
HAL Id: hal-01941231
https://hal.science/hal-01941231v1

Submitted on 30 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Programming with OCaml: A Tutorial
Victor Allombert, Mathias Bourgoin, Frédéric Loulergue

To cite this version:
Victor Allombert, Mathias Bourgoin, Frédéric Loulergue. Parallel Programming with OCaml: A
Tutorial. International Conference on High Performance Computing and Simulation (HPCS 2018),
Jul 2018, Orléans, France. �hal-01941231�

https://hal.science/hal-01941231v1
https://hal.archives-ouvertes.fr

Parallel Programming with OCaml: A Tutorial
Victor Allombert

Univ Orleans, INSA Centre Val-de-Loire,
LIFO EA 4022
Orléans, France

victor.allombert@univ-orleans.fr

Mathias Bourgoin
Univ Orleans, INSA Centre Val-de-Loire,

LIFO EA 4022
Orléans, France

mathias.bourgoin@univ-orleans.fr

Frédéric Loulergue
SICCS

Northern Arizona University
Flagstaf, USA

frederic.loulergue@nau.edu

INVITED TUTORIAL PAPER

Abstract—OCaml is a multi-paradigm (functional, imperative,
object-oriented) high level sequential language. Types are stati-
cally inferred by the compiler and the type system is expressive
and strong. These features make OCaml a very productive
language for developing efficient and safe programs. In this
tutorial we present three frameworks for using OCaml to
program scalable parallel architectures: BSML, Multi-ML and
Spoc.

Keywords— Parallel programming; functional programming;
bulk synchronous parallelism; Multi-BSP; GPGPU

As parallel architectures are now the norm, it is necessary
to consider programming languages and libraries that offer a
trade-off between execution efficiency and programming pro-
ductivity. While languages and libraries for high performance
computing, such as MPI [1], favor efficiency over productivity,
a lot of application domains require that mainstream program-
mers develop parallel applications without huge knowledge
about parallel programming.

Big Data is an area where productivity is also considered
as important. MapReduce [2] is a well-known programming
model where it is only possible to express a parallel
algorithm in a very structured and specific way. The creators
of MapReduce indicate functional programming as an
inspiration for their framework. Moreover, there is a recent
trend to include functional features in mainstream languages,
such as Java or C++.

This tutorial is an introduction to parallel programming
using a modern functional programming language: OCaml, a
statically and strongly typed language, with a type inference
system. This allows detecting errors very early in the develop-
ment of applications. OCaml offers high-level features yet it
is efficient. While the style of an OCaml application is mainly
functional, OCaml is a multi paradigm language: it provides
imperative and object-oriented features that can be used for
efficiency or modularity reasons.

The three presented frameworks leverage OCaml for scal-
able parallel programming of homogeneous clusters (Sec-
tion II), hierarchical architectures (Section III), and GPUs
(Section IV). We use, as a running example, a parallel map
and reduce implementations on distributed lists or distributed
arrays. We begin with a short presentation of OCaml in
Section I and discuss further reading in Section V.

I. AN OVERVIEW OF OCAML

In this section we describe the OCaml language and the
features of the OCaml library that are necessary for a good
understanding of this tutorial.

A. What is OCaml?

OCaml [3] is a functional programming language [4] from
the ML (Meta Language) family. It is the main implementation
of Caml, a general-purposes language developed at Inria.

OCaml relies on a powerful static type system allowing type
inference, as well as parametric and generalized algebraic data
types polymorphism. It also proposes a system of modules
and an object oriented approach. The code generated by the
compiler is thus safe, thanks to the type checker.

The OCaml language offers a bytecode compiler to allow
code portability on various architectures. The quality of the
native compilation allows performances close to the highest
standards of modern compilers. OCaml also provides auto-
matic memory management thanks to its embedded garbage
collector. A toplevel that permits interactive use of OCaml
through and interactive loop is also available.

OCaml is supported by a widespread community and has a
rich set of libraries and development tools [5], [6]

B. Introduction to the OCaml Syntax

As OCaml provides type inference, it is not necessary to
specify the type of a variable. Variables are defined using
let-bindings. For example, let x = 1 declares that x is a
variable of type int with the value of 1. Although unneces-
sary, it is possible to annotate an expression with a type, so
let x : int = 1 is valid too. We use type annotations in

the next sections as types provide valuable information to the
reader.

To declare a function in OCaml it is also possible to use
a let-binding as following: let prod x y = x *. y. Here,
we define the function prod which takes two arguments (x and
y) and returns the product of them. Notice the usage of the *.
operator which stands for floating point addition. The usage
of this operators forces the types of x and y to be float. The
prod function is typed prod:float → float → float

as it takes as argument two floats and returns a float. The
application of the function prod can be written as follows:
f 1.0 2.0.

When there is no type constraints on values, the type
system generates forall types. For example, let f x = x is
a function taking an argument x and returning the exact same
value. Here, the f can be applied on any value of x. Thus, it
is typed f : α → α where α stands for any types.

Because of its functional capabilities, high-order functions
are common in OCaml programs. For example, we can write a
square function as following: let square x = prod x x.
Anonymous function are also often used and are identi-
fied by the fun keyword. Thus, the following code al-
lows the definition of the square function using anony-
mous function instead of using the prod function:
let square x = (fun x y → x *. y) x x.

Lists are one of the most common data structure used in the
context of functional programming. In Ocaml, a list is imple-
mented as an immutable singly linked list. A list of integers
in OCaml can be defined as following: let l1 = [1;2;3].
The type of the l1 is int list. The brackets delimits
the list and elements are separated with the semicolon. The
empty list is written [] and the concatenation of two lists
is written l1 @ [4;5;6]. The infix operator :: adds an
elements at the beginning of a list. Therefore l1 can also
be written 1::2::3::[]. Actually [] and :: are the two list
constructors, i.e. any list value can be described in terms of
this constant and this operation.

The definition of recursive functions using the let-binding
must be annotated by the rec keyword. For example, we can
write a (non tail-)recursive function that builds a list containing
the values from n1 to n2 as follows:
let rec from_to n1 n2 =

if n1>n2
then []
else n1::(from_to (n1+1) n2)

This function returns [] if the lower bound is greater than
the upper bound. Otherwise, it returns the value of n1 con-
catenated with the recursive call of from_to on n1+1 and n2

using the operator ::.
Pattern matching is a powerfully control structure used

to match values or expressions (patterns) to computations.
Clauses are matched, in order, and the first expression corre-
sponding to the matching clause is evaluated. To describe how
pattern matching works, we implement a (non tail-recursive)
map operator in the following example. We recall that map on
lists applies a function on each elements of a given list.
let rec map f l =

match l with
| [] → []
| hd::tl → (f hd)::(map f tl)

As expected, map takes as argument a function f and a list
of elements l. The pattern matching is expressed using the
match with keywords. Here, we match the value of l with,
respectively:

● [] is the empty list. We return an empty list if the
input list is empty. Indeed, if the previous matching fails,
it means that the list is not composed of at least two
elements, thus it is an empty list.

● hd::tl a list composed of the head element hd and the
tail tl (the rest of the list). In this case, we return the
result of the application of f on h concatenated with the
result of the recursive call on the tail.

It is also possible to define arrays in OCaml as follows:
let a = [|1;2;3|]. Thus, a is typed int array. Unlike
lists, arrays are mutable data structures. Updating the cell at
index i of an array a with a value v is written a.(i)←v.

In OCaml, it is simple to define its own types using records.
A record is a data structure holding multiple values. For
example, the definition of a point of a Cartesian coordinate
system can be written:

type point = {
name : string;
x : float;
y : float;

}

Here, the record point is made of three fields: the name
of the point and the x and y coordinates. An instance of
a point is written: let a = {name="A";x=3.0;y=5.0}.
Records can have mutable fields that can be set using the
← operator. For example, annotating the field x as follows
mutable x : float allows one to write a.x←4.0.

C. Some Features of OCaml Libraries

To manipulate common data structures such as lists or arrays
it is possible to use the List and Array modules from the
standard library.

Regarding lists, the map function is very useful to
apply a function on each element of a list. List.map

is typed map : (α→β)→α list→β list. The code
List.map f l applies function f on each elements of
the list l. Thus, List.map (fun x → x*x) [0;1;2;3]

produces list [0;1;4;9].
Folding on lists is a common operation that can be done

using List.fold_left : (α→β→α)→α→β list→α.
Given a function f, an element e and a
list of n elements [x0;x1; ... ;xn], the
informal semantics of List.fold_left is:
f (... (f (f e x0) x1) ...) xn. To compute the sum
of all the element of a list, we can write the following code:
List.fold_left (fun x y → x + y) 0 [1;2;3;4;5].

Many other functions are available to get the size
(List.length), access the nth element (List.nth), reverse
(List.rev), and so on.

A similar set of functions is available for arrays.

II. BULK SYNCHRONOUS PARALLELISM WITH OCAML

Bulk Synchronous Parallel ML or BSML [7] is based on
the Bulk Synchronous Parallel model [8], [9], [10] or BSP.
The aim of this model is to be a bridge between the world of
parallel architectures and the world of parallel applications.

A. The Bulk Synchronous Parallel Model

The BSP model assumes a BSP architecture: a parallel ma-
chine consisting of a set of homogeneous processor-memory
pairs, a network delivering point-to-point communications,
and a global synchronization unit. This BSP architecture can
be mapped on any general purpose parallel architecture. For
example, a cluster can be seen as a BSP machine even if in this
case the global synchronization unit is usually implemented
using software rather than hardware. In a shared memory
machine, each core can work on a dedicated region of the
shared memory and can communicate with other cores using
another region of the shared memory.

The execution of a BSP program proceeds as a sequence of
super-steps. A super-step starts with a pure computation phase
where each processor computes using the data it holds in its
private memory, and requests data from other processors. A
communication phase then occurs: data is exchanged between
processors. Finally the super-step ends with a synchronization
barrier. The remote data requested by processors is only
guaranteed to be delivered after the synchronization barrier
ends. The computation can then continue with the next super-
step.

This constrained form of parallel execution made the design
of a simple BSP performance model possible. A BSP archi-
tecture is characterized by four parameters: p is the number
of processor-memory pairs (P denotes the set of processor
identifiers from 0 to p−1), r is a processors’ computing power
usually expressed in floating point operations per second,
L is the time required to perform a global synchronization
barrier, and g (expressed in seconds per word) is the time
required for performing a communication phase where each
processor sends or receives at most 1 word of data. When
the communication phase consists of the exchange of at most
h words of data for each processor, the execution requires
h × g. Such a communication phase is said to realize a
communication pattern named a h-relation. In the presentation
of BSP algorithms, L and g are usually normalized with
respect to r and are therefore respectively expressed in flops
and flops per word.

If wi is the time (or flops) required by processor i to
execute the computation phase of the super-step, and the
communication pattern of the super-step is a h-relation then
the overall cost of the super-step is:

max
i∈P

wi + h × g +L

The cost of the execution of a BSP program is the sum of the
costs of its super-steps.

B. BSML Primitives

Currently BSML is implemented as a library for the OCaml
language rather than a new language. The only difference
is that a full language would provide a dedicated type sys-
tem [11].

BSML implementation provides: an interactive loop to ease
the development of BSML programs, a sequential implemen-

tation (used in the interactive loop), and a parallel implemen-
tation on top of MPI [7]. There also exists an implementation
as an interactive web site1.

BSML provides four constants corresponding to the four
BSP parameters: bsp_p, bsp_r, bsp_g and bsp_l. This
allows one to write performance portable programs: depending
on the BSP parameters, it is possible to choose the best
algorithm for the specific underlying architecture running the
program.

BSML relies on a dedicated data structure, called parallel
vector. This is a polymorphic data structure and its type
is α par. The size of a parallel vector is always bsp_p,
and each processor holds a value of type α. There is a
limitation to polymorphism: α cannot be instantiate to a type
that contains a parallel vector type. The type system [11]
can statically reject such forbidden nesting. However, the
current implementation does not provide this type system, it is
therefore the responsibility of the programmer to avoid such
nesting.

BSML has a pure functional semantics [12]. Therefore the
sequential implementation and the parallel implementation
give the same results, provided no imperative features of
OCaml are used. If imperative features are incorrectly used, the
results may differ. The type system can also statically detect
such incorrect programs. One important advantage of such a
semantics, is that it is possible to use a proof assistant to verify
the correctness of BSML programs.

BSML is more concise than the standard BSPlib [13]. In
addition to the four constants, it only provides four parallel
functions to manipulate parallel vectors.

In the remainder of this section, ⟨v0, . . . , vp−1⟩ denotes
a parallel vector such that value vi is in the local memory
of processor i. In BSML, parallel vectors are manipulated
globally: there is no index notation for accessing a specific
element in a parallel vector.

The primitive mkpar is devoted to create parallel vectors. Its
type is (int→α)→α par. From a function f it creates a par-
allel vector: each processor applies this function to its identifier
to obtain a value. Therefore mkpar f = ⟨f 0, . . . , f (p−1)⟩.

A parallel vector can contain any type of element but a
parallel vector. In particular it can contain functions. However,
a parallel vector of functions is not a function. The primitive
apply is used to apply a parallel vector of functions to a par-
allel vector of values. Its type is (α→β)par→α par→β par.
We have apply ⟨f0, . . . , fp−1⟩ ⟨v0, . . . , vp−1⟩

= ⟨f0 v0, . . . , fp−1 vp−1⟩.
Both mkpar and apply are executed during the local

computation phase of a BSP super-step.
An almost inverse of mkpar is proj. From a parallel vector

it creates a function such that if it is applied to a processor
identifier it will return the value held by this processor. proj
has type α par→(int→α). proj is not completely an inverse
of mkpar because even if a function f given as argument
to mkpar is defined for integers that are not valid processor

1http://tesson.julien.free.fr/try-bsml

identifiers, proj(mkpar f) will only be defined for valid
processor identifiers. proj requires a full super-step for its
execution: each processor sends the value it holds to all the
other processors, and a synchronization barrier is called.

Finally put can realize any h-relation of a communication
phase. Its type is put:(int→α)par→(int→α)par. There-
fore its input and output are parallel vectors of functions.
In the input, each function in the parallel vector encodes
the messages to be sent to other processors. For example, a
function fi at processor i encodes the messages to be sent by
i to other processor. More precisely the message to be sent to
processor j is fi j. In the output, each function encodes the
messages received by the processor that holds the function.
For example, at processor j, function gj is such that gj i is
the message received by processor j from processor i. As
described above, put seems to perform a total exchange. It is
however not the case. Some values are considered to represent
the empty message. This is for example the case for the empty
list [] and the None value of the option type. A call to put
needs a full super-step for its execution.

C. Map and Reduce with BSML

In this section, we consider that a distributed list is imple-
mented as a parallel vector of lists. Intuitively, the user of the
library we implement here can think of this data structure as a
sequential list obtained by the concatenation of the lists held
locally by p processors.

Implementing a parallel map is then very easy:

let map (f:α→β) (dl:(α list)par): (β list)par=
apply (replicate (List.map f)) dl

First we replicate function f, meaning each processor will
contain a copy of f, then we use apply to apply f to the
local list on each processor. Replication can be defined as:

let replicate (x:α) : α par =
mkpar(fun pid→x)

This is very common to apply a replicated sequential func-
tion, and we define a function to do that:

let parfun (f:α→β)(v: α par) : β par =
apply(replicate f) v

Parallel reduction can be implemented in many ways. We
present here two different implementations both using only
one super-step of execution. reduce takes three arguments: a
binary operation op, a neutral e for this binary operation, and
a distribution list dl, and it reduces the distributed list using
this binary operation. For this parallel function to compute the
same result as a sequential reduction (implemented as locred
below), op should be associative. The first implementation is
based on proj:

let reduce(op:α→α→α)(e:α)(dl:(α list)par):α=
let locred = List.fold_left op e in
let partial = parfun locred dl in
locred (to_list partial)

We first perform local reductions on each processor obtaining
a parallel vector of partial reductions named partial. Then

let reduce op e dl : α par =
let locred = List.fold_left op e in
let partial = parfun locred dl in
let mkmsg = fun data dst → data in
let totex = put(parfun mkmsg partial) in
let procs = from_to 0 (bsp_p-1) in
parfun(fun f→locred(List.map f procs))totex

Fig. 1. Parallel Reduction in BSML

let reduce op e dl : α par =
let locred = List.fold_left op e in
let partial = ≪ locred dl ≫ in
let totex = put ≪ fun dst → $partial$ ≫ in
let procs = from_to 0 (bsp_p-1) in
≪ locred (List.map $totex$ procs) ≫

Fig. 2. Parallel Reduction in BSML (New Syntax)

using to_list this parallel vector is converted into a sequen-
tial list that is finally reduced. to_list can be implemented
using proj:

let to_list (dl: α par) : α list =
let f = proj dl in
List.map f (from_to 0 (bsp_p-1))

If we prefer to obtain a parallel vector that contains the
reduction result everywhere, reduce can be implemented
using put as shown in Figure 1.

An alternative syntax avoids the use of mkpar and apply.
It is based on this defined as mkpar(fun pid→pid), and
a more compact syntax for manipulating parallel vectors [14].

Instead of writing replicate x it is possible to write
≪ x ≫. If a value v has type α par then inside ≪ and ≫
is is possible to use the notation v that has type α but
has a different value on each processor: the value held by
this processor in parallel vector v. For example the following
expression: ≪(fun x → x+1) $this$≫ evaluates to vector
⟨1, . . . , p⟩.

The example of Figure 1 can be rewritten using the alter-
native syntax as shown in Figure 2.

III. HIERARCHICAL PARALLELISM WITH OCAML

Multi-ML [15], [16] is a parallel programming language
based on the Multi-BSP model [17]. It aims to bridge hierar-
chical architectures with several levels of distinct memories to
parallel programming abstractions.

A. The Multi-BSP Model

Multi-BSP [17] is a structured parallel programming model
which extends the BSP model [8]. It takes into account
hierarchical architectures with an arbitrary number of levels.
In accordance to the BSP model, it reflects the physical char-
acteristics of the architecture. The structure and abstraction
brought by Multi-BSP allows having portable programs with
scalable performance predictions, without dealing with low-
level details of the architectures. Note that the definition of

the Multi-BSP model handles balanced and homogeneous
architecture only.

Multi-BSP brings a tree-based view of nested components
where the lowest stages (leaves) are processors and every
other stage (nodes) contains memory. The architecture depth
is denoted by d and a Multi-BSP instance is defined by 4d
parameters : (pi, gi, Li,mi). Where pi is the number of sub-
components inside the i−1 stage; gi is the bandwidth between
stages i and i − 1; Li is the synchronisation cost of all sub-
components of a component of i−1 stage; mi is the amount of
memory available at stage i for each component of this stage.

Every component of the architecture can execute indepen-
dent codes. However, they have to synchronise in favour of
data exchange. Thus, the Multi-BSP model does not allow
subgroup synchronisation of any group of processors. The
execution scheme of Multi-BSP algorithms is similar to the
BSP one. Here, supersteps are hierarchically organised in order
to manage sub-synchronisations. At a stage i, a superstep
is composed by the following steps: the sub-components of
stage i− 1 execute some code independently (until they reach
a barrier); there are exchanges of information with the mi

memory; synchronisation of the sub-components (stage i− 1).
Thanks to the structure of Multi-BSP and a dedicated cost

model, performance prediction is also possible. Considering
the communication cost Ci

j of a superstep j at stage i as
follows:

Ci
j =hj×gi+Li

where hj is the maximum size of the exchanged messages
at superstep (as it is in the BSP cost model). We can express
the cost T of a Multi-BSP algorithms as follows:

T =
d−1

∑
i=0

(
Ni−1

∑
j=0

wi
j +Ci

j)

where d is the depth of the Multi-BSP architecture, Ni

is the number of supersteps at stage i, wi
j is the maximum

computational cost of the superstep j within stage i.

B. The Multi-ML Language

Multi-ML [15], [16] is based on the idea of executing
BSML-like codes on every stage of a Multi-BSP architecture.
This approach eases incremental development from BSML
codes to Multi-ML ones. As expected, the synchronous com-
munication primitives of BSML are also available to com-
municate values from/to parallel vectors. Multi-ML follows
the Multi-BSP approach where the hierarchical architecture is
composed by nodes and leaves. On nodes, it is possible to
build parallel vectors, like in BSML. A parallel vector aims to
manage values that are stored on the sub-nodes: at stage i, the
code let v=≪ e ≫ evaluates the expression e on all i − 1
stages.

Multi-ML also introduces the concept of multi-function to
recursively go through a Multi-BSP architecture. A multi-
function is a particular recursive function, defined by the
keyword let multi, which is composed by two codes: the
node and the leaf codes. The recursion is initiated by calling

the multi-function (recursively) inside the scope of a parallel
vector, that is to say, on the sub-nodes. The evaluation of a
multi-function starts on the root node and is propagated down
to the leaves. Then, the recursion goes back to the root node.
The execution of a multi-function can be seen as a divide and
conquer pattern. Another parallel data structure called tree is
available in Multi-ML. A tree denotes a value which is dis-
tributed over all components of the Multi-BSP architecture. It
is possible, for each component, to access its own value using
at t, where t is a tree. The keyword let multi tree is
used to define a multi-tree-function allowing tree construction.
A multi-tree-function behaves similarly to a multi-function,
but the keyword finally must be used to specify the values
used to build the tree. Thus, at each node, we specify the local
root and the branches used to build the sub-tree of the current
stage; and so on, toward the root node.

C. Map and Reduce with Multi-ML
As the Multi-ML language uses a hierarchical tree based

recursion to execute code, the map and reduce phases are
almost embedded in the syntax of the language. Indeed, the
map phase consists in mapping a function to the leaves (the
map phase); and then, we combine the results to the root node
(the reduce phase).

Similarly to BSML, we consider that a distributed list is
implemented as a tree where only the leaves contain values
(and nodes contain empty lists). The m_map function (standing
for multi-map) can be written as following:
let m_map(f:α→β)(tdl:α list tree) =
let multi tree map tdl =

where node =
let rc = ≪ map tdl ≫ in
finally(rc,[])

where leaf =
List.map f (at tdl)

in map tdl

First, the map multi-function is enclosed into the m_map

function in order to define the function f globally and avoid
its communications through each recursive call. As expected,
the let multi tree keyword is used to declare map as its
executions results in a tree. Then, we define the node code by
the recursive call of map on its sub-nodes. The result of the
recursion is stored in rc and will contains the sub-trees (or
branches) generated on the sub-nodes. Thus, the node sections
ends by constructing a new sub-tree with lower branches and
an empty list. Finally, the leaf code consists of the sequential
mapping of f on the values contained on leaves, accessed
using at on tdl.

During the reduce phase, we must take into account the po-
tential different number of children of a node when converting
a parallel vector to a list (to_list function). To do so, we
use the nb_children primitive which computes the number
of children when executed on a node. The function to_list

is thus defined:
let to_list vec =

let p = proj vec in
List.map p (my_children())

The reduce phase can be written easily:

let m_reduce(op:α→α→α)(e:α)(tdl:α list tree)=
let multi reduce tdl =
where node =
let rc = ≪ reduce tdl ≫ in
let sub_vals = to_list rc in
List.fold_left op e sub_vals

where leaf =
List.fold_left op e (at tdl)

in reduce tdl

Using the reduce operator op and a neutral element e, the node
code of the reduce multi-function consists in calling reduce

recursively. The resulting parallel vector is then converted into
a list using to_list. The resulting value of a node is thus
the local reduction of the sub-reductions. The leaf code is the
local reduction of the values distributed through the tdl tree.
As reduce is a multi-function, it returns a sequential value
(typed β) which is then available to all the components of the
architecture.

It is also possible to write a single multi-function combining
both the map and reduce phase. Such a multi-function will
benefit in terms of line of code and efficiency, as the recursion
through the components is done once. The m_map_reduce

function can be written as follows:

let m_map_reduce (op_map:α→β) (op_red:β→β→β)
(e:β) (tdl:α list tree):β =

let multi map_reduce tdl =
where node =

let rc = ≪ map_reduce tdl ≫ in
let sub_vals = to_list rc in
List.fold_left op_red e sub_vals

where leaf =
let res_map = List.map op_map (at tdl) in
List.fold_left op_red e res_map

in map_reduce tdl

Intuitively, the node code combines the recursion call of
map_reduce and the local reduction. The leaf performs both
the mapping phase and the local reduction.

IV. GPGPU PROGRAMMING WITH OCAML

A. GPGPU Programming

General purpose programming with graphics processing unit
(GPGPU) is a common way to achieve high performance.
It consists in the use of highly parallel GPU architectures
as co-processors to handle intensive computations. GPGPU
programming demands to write specific subprograms (called
kernels) to be actually executed on the GPUs. As GPUs are
co-processors, kernels are handled via the CPU host. The
CPU is also responsible for the memory management (Direct
Memory Access (DMA) copy between the host memory and
the GPU memory). GPUs are parallel architectures (several
hundreds of “cores”) and thus kernels are written with a
specific programming style.

B. The SPOC Library and the Sarek Domain Specific Lan-
guage

SPOC (Stream Processing with OCaml) [18], [19] is a high-
level library for GPGPU programming with OCaml. SPOC

is a library based on programming via the OpenCL and
CUDA frameworks. It offers several abstractions over memory
transfers as well as device management. SPOC only focuses
on the host program. It can interoperate with native GPGPU
kernels (using the OpenCL and CUDA C subsets) as well
as with kernels described with the Sarek DSL. To provide
portability, SPOC unifies both CUDA and OpenCL APIs.
SPOC automatically detects, at run-time, all devices compati-
ble with it. As SPOC exposes a common API, it can be used
to indifferently and conjointly handle multiple co-processors
(from any framework). This eases the expression of complex
programs dedicated to very heterogeneous architectures. SPOC
introduces a specific data set to OCaml that is called vector.
Vectors keep information about their current location in the
system on host or co-processor memory. Thus, SPOC can
automatically trigger transfers when needed. In particular,
SPOC checks that every vector used by a GPGPU kernel is
present in the co-processor memory (and triggers transfers if
required) before launching the computation. Similarly, when
the host reads or writes in a vector, SPOC checks its location
and transfers it if needed.

SPOC can be used with native kernels as well as with
kernels described in the Sarek DSL. In this section, we will
only focus on Sarek to program kernels. Sarek is built into
OCaml. As such, it provides some consistency over the host
language. It is an expression oriented language with an ML-
like imperative core. Sarek is based on the C subsets of
CUDA and OpenCL but offers type inference, with static type
checking as well as an OCaml-like syntax.

Using SPOC and Sarek, the common example of the vector
addition can be written as following:

open Spoc
let vec_add = kern a b c n →
let open Std in
let idx = thread_idx_x +

block_dim_x * block_idx_x in
if idx < n then

c.[<idx>] ← a.[<idx>] +. b.[<idx>]

let dev = Devices.init ()
let n = 1_000_000
let v1 = Vector.create Vector.float64 n
let v2 = Vector.create Vector.float64 n
let v3 = Vector.create Vector.float64 n

let block = {blockX = 1024;
blockY = 1; blockZ = 1}

let grid={gridX=(n+1024-1)/1024;
gridY=1; gridZ=1}

let () =
random_fill v1;
random_fill v2;
Kirc.gen vec_add;
Kirc.run vec_add (v1, v2, v3, n)

(block,grid) dev.(0);
for i = 0 to Vector.length v3 - 1 do
Printf.printf "res[%d] = %f; " i v3.[<i>]

done;

The first function, vec_add, is the GPGPU kernel. As
Sarek is built as an OCaml syntax extension, the kernel is
written with Sarek directly into the OCaml code. As with
CUDA or OpenCL, a kernel is an elementary computation
that will be instantiated into GPGPU-threads. These threads
will then be mapped over the numerous hardware computation
units of the GPU to execute the computation in parallel.
Here, our kernel first opens the Std module that gives ac-
cess to GPGPU-specific global functions, in particular those
necessary to identify each thread running the kernel. Here
we use thread_idx_x + block_dim_x * block_idx_x

to compute the global identifier of the each thread running an
instance of our kernel. Then our kernel naively computes an
elementary addition. The mapping of this kernel on numerous
computation units will provide the overall vector addition.

Following the kernel comes the host part of the program,
that is run by the CPU and will handle communications and
computations scheduling with the GPU. It starts by initializing
the SPOC system with Devices.init(). This function scans
the system for co-processors compatible with either CUDA or
OpenCL and returns an array of devices that can be used in
the rest of the program. We then declare some variables. In
particular, v1, v2 and v3 that are SPOC vectors, that can be
shared between host and GPU automatically. The block and
grid variables are used to describe a 3D layout of threads
corresponding to a virtual GPU appropriately sized for our
computation. With GPGPU frameworks, kernels are executed
in a 3D grid of 3D blocks of threads. Threads will be mapped
to the actual computation units of the GPU. Threads inside
a block can be synchronized and can communicate through a
shared memory. There is no global synchronization mechanism
(between threads of different blocks). Here we describe a
linear layout with one thread for each element in our vectors.
Then, we have the main function, it first fills the vectors
with random values. Then we use the gen function from
the Kirc module to compile our kernel to actual CUDA or
OpenCL code. Here we use the default compilation scheme
that generates both versions of the kernel. Then we run the
kernel with the correct parameters on the first device detected
during initialization (dev.(0)). Finally the program prints
the content of the result vector that was computed on the
GPU. As described earlier, the host program does not need
to explicitly handle memory transfers between the host and
the GPU as they are automatically managed by the SPOC
library. Besides, remember that this simple example is very
portable as compiled program using SPOC and Sarek are
usable with CUDA or OpenCL devices (or a combination of
both) specifying their behaviour at run-time.

C. Map and Reduce with SPOC and Sarek

To make GPGPU programming simpler, both CUDA and
OpenCL frameworks impose specific constraints. SPOC and
Sarek inherited some of them which makes writing general
Map and Reduce functions trickier than with BSML and Multi-
ML. In particular, kernel functions are sequential (it is their
mapping on numerous computations units that produces the

parallelism). Besides, higher order functions are not available
in the Sarek DSL, which makes it impossible to write parallel
map/reduce-like functions with Sarek only. On the other hand,
OCaml (and the SPOC library) and Sarek look very similar
but, in practice, Sarek code is very different from OCaml
functions. Sarek kernels are pre-compiled into a data-structure
containing an internal representation (IR) of the kernel that
is directly embedded into the OCaml host code at compile-
time. Then the Kirc.gen function we’ve seen earlier will
translate this IR into actual CUDA/OpenCL code. This make
difficult (but not impossible) to write a generalized map/reduce
operation from OCaml with SPOC that manipulated Sarek
kernels. Last but not least, Sarek kernels cannot currently be
polymorphic. Keeping all these constraints in mind, we will,
in the rest of this section, look at how to write map/reduce-like
computations with Sarek, SPOC and OCaml.

1) Map: The main objective here is to use a Sarek kernel
producing an output vector of type β from an input vector
of type α. A naive Sarek kernel would thus look like the
following:

let map_f = kern a b →
let open Std in
let idx = thread_idx_x +

block_dim_x * block_idx_x in
if idx < Vector.length a then
b.[<idx>] ← f a.[<idx>]

Here f is an external function or an inlined computation of
type α → β.

From the host side, it is necessary to pre-create a vector for
the output of the map computation before running the kernel.
The code would then look like the following :

let dev = Devices.init ()

(* α represents the vector elements type *)
(* n is the size of the vector *)
let input = Vector.create α n

(* populate the inpute vector *)
...

(* prepare the launch of the map kernel*)
let output = Vector.create β n

(* blockX could be any multiple of 32 threads
depending on n, specific optimizations or
actual hardware *)

let block = {blockX = 1024;
blockY = 1; blockZ = 1}

(* gridX is computed in order to use enough
blocks to have one thread per element *)

let grid={gridX=(n+block.blockX-1)/block.blockX;
gridY=1; gridZ=1};

(* generate and run the map_f kernel *)
Kirc.gen map_f;
Kirc.run map_f (input, output) (block,grid)

dev.(0);
(* from now, output contains the result of the

application of f on each element of input *)

10 3 -42 4 52 -3 -11 -16

13 -38 49 5

-25 54

29

Fig. 3. A tree based reduction using the addition operator.

Using this kind of program, the application of the f function
(used in the Sarek kernel) to each elements of the input vector
into the output vector will take place in parallel using a GPU.
The version proposed here is naive as it does not take into
account the arithmetic complexity of the f function which
could be too small to dedicate one GPU thread to each element
of the vector. In the same vein, it cannot be used directly with
vectors larger than the maximum number of threads usable on
an actual GPU.

2) Reduce: Map is an easy target for parallelism. Reduction
is more complex. The common/simple way to handle reduction
with GPUs is a tree based approach. A tree based GPU
computation of a reduction using the addition operator on the
vector would be similar to Figure. 3.

Here, each level of the tree corresponds to a parallel
computation. Between each computation, a synchronization
is needed. However, GPUs cannot do global synchroniza-
tions inside kernels. The only synchronization mechanism
available synchronizes threads within a block. There is no
similar mechanism between blocks. Blocks are limited in size
(number of threads), besides actual hardware demands to use
multiple blocks in order to increase parallelism. Thus, for large
enough vectors, global synchronization (between blocks) will
be needed. The simpler solution to provide “global synchro-
nization” consists in decomposing the overall reduction into
multiple kernels (one for each step of the reduction), using
kernel launches as global synchronization points. We will not
detail here the code for a GPGPU reduction, CUDA/OpenCL
reductions have been widely discussed [20], [21] and is similar
with Sarek and OCaml.

3) High-level Map/Reduce with SPOC and Sarek: As we
said earlier, Map and Reduce with SPOC and Sarek are
difficult to generalize. In the end, the two solutions proposed
here are very low-level and similar to those available with
CUDA and OpenCL. However, without going into detail,
Sarek offers a solution to improve the situation. Sarek kernels
internal representation is embedded into the OCaml host
code at compile-time. This IR is mostly an Abstract Data
Tree (ADT) compose of OCaml values. This makes this tree
parsable from the host code. For instance, the Kirc.gen

function is an OCaml function parsing the IR ADT and
generating CUDA/OpenCL native code. It is thus possible to
design OCaml functions taking Sarek kernels as parameters

and producing new computations. These computations (that
we call transformations) can be used to provide map/reduce-
like operations. For instance, for map, it consists mainly in
an OCaml function taking a kernel computing on scalars
(corresponding to the function f in the map_f kernel) as
a parameter. The function transforms it into a new kernel
similar to map_f. It also generates the output vector and runs
the kernel with the correct input/output before returning the
computed output vector.

For instance, raising each element of a vector to the power
of two could be written as follow :

let f = kern a → a * a in
...
let output = map f input dev.(0)

The f function is still constrained by the limitations of
GPGPU frameworks (no polymorphism etc.). However, the
map transformation is polymorphic and can transform any
kernel of type α → β.

V. FURTHER READING

a) BSML: While being more concise than BSPlib, BSML
is however equally expressive [22]. In addition to the prim-
itives presented in this paper, BSML has been extended by
parallel compositions [23], [24], [25], [26], parallel exceptions
handling [27], and IO. These features are not available in the
public release yet.

The pure semantics of BSML makes the verification of
BSML program possible using a proof assistant [28]. This is
the foundation of a framework for the Coq proof assistant
to support the systematic development of correct parallel
programs [29], [30], [31], [32], [33].

BSML has been used for example to implement parallel data
structures [34], algorithmic skeletons on distributed lists [35],
and powerlists [36].

b) Multi-ML: In the tradition of BSML, Multi-ML aims
to propose formal properties. The semantics of the language is
thus described in [37] and a formalisation of the compilation
scheme ensuring that the generated code follows the semantics
is proposed in [38]. As the language relies on a type system
with locality annotations and effects, a formal definition the
Multi-ML type system can be found in [15].

c) SPOC: The SPOC library and the Sarek DSL have
been first described in [18] and [19]. Several extensions have
been developed on top of them. Parallel skeletons and com-
positions have been proposed in [39], [40] to make the design
of high performance GPGPU applications easier. High-level
data structures that can automatically be transferred between
host (CPU) and GPU memory have been introduced to Sarek
in [41]. A portable profiling solution has been developed as a
Sarek extension in [42]. They also have been used to develop
a web-oriented version of SPOC described in [43].

REFERENCES

[1] M. Snir and W. Gropp, MPI the Complete Reference. MIT Press, 1998.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in OSDI. USENIX Association, 2004, pp. 137–
150. [Online]. Available: http://static.usenix.org/events/osdi04/tech/full
papers/dean/dean.pdf

[3] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon,
“The OCaml System release 4.00.0,” http://caml.inria.fr, 2012.

[4] G. Cousineau and M. Mauny, The Functional Approach to Programming.
Cambridge University Press, 1998.

[5] E. Chailloux, P. Manoury, and B. Pagano, Développement d’applications
avec Objective Caml. O’Reilly France, 2000, freely available in english
at http://caml.inria.fr/oreilly-book.

[6] Y. Minsky, “OCaml for the masses,” Commun. ACM, vol. 54, no. 11,
pp. 53–58, 2011.

[7] F. Loulergue, F. Gava, and D. Billiet, “Bulk Synchronous Parallel ML:
Modular Implementation and Performance Prediction,” in International
Conference on Computational Science (ICCS), ser. LNCS, vol. 3515.
Springer, 2005, pp. 1046–1054.

[8] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, p. 103, 1990.

[9] W. F. McColl, “Scalability, portability and predictability: The BSP ap-
proach to parallel programming,” Future Generation Computer Systems,
vol. 12, pp. 265–272, 1996.

[10] R. H. Bisseling, Parallel Scientific Computation. Oxford University
Press, 2004.

[11] F. Gava and F. Loulergue, “A Static Analysis for Bulk Synchronous
Parallel ML to Avoid Parallel Nesting,” Future Gener Comp Sy, vol. 21,
no. 5, pp. 665–671, 2005.

[12] F. Loulergue, G. Hains, and C. Foisy, “A Calculus of Functional BSP
Programs,” vol. 37, no. 1-3, pp. 253–277, 2000.

[13] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang,
S. B. Rao, T. Suel, T. Tsantilas, and R. Bisseling, “BSPlib: The BSP
Programming Library,” Parallel Computing, vol. 24, pp. 1947–1980,
1998.

[14] W. Bousdira, F. Gava, L. Gesbert, F. Loulergue, and G. Petiot, “Func-
tional Parallel Programming with Revised Bulk Synchronous Parallel
ML,” in First International Conference on Networking and Computing
(ICNC 2010), 2nd International Workshop on Parallel and Distributed
Algorithms and Applications (PDAA), K. Nakano, Ed. IEEE Computer
Society, 2010, pp. 191–196.

[15] V. Allombert, “Functional Abstraction for Programming Multi-Level
Architectures: Formalisation and Implementation,” Ph.D. dissertation,
Université Paris Est, Créteil, France, Jul. 2017. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01693568

[16] V. Allombert, F. Gava, and J. Tesson, “Multi-ML: Programming
Multi-BSP Algorithms in ML,” International Journal of Parallel
Programming, vol. 45(2), p. 20, 2017. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-01160164

[17] L. G. Valiant, “A Bridging Model for Multi-core Computing,” J. Comput.
Syst. Sci., vol. 77, no. 1, pp. 154–166, Jan. 2011.

[18] Bourgoin, Mathias and Chailloux, Emmanuel and Lamotte, Jean-Luc,
“Spoc: Gpgpu programming through stream processing with ocaml,”
Parallel Processing Letters, vol. 22, no. 02, p. 1240007, 2012.

[19] ——, “Efficient abstractions for GPGPU programming,” International
Journal of Parallel Programming, vol. 42, no. 4, pp. 583–600, 2014.

[20] Harris, Mark, “Optimizing CUDA,” 2007.
[21] Catanzaro, Bryan, “OpenCL Optimization Case Study: Simple Reduc-

tions,” 2010.
[22] F. Loulergue, “A BSPlib-style API for Bulk Synchronous Parallel ML,”

Scalable Computing: Practice and Experience, vol. 18, pp. 261–274,
2017.

[23] ——, “Parallel Superposition for Bulk Synchronous Parallel ML,” in
International Conference on Computational Science (ICCS), ser. LNCS,
no. 2659. Springer Verlag, 2003, pp. 223–232.

[24] ——, “Parallel Juxtaposition for Bulk Synchronous Parallel ML,” in
Euro-Par 2003, ser. LNCS, H. Kosch, L. Boszorményi, and H. Hell-
wagner, Eds., no. 2790. Springer Verlag, 2003, pp. 781–788.

[25] F. Gava, “Implementation of the parallel superposition in bulk-
synchronous parallel ML,” in 7th International Conference on Com-

putational Science (ICCS), Beijing, China, May 27-30, ser. LNCS, vol.
4487. Springer, 2007, pp. 611–619.

[26] I. Garnier and F. Gava, “CPS implementation of a BSP composition
primitive with application to the implementation of algorithmic skele-
tons,” I. J. Parallel, Emergent and Distributed Systems, vol. 26, no. 4,
pp. 251–273, 2011.

[27] L. Gesbert, F. Gava, F. Loulergue, and F. Dabrowski, “Bulk Synchronous
Parallel ML with Exceptions,” Future Gener Comp Sy, vol. 26, no. 3,
pp. 486–490, 2010.

[28] J. Tesson and F. Loulergue, “A Verified Bulk Synchronous Parallel ML
Heat Diffusion Simulation,” in International Conference on Computa-
tional Science (ICCS). Singapore: Elsevier, 2011, pp. 36–45.

[29] L. Gesbert, Z. Hu, F. Loulergue, K. Matsuzaki, and J. Tesson, “Sys-
tematic Development of Correct Bulk Synchronous Parallel Programs,”
in Parallel and Distributed Computing, Applications and Technologies
(PDCAT). IEEE, 2010, pp. 334–340.

[30] F. Loulergue, S. Robillard, J. Tesson, J. Légaux, and Z. Hu, “Formal
Derivation and Extraction of a Parallel Program for the All Nearest
Smaller Values Problem.” Gyeongju, Korea: ACM, 2014, pp. 1577–
1584.

[31] K. Emoto, F. Loulergue, and J. Tesson, “A Verified Generate-Test-
Aggregate Coq Library for Parallel Programs Extraction,” in Interactive
Theorem Proving (ITP), ser. LNCS, no. 8558. Wien, Austria: Springer,
2014, pp. 258–274.

[32] F. Loulergue, “A verified accumulate algorithmic skeleton,” in Fifth
International Symposium on Computing and Networking (CANDAR).
Aomori, Japan: IEEE, November 19-22 2017, pp. 420–426.

[33] F. Loulergue, W. Bousdira, and J. Tesson, “Calculating Parallel Programs
in Coq using List Homomorphisms,” Int J Parallel Prog, vol. 45, pp.
300–319, 2017.

[34] F. Gava, “A modular implementation of data structures in bulk-
synchronous parallel ML,” Parallel Processing Letters, vol. 18, no. 1,
pp. 39–53, 2008.

[35] F. Loulergue, “Implementing Algorithmic Skeletons with Bulk Syn-
chronous Parallel ML,” in Parallel and Distributed Computing, Appli-
cations and Technologies (PDCAT). IEEE, 2017, to appear.

[36] F. Loulergue, V. Niculescu, and J. Tesson, “Implementing powerlists
with Bulk Synchronous Parallel ML,” in Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC). Timisoara,
Romania: IEEE, 2014, pp. 325–332.

[37] V. Allombert, F. Gava, and J. Tesson, “A formal semantics of the Multi-
ML language,” in International Symposium on Parallel and Distributed
Computing. IEEE, Jun. 2018, to appear.

[38] V. Allombert and F. Gava, “An ML implementation of the MULTI-BSP
model,” in International Conference on High Performance Computing
and Simulation, 2018, to appear.

[39] Bourgoin, Mathias and Chailloux, Emmanuel and Lamotte, Jean-Luc,
Experiments with Spoc. Saxe-Coburg Publications, 2015.

[40] Bourgoin, Mathias and Chailloux, Emmanuel, “GPGPU composition
with OCaml,” in Proceedings of ACM SIGPLAN International Workshop
on Libraries, Languages, and Compilers for Array Programming. ACM,
2014, p. 32.

[41] Bourgoin, Mathias and Chailloux, Emmanuel and Lamotte, Jean-Luc,
“High Level Data Structures for GPGPU Programming in a Stati-
cally Typed Language,” International Journal of Parallel Programming,
vol. 45, no. 2, pp. 242–261, 2017.

[42] Bourgoin, Mathias and Chailloux, Emmanuel and Doumoulakis, Anas-
tasios, “Profiling High Level Heterogeneous Programs,” in Tenth Inter-
national Workshop on Programmability and Architectures for Heteroge-
neous Multicores (MULTIPROG 2017), 2017.

[43] Bourgoin, Mathias and Chailloux, Emmanuel, “High-level accelerated
array programming in the web browser,” in Proceedings of the 2nd
ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming. ACM, 2015, pp. 31–36.

