
HAL Id: hal-01941229
https://hal.science/hal-01941229v1

Submitted on 30 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An ML implementation of the MULTI-BSP model
Victor Allombert, Frédéric Gava

To cite this version:
Victor Allombert, Frédéric Gava. An ML implementation of the MULTI-BSP model. International
Conference on High Performance Computing and Simulation (HPCS 2018), Jul 2018, Orléans, France.
�hal-01941229�

https://hal.science/hal-01941229v1
https://hal.archives-ouvertes.fr

An ML implementation of the MULTI-BSP model
Victor Allombert

Université d’Orléans, LIFO
Orléans, France

victor.allombert@univ-orleans.fr

Frédéric Gava
Université Paris-Est Créteil, LACL

Créteil, France
gava@u-pec.fr

Abstract—We have designed a parallel language called MULTI-
ML for programming MULTI-BSP algorithms in ML. The MULTI-
BSP model provides a tree-based view of nested components of
hierarchical architectures. The structure and abstraction brought
by MULTI-BSP allows for portable parallel programs with scal-
able performance predictions, without dealing with low-level
details of architecture. The MULTI-ML language is essentially
based on the concept of multi-functions which are recursive
functions used to execute perform recursions on the nested sub-
components through the MULTI-BSP (hierarchical) architecture.
In this paper we design a generic compilation scheme of the
MULTI-ML language dedicated to parallel machines performing
data exchanges using synchronous requests, derived from any
ML compilation. This ensures that the implementation follows the
semantics, allowing greater confidence in the safety of execution.

Keywords—Hierarchical architectures; MULTI-BSP; compila-
tion; ML

I. INTRODUCTION

To be compliant with a bridging model simplifies the way
of writing code and ensures efficiency and portability from one
architecture to another.

Our previous work aimed at designing a parallel functional
language based on the BSP (Bulk Synchronous Parallel) bridg-
ing model [1]: BSML [2].

A BSP machine is a set of processors and memory pairs
communicating through a common network. The machine is
thus mapped on a parallel architecture and propose a structured
way to program it. A BSP program consists in the execution
of a sequence of super-steps. As described in Fig. 1, a super-
steps is composed by three phases: a local computation; a
communication phase concerning all the units of the BSP
machine; and finally, a global synchronisation of all the
computing units. After this synchronisation, the communicated
values are available and the next super-steps can start. Thanks
to this quasi-synchronous execution scheme, deadlocks are
avoided and determinism is preserved. The model also ensures
efficiency and portability from one architecture to another.

As BSML is a library for the OCAML language, it relies
on a powerful static type system. Thus, the code generated
by the compiler is safe, thanks to the type checker. A byte-
code compiler is available to allow code portability on various
architectures and performances close to the highest standards
of modern compilers. Thanks to the functional approach
brought by BSML, it is possible to extract a certified BSML
parallel program from the specification defined with the COQ
proof assistant [3].

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

...
...

...

Fig. 1. A BSP super-step.

However modern parallel architectures are hierarchical and
have multiple layers of parallelism: super-computers are made
by thousands of interconnected nodes, each one carrying
several multi-core processors. Communication between distant
nodes may not be as fast as communication among the cores of
a given processor. Indeed, the communication between cores
is done by accessing the shared cache of cores, which is
much faster than communication between processors through
RAM. As BSP was designed for flat architectures, we now
consider the MULTI-BSP model [4], an extension of BSP which
is dedicated to hierarchical architectures with multiple levels
of memories (or networks).

MULTI-BSP aims to take advantage of hierarchical archi-
tecture in order to achieve better performances and preserve
the BSP properties. The MULTI-BSP model introduced a rep-
resentation where a hierarchical architecture is a tree structure
of nested components (sub-machines) where the lowest stage
(leaves) are processors and every other stage (nodes) only
contains memory. Figure 2 shows the hierarchical point of
views brought by MULTI-BSP compared to BSP for a multi-
core made of 2 cores with 4 threads per core.

MULTI-ML [5], [6] is an extension of ML (OCAML [7])
for programming MULTI-BSP algorithms using a small set of
primitives (as BSML was, but limited to BSP algorithms).

Multi_Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

MULTI-BSP

Network

th0 th1 th2 th3 th4 th5 th6 th7

BSP

Fig. 2. The difference between the MULTI-BSP and BSP models for a multi-
core architecture.

Our current MULTI-ML implementation relies on MPI com-
munication routines. There is no study showing that this im-
plementation is faithful to the MULTI-ML’s semantics proposed
in [8]. Furthermore, having only an MPI implementation is not
sufficient. We can imagine a particular machine where a spe-
cific library can take advantage of the architecture to optimise
the communications. In such a context, it is more suitable to
use a correct and generic compilation scheme for any machine
with specific communication primitives to benefit from the low
level optimisations of any standard (sequential) ML compiler.
Such a compilation scheme could abstract the low level primi-
tives needed to implement the language features thus, allowing
a portable implementation — with potential optimisations.
This ensures a greater confidence for the implementation of
the compiler and thus, for the safety of the language.

We first briefly present our past implementation and give
an informal presentation of MULTI-ML in the form of a core
language. For sake of conciseness, we do not detail the MULTI-
BSP model nor MULTI-ML language; They are described in [6],
[5] and the current implementation can be found at https://git.lacl.fr/

vallombert/Multi-ML. The main idea of MULTI-ML is to run a BSML-
like code (a BSP code in ML) on each level of the MULTI-BSP
(hierarchical) tree of components. Then we define the new
compilation scheme. Finally, we give some correctness results
and conclusion.

II. THE PREVIOUS IMPLEMENTATION

A. Several daemons on processors

The past implementation of [6] works in a SPMD (Single
Program Multiple Data) fashion and the compiler generates
OCAML [7]+MPI [9] code from a source program written in
MULTI-ML. There is one MPI process for each node and leaf
of the MULTI-BSP architecture. Each process can be seen as a
“daemon” which is waiting for execution orders. Basically, an
order consists of a piece of code which must be evaluated by
the process concerned. The communications between daemons
are done using asynchronous send and receive routines. The
communicated values are composed by serialised closures
which contain a code and a set of values needed for their
evaluation. Thus, a serialised closure is a self-contained value
that can be evaluated after its communication, in an other
evaluation context. Any daemon un-serialises the closures and
executes them with the appropriate arguments. For example,
the following code <<#x#+1>> is compiled into the closure
(fun x → x+ 1). Both the closure and the value of x are
sent to the nested nodes of the MULTI-BSP components.

This “naive” implementation has the advantage of being
quite simple to implement and relatively efficient in most
cases. It does however have several drawbacks: (1) The
closure to be sent can be large if it contains many ML codes;
in an SPMD model, one might want only the necessary values
(in this case, the value of x); (2) In case of a MULTI-BSP tree
with many levels, every node above the leaves is a process.
In addition to an unnecessary scheduling, these processes
are also executed by the computing units (the cores) as MPI
processes; (3) For nested processes executed on the same

unit, an unnecessary transmission is performed, as values are
already available, since they share the same computing unit.

The goals of the new implementation are: (1) Minimise
the number of daemons by having only one process on each
computing unit; We use continuations (threading) in place of
multiple MPI processes; (2) Abstract the communications (like
in BSML [2]) in order to get only one routine module [2]
to implement using any communication library; (3) Abstract
the sequential part of the compiler (OCAML). To do so, we
will extend the traditional compilation scheme of ML with
MULTI-ML routines and then, we will describe the compilation
scheme of MULTI-ML codes on any abstract machine.

A subtlety in the cost analysis of a program is the binding of
global values, that is, values evaluated outside multi-functions
and seemingly accessible everywhere. But the programmer
could encounter unexpected behaviours which can break the
cost model. Take for example the following code:

let v = big_value;; (* partial end of evaluation *)

let multi f () =
where node =
... << v >> ... (* a BSML code *)

where leaf = ... (* an OCaml code *)
...

We assume here that v is a “large value” (that we clearly do
not want to transmit). Then, inside the scope of a parallel
vector (that is to say within the << >> notation), referencing
v does not imply additional communication, as v is defined in
the MULTI-BSP (global) memory. The serialisation procedure
simply gives the address of the value v, as the code is SPMD.
In this case, there is no unexpected behaviour. But now take
this relatively close code:

let g () =
let v = big_value in
let multi f _ =
where node =
... << v >> ...

where leaf =
...

On the contrary, the value v is evaluated when the function g

is applied. Therefore, the address of the value v is not known
by the processes and can differ: the complex serialisation
mechanism of OCAML forces the value to be transmitted inside
the function closure, when referenced inside the scope of a
parallel vector. In this particular case, an unexpected com-
munication occurs: the value v is completely communicated.
This additional communication is hidden from the programmer
which contradicts the MULTI-BSP’s explicit cost model.

Thus, if the values are not declared as a list of expressions,
it is not possible to reference them within the scope of a
parallel vector. The value must be completely evaluated;
otherwise, it is not possible to determine which identifier (or
address) corresponds to a particular value. Indeed, in the case
of nested bindings, it is not possible to determine a global
identifier to reference a value. It is thus impossible to tell
a process which value to use. To avoid this behaviour, our
compilation scheme will prohibit the usage of such variables
in the scope of a parallel vector.

https://git.lacl.fr/vallombert/Multi-ML
https://git.lacl.fr/vallombert/Multi-ML

e ::= Expressions with core-ML
| x | cst | op | (e, e) | let x = e in e | (e e)
| if e then e else e | (fun x→ e) | (rec f x→ e)
and BSML-like primitives
| mkpar e | gid | proj e | put e | pid | (copyx)
| replicate (fun f → e) | apply e e

and multi-functions
| (multi f x→ e1 † e2)

P ::= Programs
let x = e | let x = e ; ; P

Fig. 3. Syntax of core-MULTI-ML.

B. A core language for MULTI-ML

Fig. 3 gives the syntax of the core-MULTI-ML which extends
the popular core-ML. The core-MULTI-ML syntax stands for
the minimal set of syntactical constructions needed to write
a MULTI-ML program. A program is a list of expressions
which are executed one after the other. Expressions contain
variables, constants (integers, etc.), operators (≤, +, etc.),
pairs, the standard ML statements let, if , fun, rec for
recursive function calls, the BSML-like primitives [5], [6],
[2] (replicate, put, proj, mkpar, apply), local copy
of a parent’s variable to its children (copy) and a tree
of identifiers (gid). We define “let-multi” as a particular
function construction multi f x → e1 † e2 with codes for
both the nodes (e1) and the leaves (e2). Only the expressions
without free variables in replicate (fun g → e) are valid
as explained above. The set of free variables for an expression
e is as usual and is denoted F(e).

replicate is well defined when the g in
replicate (fun g → e) is in the scope of a multi-
function only. We note WF_(e) a well formed expression
inductively defined in Fig. 4. It ensures that a multi-function
can be nested in the sub-components of the hierarchical
machine only. For example, it forbids codes like fun f →
replicate (fun f → e) because the sub-component
(which could be a distant machine) cannot know the function
(multi or not) when evaluated e without this function being
serialised which can lead to unnecessary communications.

We do not use the syntactic sugars [2] of BSML/MULTI-ML
and assume that they have been transformed into primitive
calls first: (1) <<e>> ≡ replicate(fun x→e); (2) every access
x (inside a vector) to the local value of a vector x has
been replaced by a call of apply, e.g. <<x + 1>> ≡ apply x
(replicate (fun _ x → x+ 1)), where _ matches all
possible values; (3) in the same way, each local copy #x# of
a parent’s variable x is replaced by a call to the copy primitive.
The replicate and apply primitives are available in the core
syntax only. For the sake of programming simplicity, the
syntactic sugars are available to the programmers only.

WFf (x) = true
WFf (cst) = true
WFf (op) = true

WFf ((e1, e2)) = WFf (e1) ∧WFf (e2)
WFf (let x = e1 in e2) = WFf (e1) ∧ (WF_(e2))

if (x≡f)
WFf (let x = e1 in e2) = WFf (e1) ∧ (WFf (e2))

otherwise
WFf (if e1 then e2 else e3) = WFf (e1) ∧WFf (e2)

∧WFf (e3)
WFf ((fun x→ e)) = WF_(e) if (x≡f)
WFf ((fun x→ e)) = WFf (e) otherwise
WFf ((rec f x→ e)) = WF_(e) if (x≡f ∨ g≡f)
WFf ((rec f x→ e)) = WFf (e) otherwise

BSML-like primitives
WFf (replicate (fun g → e)) = true if (g≡f)
WFf (replicate (fun g → e)) = false otherwise

WFf (copy x) = true
WFf (mkpar e) = WFf (e)
WFf (put e) = WFf (e)
WFf (proj e) = WFf (e)

WFf (apply e1 e2) = WFf (e1) ∧WFf (e2)
multi-functions

WF_((multi f x→ e1 † e2)) = WFf (e1) ∧WF_(e2)

Fig. 4. Well formed terms of core-MULTI-ML.

III. A GENERIC COMPILATION SCHEME FOR MULTI-ML

A. A new compilation scheme

To get a generic compilation of MULTI-ML, we must not
depend on the compilation of the sequential parts of the
language. Our goal is to generate pure OCAML codes with
some low level communication routines. We abstract such
a compilation with the notation [[e]]

S
, corresponding to the

compilation of the term e with any standard ML compiler.
In general, such a compilation generates instructions manipu-
lating a stack and some environments (memories). We denote
them E with the pid (or processor identifier) of each core
of the machine as subscript (assuming an unique pid for
each core of the machine). We note [[e]]_

M
the compilation of

a MULTI-ML expression. This compilation may have called
[[e]]

S
, if a sub-term is free of MULTI-ML primitives. Without

considering the type system of MULTI-ML, it is hard to detect
such expressions statically. In our case, and without lack of
generality, we prefer to apply such a compilation to e after the
pass of [[e]]_

M

1.
The compilation of a term e is thus a compilation which

transforms all MULTI-ML features into standard ML ones
and then, compile them using the standard ML compila-
tion. The compilation of a program P ≡ e1; ; · · · ; ; en is
the compilation of all the expressions, that is, [[P]]

M
=

[[e1]]_
M
; ; · · · ; ; [[en]]_

M
. The compilation can be expressed as

following: 〈〈{E0, P ′}, . . . , {Epc
, P ′}〉〉 where pc stands for the

total number of cores minus one of the MULTI-BSP machine
and where P ′ = [[[[P]]

M
]]

S
.

The execution scheme of a program P is based on the
following ideas: (1) The code is duplicated to be executed
on each core; the hierarchical architecture is thus “flattened”

1We left the possibility of optimisations for future work.

1

2

A B

3

C D

A 1 B 2 C 3 D Scattered

A B 1 2 C D 3 Gathered

Fig. 5. Architecture flattening.

with the hypothesis that on the same core, only nodes and
leaves of the same branch may appear. Moreover, each node
is managed by one leaf. The Fig. 5 represents a three level
architecture – here, we have a multi-core (1) with two cores
(2, 3) and two threads per cores (A,B,C and D) – where we
describe two different ways of mapping the daemon processes
to physical cores: the scattered way aims to balance the
processes over the physical cores; the gathered way aims to
gather the processes on a minimal set of physical cores. In
the current implementation of MULTI-ML the distribution is
made statically using the scattered flattening. (2) The code
outside multi-functions is executed sequentially, once, for
each core; (3) A multi-function is a special function which
initialises some data (basically, it is defined by an identifier
corresponding to the codes of nodes and leaves, stored in
a global hash table of multi-functions) and runs a scheduler
with the appropriate code of the root node; (4) Each scheduler
is waiting for two kinds of instructions: spawning a daemon
and continuing the execution or terminating a multi-function
execution; Daemons are thus independent, which allows for
different daemons running on the same physical core; each
daemon corresponding to a node or a leaf during both the
“upward” and “downward” phase of the recursive call of the
multi-function; (5) Each daemon is waiting for instructions
from its parent (upper-node), which are: (a) Perform an
asynchronous BSML-like routine such as a replicate or
apply; (b) Perform a synchronous routine such as proj,
mkpar, copy or put; (c) Complete the computation, since
the parent has also completed the node code. (6) Leaf codes
are running sequentially; (7) A multi-function recursive call is
“just” the execution of the code corresponding to the identifier
of a multi-function. The main difficulties come from parallel
vectors, their primitives and multi-functions.

B. Identifiers for parallel vectors and multi-functions

From the node point of view, a parallel vector contains a
code which manages the memories of distant cores. To avoid
the communication of serialised codes (which are known and
shared by each core), the construction of a parallel vector
is based on the following idea: we give a static identifier
for each parallel vector in the program (syntactically, the
code following replicate). When created, a parallel vector
uses a global hash table that relates those identifiers to the
corresponding codes. Then a dynamic identifier is shared
between a node (parent) and its sub-nodes (children), allowing
to reference a parallel vector between the two processes. It is
thus possible to remove a parallel vector when it is detected

as obsolete by the parent’s node (using a garbage collection
procedure).

A multi-function is not a simple function since it can be
propagated through the whole hierarchical machine. A simple
closure is thus not satisfying. The system must keep trace
of which multi-function is currently running, using a global
variable called CurrentIdM. We write CodeId for the identifier
of each core of the machine. A multi-function is compiled as
follow:

(*Multi function "where node =e1 where leaf =e2"*)
(fun mf x →
let idM= newIdM() in
let f = (fun i x → CurrentIdM←idM;

if node(i) then begin
WakeUpChildren|i| CoreId;
let v=e1 in Signal|i| EndNode; v

end
else e2) in

|HM|[idM]←f;
if CoreId=root then run (WakeUpAll (f |0̃| x));
let v = scheduler() in |HM|[idM]←null; v)

Where |i| is standing for the component identifier and
where |0̃| stands for the root node. Notice that, due to the
execution model of MULTI-ML, all cores are running the
exact same code and thus, all of them are registering the
same multi-functions in order to execute them (in a SPMD
way). To do so, an identifier is first created (newIdM). Then,
we create a specific function with an argument i that will be
the gid (global identifier) of the current level of execution.
The CurrentIdM is then modified by the identifier of the multi-
function called. If the process is a node, the node code of
the multi-function is executed, after notifying the sub-nodes
(using WakeUpChildren) to wait for instructions (Signal). Then
daemons will be used to manipulate the vectors (construction,
projection, communication, etc.). Otherwise, when the process
is a leaf, the leaf code is executed. This function is registered
in the global table of multi-functions HM. When the multi-
function starts, the root node is active and all other processes
are awakened (WakeUpAll), waiting for orders. Finally, the
multi-function is un-registered (globally by all the cores) and
we return the computed value. The code of the scheduler is:

let scheduler () = match wake() with
| Dmn i → run daemon|i|(); scheduler();
| EndMulti v → v

Here, wake() is a passive-wait function which waits until
an order is received. Note that each core has its own ordered
queue of messages. That could be easily implemented using a
library such as MPI.

C. Primitives and their interaction with daemons

Now, we have to handle parallel vector manipulations
(BSML-like primitives). The content of the vectors is handled
by the children, using a hash table of vectors where the iden-
tifiers are the keys. From the parent point of view, a parallel
vector is just a dynamic identifier. For sake of conciseness, we
give only the code of the replicate and proj primitives
in Fig. 6, other codes from the rest of the primitives can be
easily deduced and are fully available in [5].

let replicate = fun idS →
let idD= newIdD() inj(idD);
let idM = CurrentIdM in
Signal|i| Rpl(idD,idS,idM);
idD

let proj = fun idD →
Signal|i| Prj(idD);
let tab=
fromChildren|i|() in
(fun j → tab[j])

Fig. 6. Compilation of BSML-like primitives.

For replicate, the parameter is the static identifier used
to build the parallel vector. We will explain, later, how we
obtain it. Here, two identifiers are necessary: (1) the dynamic
identifier of the current vector and (2) the identifier of the cur-
rent (running) multi-function.When a parallel vector construc-
tion order is received (Rpl), three identifiers must be communi-
cated to the children that are, by construction, daemons which
are awaiting orders. The identifier of the multi-function is used
to bind the call of the multi-function in the body of replicate.
As the replicate routine is asynchronous, the Signal rou-
tine is an asynchronous send which involves insignificant costs
for modern architectures and many cores. Finally the generated
dynamic identifier is returned to complete the replicate.

The code for the proj is similar, except for the use of a
synchronous routine to communicate the values of the children
upwards: the routine fromChildren generates an array containing
the values received from each process. The order “Prj” forces
the children to communicate their values. The resulting value
is thus, for each i, a function mapping of those values.

Finally, the code of a daemon consists in waiting for orders,
executing them and waiting until the execution ends.

let rec daemon|i|() = match rcv|i| with
| Rpl(idD,idS,idM) →
|VD|[idD]←(|VS|[idS] |VM|[idM]);
daemon|i|()
| Prj(idD) → up|i| |VD|[idD]; daemon|i|()
| ... (* other BSML-like primitives *)
| EndNode → ()

In this code, we have: (1) VD, VM and VS are, respec-
tively, the hash table of the dynamic identifier of parallel
vectors, of multi-function identifiers and the shared hash
table of static identifiers (from identifiers to codes); (2) “up”
which sends the value to the parent and thus synchronises the
children.

The code works as follows: When the Rpl order (for
replicate) is received, a new parallel vector is created with
the given information. Regarding the Prj (for proj) order, the
value of the vector is communicated upwards by reading the
hash table. The other BSML-like primitives works similarly.

Note that the use of only one daemon for simulating the
execution of upper nodes seems impossible. Indeed, if a
process must manage two nodes, the daemon simulating the
first node may be waiting for the results of its children, which
could be itself. Moreover the second node could also wait
for the results of its own children, resulting in a situation of
deadlock if no more than one thread is active. To avoid such
problems, we choose a solution where by on each core, only
one thread is active during all the execution of the MULTI-ML
code.

Sequential computations
[[x]]g

M
= x if x 6= g

[[x]]g
M

= (call g)
[[cst]]g

M
= cst

[[op]]g
M

= op
[[(e1, e2)]]g

M
= ([[e2]]g

M
, [[e1]]g

M
)

[[let x = e1 in e2]]g
M

= let x = [[e1]]g
M
in [[e2]]g

M
if x 6= g

[[let x = e1 in e2]]g
M

= let x = [[e1]]g
M
in [[e2]]_

M
otherwise

[[if e1 then e2 else e3]]g
M

= if [[e1]]g
M
then [[e2]]g

M
else [[e3]]g

M

[[(fun x→ e)]]g
M

= (fun x→ [[e]]g
M
) if x 6= g

[[(fun x→ e)]]g
M

= (fun x→ [[e]]_
M
) otherwise

BSML-like primitives
[[replicate (fun g → e)]]g

M
= Code given above with

idS,H⊕ {idS ⇒ (fun g → [[e]]g
M
)}

where idS is a fresh value
multi-functions

[[(multi f x→ e1 † e2)]]_
M

= Code given above where
e′1 = [[e1]]f

M
and e′2 = [[e2]]f

M

Fig. 7. Compilation scheme of core-MULTI-ML.

Fig. 7 defines the compilation [[e]]_
M

of an expression e. It
works as follows:
• Most sequential constructions are left as they are or are

built over trivial inductions. This is the case for constants,
operators, pairs, conditional, bindings and functions. For
the BSML-like primitives, the compilation corresponds to
the code given above;

• At the beginning, we are outside the scope of a multi-
function binding. But after the declaration of a multi-
function, we must select the appropriate identifier which
is given to the compilation function; When executing the
replicate primitive, g stands for the current evaluated
multi-function and thus, it is used to define where the call
to the CurrentIdM must be made. Moreover, we update the
hash table H of vectors.

Thus, the compilation of a program begins with H ≡ ∅. Note
that our core-language does not allow the definition of multiple
multi-function at the same time. To overcome this limitation,
an appropriate set of bindings must be given as arguments of
replicate, corresponding to all the potential multi-function
calls. This feature is discussed in future works.

D. Execution and Correctness

The execution of a compiled program is done using a
small-steps semantics. It consists of a predicate between two
expressions defined by a set of rules called steps. As usual,
we have two kinds of reductions. One for the cores and one
for the whole machine. We note ⇒c the local reduction of
an expression on a single core and ⇒ the reduction of a
whole machine expression. For both rules, ⇒∗ is a reflexive
and transitive closure and ⇒∞ is used for infinite programs.
The reduction of a program P = e1; ; · · · ; ; en consists of the
reduction from e1 to en.

For sake of simplicity, we do not give the reduction rules of
OCAML expressions. We focus on the reduction of communi-
cation routines needed for the implementation of MULTI-ML.
Note that sequential codes neither modify the communication
environments nor the message queues. An environment E

Γi ::= [] head evaluation
| Γie application
| vΓi application
| let x = Γi in e let
| (Γi, e) left pair
| (v,Γi) right pair
| if Γi then e else e conditional

Fig. 8. Abstract context syntax.

contains at least two independent queues of orders, one for the
schedulers (denoted Fs) and another shared by the daemons
(denoted Fd). We write CeB for a thread that runs the
expression e. We note |v...| for reading the message v at the
top of a queue and | ...v| for adding a message v at the bottom
of a queue.

It is easy to see that we cannot always perform a head
reduction of an expression. We have to reduce, in depth, the
sub-expression. To define such a depth reduction, we define
two kinds of contexts: (1) an expression Γi with a “hole”
denoted [] which have the common syntax for ML expressions
(see [5] for more details) where i is the gid of the expression;
(2) we then define Γi

j (given in Fig. 8) as the context of each
threads where the reduction holds. For the core j at gid i,
{Ej ,Γi

j [e]} stands for {Ej ,Ce′B, . . . ,CΓi[e]B, . . . C e′′B}.
From the previously defined low level routines, we have the
following rules:

a) Signal and rcv.: The Signal function is a low level
asynchronous communication routine which aims to send a
message to the queue Fd of another (distant or not) thread.
Then the rcv routine can read it. We write E⊕|... |i to highlight
the use of the queue of daemons (allocated to gid i) without
modifying the rest of the environment. First we define the
sending of a message:

〈〈. . . , {E0⊕|... |i, ei0}, . . . , {Ep⊕|
... |i, eip}, {E ,Γi

j [Signal
i v]}, . . .〉〉

⇒c 〈〈. . . , {E0 ⊕ |
v...|i, ei0}, . . . , {Ep ⊕ |

v...|i, eip}, {E ,Γi
j [()]}, . . .〉〉

Where v is one of the possible messages presented above
and where {0, . . . ,p} are the global identifiers of the siblings
of core j. Note that the message might be processed later.
For example, such a case may occur when a daemon receives
different messages manipulating a parallel vector:

let v1=replicate (fun g → 1) in
let v2=replicate (fun g → 2) in
let vplus=replicate (fun g → (+)) in
(apply (apply vplus v1) v2)

As daemons work asynchronously, one of them may have
received all the messages before executing the orders.
Secondly, we define the rule of reception:

〈〈. . . , {Ej ⊕ |
...
v|
i C Γi′

j B · · ·C Γi
j [rcv

i()] B · · · , . . .〉〉 ⇒c

〈〈. . . , {Ej ⊕ |... |i C Γi′

j B · · ·C Γi
j [v] B · · · , . . .〉〉

On core j, the daemon identified by i reads a message in
its own queue. Note that these rules are not global since they
only rely on the thread of a single core, instead of synchronous
rules that require the whole machine to work.

b) up.: To communicate a value upward (from children
to a parent) in a synchronous way, we have the following rule:

〈〈. . . , {E0,Γi
0[up v0]}, . . . ,

{Ep,Γi
p[up vp]}, {E ,Γ′ij [fromChildren()]}, . . .〉〉 ⇒

〈〈. . . , {E0,Γi
0[()]}, . . . , {Ep,Γi

p[()]}, {E ,Γ′ij [[|v0, . . . , vp|]]}, . . .〉〉

where {0, . . . ,p} are the global identifiers of the siblings of
core j.

c) run: is a routine used to run threads (daemons):

〈〈. . . ,CΓi′

j B · · ·C Γi
j [run dk] B · · · , . . .〉〉

⇒c 〈〈. . . ,CΓi′

j B · · ·C Γi
j [()] BCdk B · · · , . . .〉〉

Where, on core j, for gid i, we run the daemon for gid
k. When a thread ends, it may have produced an orphan
value. When such a value is not communicated upward using
the proj primitive, there is no need to keep them. Thus:

〈〈. . . ,CeB · · ·C v B · · · , . . .〉〉 ⇒ 〈〈. . . ,CeB · · · , . . .〉〉

d) WakeUpChildren and WakeUpAll: They are working
in the same way. WakeUpAll aims to send messages to all cores
of the architecture, whereas WakeUpChildren sends messages to
its children only. To do so, these routines send messages to the
queue Fs of each involved thread. For the sake of conciseness,
we do not detail the rule.

There are also rules for both upward and downward
communication between parent and children. They are given
in [5] and can be deduced easily from the rules above.

e) From local to global reductions.: Finally, the asyn-
chronous reduction⇒c (for standard OCAML expressions) can
only work in the context of a call of the ⇒ reduction on the
whole machine, using the following rule:

〈〈. . . , {Ej , · · ·C Γi
j [e] B · · · }, . . . , 〉〉

⇒ 〈〈. . . , {Ej , · · ·C Γi
j [e
′] B · · · }, . . . , 〉〉

If Γ[e] ⇒c Γ[e′] uses a standard reduction rule of OCAML
(matching, if-then-else, application, binding, pairing, etc.).
Note that all the low level communication routines only works
when sending valid values, as in the operational semantics.
We do not introduce a validity test for values to simplify the
formalisation.

Algorithm i7 mirev31 mirev3 mirev3ht
TDS 690 2070 8625 16100
FFT 972 2916 12150 22680

TABLE I
FUNCTIONS CLOSURES OVERHEAD (IN BYTES)

E. Results

1) Correctness of the compilation scheme: Now we have
the following results that can be proved by induction and co-
induction.

Theorem 1. For a program P = e1; ; · · · ; ; en and if
WF_(ei),
• If M ` ei ⇓Lp vi for each ei then:
〈〈{E0,C[[P]]

M
B}, . . . , {Epc

,C[[P]]
M
B}〉〉 ⇒∗

〈〈{E ′0,Cv0B}, . . . , {E ′pc
,Cvpc

B}〉〉
• If M,` ei ⇓Lp ∞ for one ei then:
〈〈{E0,C[[P]]

M
B}, . . . , {Epc

,C[[P]]
M
B}〉〉 ⇒∞

Then, we get 〈〈e, ..., e〉〉 ⇒safe, where ⇒safe ≡ ⇒∗ ∪ ⇒∞.

The notation ⇓Lp stands for the big step evaluation of a
MULTI-ML expression on the processor p of locality L — see
the rules in [5]. Then, M ` e ⇓Lp v denotes the evaluation
of the expression e into the value v, within an environment
of evaluation M. Similarly, M ` e ⇓Lp ∞ denotes that
the evaluation of e diverges. The generated code works
similarly to the MULTI-ML’s big step semantics. If all the
expressions give values, then the code terminates giving a
final value. Otherwise, if one expression diverges, then the
whole machine is considered to be divergent.

2) Performances of the new implementation: As explained
previously, the current implementation of the MULTI-ML lan-
guage relies on MPI, with one process (daemon) for each com-
ponent of the MULTI-BSP architecture. To run computations, a
daemon sends function closures to be executed on its children.
As the current implementation is SPMD, the code is known by
all the processes and the function closures are not necessary.
Thus, to execute code within the scope of a parallel vector,
we just need to communicate a static identifier (standing for
the function to be executed) in addition to the required values.

The amount of unnecessary communication can be quan-
tified using an instrumented version of MULTI-ML which
measures and sums the size of each function closure. To
do so, we compute the size of the data transmitted at each
communication step and we accumulate it in an global counter.
As the function closures are merely small pieces of code,
the communication overhead is quite low. We can observe, in
Tab. I, the function closures overhead for several code exam-
ples: Tridiagonal Equation Systems of equations (TDS) Fast
Fourier Transform (FFT);. And for some various architectures:
• i7, a multi-core with 2 cores and 2 threads per core;
• mirev31, a multi-core with 2 cores and 8 threads per core;
• mirev3, a cluster of 4 multi-cores with 2 cores and 8

threads per core;
• mirev3ht, a cluster of 4 multi-cores with 2 cores and 16

threads per core;

Both examples use our implementation in MULTI-ML of a
well-known data-parallel skeleton [10], [11] which is the
Distributable Homomorphisms used to express divide-and-
conquer algorithms.

As expected, the overhead is almost imperceptible for these
small examples. We may also expect only a minor impact
on bigger programs as the closures essentially contain raw
code and as the number of closures is linear to the number
of components of the MULTI-BSP architecture. The proposed
implementation is no longer sensitive to sending data in a
hidden way in some specific cases as explained above. As
the generalisation relies on a direct code transformation, we
do not expect any non-linear impact on the compilation time.
This implementation works just as well but is not as sensitive
to cost problems which is the main goal when programming
algorithms with a bridging model.

IV. RELATED WORK

A. Abstract Machines

To calculate the values of the λ-calculus, a lot of abstract
machines have been designed. The first was the SECD machine
[12] which was used for the first implementation of the LISP
language. There is also the CAM [13], the FAM [14] and
many others. [15] introduced a powerful abstract machine,
the ZAM, which underlies the byte-code interpreter of OCAML
(using the ZAM2, unpublished). This machine was derived
from the Krivine’s abstract machine and from the λ-calculus
with explicit subsections. This machine is interesting because
its instructions could be “easily” translated into efficient byte-
code (with some optimisations) and also to native code. It is
to be noticed that for functional languages with a call by name
strategy, [16] designs the G-machine with its graph reduction.

As we consider here an eager language, those techniques
are not suitable for us.

For BSML, a first work has been done in [17] where the
authors modified a SECD machine. However, this machine has
two main drawbacks: (1) the number of processors of the
machine which will execute the program has to be known
at compilation; using an abstract machine eases portability
but such a static definition of the number of processors
is contradictory; (2) the exchange instructions for values is
difficult to translate to real code, especially in an efficient way,
as they add instructions to the code during the execution. These
two problems were solved in [18]: only two new instructions
have been added to a simple ZINC machine, one for having
the processor identifier of computing unit and another one to
perform a total exchange. The compilation scheme and the
design of these two instructions have motivated the current
modular implementation of BSML [2] (only a module of these
2 specific instructions need to be coded; different versions have
been done such as MPI, BSPLIB, PVM, direct OCAML’s TCP/IP
routines, etc.).

Close to our work is the one of [19]. The authors define a
distributed virtual machine for a lambda-calculus with streams
(parallel computations over an infinite flow of data). However,
this approach is not suitable for the MULTI-BSP.

B. Hierarchical programming

Many languages dedicated to hierarchical architectures were
proposed. NESTSTEP [20] is a C/JAVA library for programming
BSP algorithms. It allows nested computations on clusters
of multi-cores. A data-parallel extension of HASKELL called
NEPAL was proposed in [21], where an abstract machine is
responsible for the distribution of the data over the available
processors. We can also notice MULTIMLTON [22], which is a
multi-core aware runtime for standard ML. This extension of
the MLTON compiler manages composable and asynchronous
events using safe-futures. LIFT [23] is a parallel pattern based
high-level language targeting portability on parallel acceler-
ators. An in-depth description of other bridging models for
hierarchical architectures and other parallel languages can
be found in [5]. We are currently not aware of dedicated
languages that meets our requirements which are performance,
portability and execution safety.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

The compilation scheme presented in this article provides a
detailed formal description of a distributed runtime system for
MULTI-ML. It has two advantages compared to the past (and
rather naive) implementation: (1) Only one process is needed
on each computing unit (physical core); (2) It demonstrates the
need for low level primitives to abstract the implementation
in order to have a generic and modular implementation as
in [2]. With such low-level primitives, it is easier to propose
various implementations relying on different communication
libraries, not limited to MPI. For example, we can imagine an
optimised versions of the communication module for a specific
architecture using a particular communication scheme.

This compilation scheme brings a generic approach allowing
genericity – thanks to a limited set of primitives – and
efficiency – using a close to hardware bridging model.

B. Future work

The next phases will be to: (1) Use the COQ proof
assistant to get a machine-checked proof of correctness of
this compilation scheme with respect to the semantics; that
will give a greater confidence on the implementation (the
compilation) of the MULTI-ML language; (2) Extend our work
to be able to compile the full ML (OCAML) language with
our parallel extension; For example, imperative features such
as assignment and exceptions; This is an ongoing work: the
main problem is to design an exception mechanism to deal
with exceptions raised by the different daemons and thus
handle various exceptions of a hierarchical architecture.

REFERENCES

[1] L. G. Valiant, “A Bridging Model for Parallel Computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[2] F. Loulergue, F. Gava, and D. Billiet, “Bulk Synchronous Parallel ML:
Modular Implementation and Performance Prediction,” in Computa-
tional Science – ICCS 2005. Springer, Berlin, Heidelberg, May 2005,
pp. 1046–1054.

[3] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions.
Springer, 2004. [Online]. Available: http://www.springer.com/gp/book/
9783540208549

[4] L. G. Valiant, “A Bridging Model for Multi-core Computing,” J. Comput.
Syst. Sci., vol. 77, no. 1, pp. 154–166, Jan. 2011.

[5] V. Allombert, “Functional Abstraction for Programming Multi-Level
Architectures: Formalisation and Implementation,” Ph.D. dissertation,
Université Paris Est, Créteil, France, Jul. 2017. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01693568

[6] V. Allombert, F. Gava, and J. Tesson, “Multi-ML: Programming
Multi-BSP Algorithms in ML,” International Journal of Parallel
Programming, vol. 45, no. 2, p. 20, Apr. 2017. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01160164

[7] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and
J. Vouillon, “The OCaml system release 4.06: Documentation and
user’s manual,” INRIA, Intern Report v4, Nov. 2017. [Online].
Available: https://hal.inria.fr/hal-00930213

[8] V. Allombert, F. Gava, and J. Tesson, “A formal semantics of the Multi-
ML language,” in International Symposium on Parallel and Distributed
Computing. IEEE, Jun. 2018, to appear.

[9] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI-
The Complete Reference, 2nd ed. Cambridge, MA, USA: MIT Press,
1998.

[10] M. Cole, “Bringing Skeletons out of the Closet: A Pragmatic Manifesto
for Skeletal Parallel Programming,” Parallel Comput., vol. 30, no. 3, pp.
389–406, Mar. 2004.

[11] M. H. Alt, “Using algorithmic skeletons for efficient grid computing
with predictable performance,” Ph.D. dissertation, Münster University,
2007.

[12] P. J. Landin, “The Mechanical Evaluation of Expressions,” The Com-
puter Journal, vol. 6, no. 4, pp. 308–320, Jan. 1964.

[13] G. Cousineau, P. L. Curien, and M. Mauny, “The Categorical Abstract
Machine,” in Proc. Of a Conference on Functional Programming
Languages and Computer Architecture. New York, NY, USA:
Springer-Verlag New York, Inc., 1985, pp. 50–64. [Online]. Available:
http://dl.acm.org/citation.cfm?id=5280.5284

[14] L. Cardelli, “Compiling a Functional Language,” in Proceedings of the
1984 ACM Symposium on LISP and Functional Programming. New
York, NY, USA: ACM, 1984, pp. 208–217.

[15] X. Leroy, “The ZINC experiment: An economical implementation of the
ML language,” INRIA, Tech. Rep., 1990.

[16] S. L. Peyton Jones, The Implementation of Functional Programming
Languages (Prentice-Hall International Series in Computer Science).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1987.

[17] A. Merlin, G. Hains, and F. Loulergue, “An SPMD environment machine
for functional BSP programs,” 2001.

[18] F. Gava and F. Loulergue, “A Polymorphic Type System for Bulk Syn-
chronous Parallel ML,” in Parallel Computing Technologies. Springer,
Berlin, Heidelberg, Sep. 2003, pp. 215–229.

[19] M. Pedicini, G. Pelliatta, and M. Piazza, “Sequential and Parallel
Abstract Machines for Optimal Reduction,” 2014.

[20] C. W. Kessler, “NestStep: Nested Parallelism and Virtual Shared Mem-
ory for the BSP Model,” The Journal of Supercomputing, vol. 17, no. 3,
pp. 245–262, Nov. 2000.

[21] M. M. T. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel,
“Nepal - Nested Data Parallelism in Haskell,” in Proceedings of
the 7th International Euro-Par Conference Manchester on Parallel
Processing. London, UK, UK: Springer-Verlag, 2001, pp. 524–534.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646666.699740

[22] K. C. Sivaramakrishnan, L. Ziarek, and S. Jagannathan, “MultiMLton:
A multicore-aware runtime for standard ML,” Journal of Functional
Programming, vol. 24, no. 06, pp. 613–674, 2014. [Online]. Available:
http://journals.cambridge.org/article_S0956796814000161

[23] M. Steuwer, T. Remmelg, and C. Dubach, “Lift: A Functional
Data-parallel IR for High-performance GPU Code Generation,”
in Proceedings of the 2017 International Symposium on Code
Generation and Optimization, ser. CGO ’17. Piscataway, NJ,
USA: IEEE Press, 2017, pp. 74–85. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=3049832.3049841

http://www.springer.com/gp/book/9783540208549
http://www.springer.com/gp/book/9783540208549
https://tel.archives-ouvertes.fr/tel-01693568
https://hal.archives-ouvertes.fr/hal-01160164
https://hal.inria.fr/hal-00930213
http://dl.acm.org/citation.cfm?id=5280.5284
http://dl.acm.org/citation.cfm?id=646666.699740
http://journals.cambridge.org/article_S0956796814000161
http://dl.acm.org/citation.cfm?id=3049832.3049841
http://dl.acm.org/citation.cfm?id=3049832.3049841

	Introduction
	The previous implementation
	Several daemons on processors
	A core language for multi-ml

	A generic compilation scheme for Multi-ML
	A new compilation scheme
	Identifiers for parallel vectors and multi-functions
	Primitives and their interaction with daemons
	Execution and Correctness
	Results
	Correctness of the compilation scheme
	Performances of the new implementation

	Related work
	Abstract Machines
	Hierarchical programming

	Conclusion and Future Work
	Conclusion
	Future work

	References

