Systems 26(3), 486–490 (Mar 2010)

10. Hayashi, Y., Cole, M.: BSP-based Cost Analysis of Skeletal Programs. In: Scottish
Functional Programming Workshop (SFP99). pp. 20–28 (2000)

11. Hayashi, Y., Cole, M.: Static Performance Prediction of Skeletal Parallel Programs.
Parallel Algorithms and Applications 17(1), 59–84 (Jan 2002)

12. Hoffmann, J., Das, A., Weng, S.C.: Towards Automatic Resource Bound Analysis
for OCaml. In: Principles of Programming Languages. POPL 2017, ACM (2017)

13. Hoffmann, J., Shao, Z.: Automatic Static Cost Analysis for Parallel Programs. In:
Programming on Programming Languages and Systems - Volume 9032 (2015)

14. Jakobsson, A.: Automatic Cost Analysis for Imperative BSP Programs. Interna-
tional Journal of Parallel Programming (Feb 2018)

15. Jay, C.: Costing parallel programs as a function of shapes. Science of Computer
Programming 37(1), 207–224 (2000)

16. Juurlink, B.H.H., Wijshoff, H.A.G.: The E-BSP model: Incorporating general lo-
cality and unbalanced communication into the BSP model. In: Euro-Par’96 (1996)

17. Roshan, J., et al.: Core_bench: Micro-benchmarking library for OCaml (2014)
18. de la Torre, P., Kruskal, C.P.: Submachine locality in the bulk synchronous setting.

In: Euro-Par’96 Parallel Processing (1996)
19. Valiant, L.G.: A Bridging Model for Parallel Computation. Commun. ACM 33(8),

103–111 (Aug 1990)
20. Valiant, L.G.: A Bridging Model for Multi-core Computing. J. Comput. Syst. Sci.

77(1), 154–166 (Jan 2011)

	Toward performance prediction for Multi-BSP programs in ML

