
Noname manuscript No.
(will be inserted by the editor)

Programming bsp and multi-bsp algorithms in ml

Victor Allombert · Frédéric Gava

the date of receipt and acceptance should be inserted later

Abstract The bsml and multi-ml languages have been designed for pro-
gramming in ml algorithms of the respectively bsp and multi-bsp bridging
models. multi-bsp is an extension of the well-know bsp model by taking into
account the different levels of networks and memories of modern hierarchi-
cal architectures. This is a new model, as well as multi-ml, while bsp and
bsml have been used for a long time in many different domains. But design-
ing and programming multi-bsp algorithms is intuitively more complex than
with bsp. One can ask if it is beneficial to rewrite bsp algorithms using the
multi-bsp model? In this paper, we thus investigate the pro and cons of the
aforementioned models and languages by experimenting with them on different
typical applications. We use a methodology to measure the level of difficulty of
writing code and we also benchmark them in order to show if writing multi-ml
code is worth the effort.

Keywords bsp, multi-bsp, ml, hierarchical, performance, algorithms

1 Introduction

Context. Our previous work aimed at designing a parallel functional lan-
guage based on the bulk synchronous parallelism (bsp) bridging model called
bsml [13]. bsp is a model of parallelism which offers a high level of abstrac-
tion and takes into account real communication and synchronisation cost [22].
bsp has been used successfully for a broad variety of applications: scientific
computation [6], artificial intelligence, big-data and graph frameworks (such as
pregel [18]), etc. To be compliant to a bridging model eases the way of writing

Victor Allombert:
Université d’Orléans, LIFO, Orléans, France. E-mail: victor.allombert@univ-orleans.fr

Frédéric Gava:
Université Paris-Est Créteil, LACL, Créteil, France. E-mail: frederic.gava@univ-paris-est.fr

2 Victor Allombert, Frédéric Gava

code and ensures efficiency and portability from one architecture to another.
Thanks to a cost model it is also possible to reason on the algorithmic costs.

As modern hpc (high performance computing) architectures are hierar-
chical and have multiple layers of parallelism, communication between distant
nodes cannot be as fast as among the cores of a given processor. bsp was
designed for flat architectures, we now consider the multi-bsp model [23],
an extension of bsp which is dedicated to hierarchical architectures. multi-
ml [3] is extension of ocaml (http://ocaml.org/) for programming multi-bsp
algorithms. multi-ml uses a small set of primitives similarly to bsml for bsp
algorithms.

Comparing languages. Since we now have two programming languages, we
ask ourselves whether they differ in terms of performances and written code.
Both have structured models of execution. Both have an mpi implementation.
However, bsml has been designed for flat parallelism whereas multi-ml is
designed for controlled nested parallelism. To compare them, we have chosen
three different cases that are in the field of symbolic, numerical and big-data
computations.

We want to compare the two languages for both performance and the ease
of writing code. For the performance, we have chosen speedup and/or tim-
ing for some data-sets. We also change the target architecture by modifying
the number of cores, processors and nodes of the machines. For the code, we
have choose some traditional metrics which are the Halstead difficulty and
the McCabe cyclomatic complexity. These metrics mainly count the number
of operands and programming structures such as conditionals, loops, etc. We
have adapted them to take into account the number of parallel operators. These
metrics are not perfect but are easy to use. Finally, we have used one inter-
esting ability of both bsml and multi-ml: programming parallel algorithms
in an incremental manner from sequential codes, which simplifies the devel-
opment of parallel code. As explained later, this is due to the fact that both
bsml and multi-ml provide a global view of programs, i.e. their programs
can be seen as sequential programs working on parallel data structures (“seq
of par”) while in many hpc libraries such as mpi, programs are written in the
spmd style and are understood as a parallel composition of communicating
sequential programs (“par of seq”).

Outline. The rest of this paper is structured as follows: first, section 2 briefly
presents the two aforementioned languages. Subsection 3.1 defines our method-
ology of comparison of the languages. We apply it to different use cases (subsec-
tions 3.2 to 3.4), hoping they are general enough to stand for a representative
sample of hpc applications. For all of them, we give some benchmarks in terms
of both performance and difficulty of writing the code. In section 4 we discuss
related work and section 5 concludes the paper by giving a brief outlook of
future work.

http://ocaml.org/

Programming bsp and multi-bsp algorithms in ml 3

2 BSML and Multi-ML: similar but different languages

2.1 Programming BSP algorithms in ML

2.1.1 The BSP bridging model

local
computations

p0 p1 p2 p3

communication

barrier
next superstep...

...
...

...
Fig. 1 A bsp superstep.

In the bsp model, a computer is a set of
p uniform pairs of processor-memory com-
ponents with a communication network. A
bsp program is executed as a sequence of
supersteps (Fig. 1), each one divided into
three successive disjointed phases: (1) each
processor only uses its local data to perform
sequential computations and to request data
transfers to other nodes; (2) the network de-
livers the requested data; (3) a global syn-

chronisation barrier occurs, making the transferred data available for the next
superstep.

The performance of the bsp computer is characterised by 4 parameters
(that we do not detail in this article). To reliably estimate the execution time
of a bsp program, these parameters could be easily benchmarked [6]. The
execution time (cost) of a superstep is the maximal of the sum of the local
processing time, the data delivery and the global synchronisation times. The
total cost of a bsp program is the sum of its supersteps’s costs.

2.1.2 The BSML language

bsml [13] uses a small set of primitives and is currently implemented as a li-
brary (http://traclifo.univ-orleans.fr/bsml/) for the ml programming language
ocaml. An important feature of bsml is its confluent semantics: whatever the
order of execution of the processors is, the final value will be the same. Con-
fluence is convenient for debugging since it allows to get an interactive loop
(toplevel). It also simplifies programming since the parallelisation can be done
incrementally from an ocaml program.

A bsml program is built as a ml one but using a specific data structure
called parallel vector. Its ml type is ’a par. A vector expresses that each of
the p processors embeds a value of any type ’a. Fig 2 summarises the bsml
primitives. Informally, they work as follows: let <<e>> be the vector holding
e everywhere (on each processor), the <<>> indicates that we enter into the
scope of a (parallel) vector. Within a vector, the syntax x can be used to
read the vector x and get the local value it contains. The ids can be accessed
with the predefined vector pid.

The proj primitive is the only way to extract local values from a vector.
Given a vector, it returns a function such that, applied to the pid of a processor,
returns the value of the vector at this processor. proj performs communication
to make local results available globally and ends the current superstep.

http://traclifo.univ-orleans.fr/bsml/

4 Victor Allombert, Frédéric Gava

Primitive Type Informal semantics
<<e>> ’a par (if e:’a) 〈e, . . . , e〉, a vector of size p the number of processors
pid int par A predefined vector: i on processor i
v ’a (if v: ’a par) vi on processor i, assumes v ≡ 〈v0, . . . , vp−1〉
proj ’a par→ (int→ ’a) 〈x0, . . . , xp−1〉 7→ (fun i→ xi)
put (int→ ’a)par→ (int→ ’a)par 〈f0, . . . , fp−1〉 7→〈(fun i→fi 0), . . . , (fun i→fi (p−1))〉

Fig. 2 Summary of the bsml primitives.

The put primitive is another communication primitive. It allows any local
value to be transferred to any other processor. It is also synchronous, and ends
the current superstep. The parameter of put is a vector that, at each processor,
holds a function returning the data to be sent to processor j when applied to j.
The result of put is another vector of functions: at a processor j the function,
when applied to i, yields the value received from processor i by processor j.

2.2 Programming Multi-BSP algorithms in ML

2.2.1 The Multi-BSP bridging model

multi-bsp is a model [23] which is adapted to hierarchical architectures,
mainly clusters of multi-cores. There exist other hierarchical models [16] but
multi-bsp describes them in a simpler way. The structure and abstraction
brought by multi-bsp allows to have portable programs with scalable perfor-
mance predictions, without dealing with low-level details of the architectures.
This model brings a tree-based view of nested components (sub-machines or
siblings) of hierarchical architectures where the lowest stages (leaves) are pro-
cessors and every other stage (node) contains memory. Fig. 3 illustrates the
difference between the bsp and multi-bsp models for a multi-core.

multi-bsp

Multi_Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

bsp

Network

th0 th1 th2 th3 th4 th5 th6 th7

Fig. 3 The difference between the multi-bsp and bsp models for a multi-core architecture.

Every component can execute code but they have to synchronise in favour
of data exchange. Thus, multi-bsp does not allow subgroup synchronisation
of any group of processors: at a stage i there is only a synchronisation of
the sub-components, a synchronisation of each of the computational units
that manage the stage i− 1. So, a node executes some code on its nested

Programming bsp and multi-bsp algorithms in ml 5

Stage i

Stage i− 1

n

n.1 n.pi

gi+1

gi

mi

Li

Fig. 4 The Multi-BSP parameters.

components (aka “children”), then waits for results, does the communication
and synchronises the sub-machine. A multi-bsp algorithm is thus composed
of several supersteps, each step is synchronised for each sub-machine.

Mainly, an instance of multi-bsp is defined by d, the fixed depth of the
(balanced and homogeneous) tree architecture, and by the 4 bsp performance
parameters (plus the memory size) for each stage i of the tree. Thus, we have
(pi, gi, Li,mi) where pi is the number of sub-components inside the i−1 stage;
gi is the bandwidth between stages i and i − 1: the ratio of the number of
operations to the number of words that can be transmitted in a second; Li is
the synchronisation cost of all sub-components of a component of i− 1 stage;
mi is the amount of memory available at stage i for each component of this
stage. The Fig 4 describes the the multi-bsp parameters.

The cost of a multi-bsp algorithm is the sum of the costs of the supersteps
of the root node, where the cost of each of these supersteps is the maximal
cost of the supersteps of the sub-components (plus communication and syn-
chronisation); And so on.

2.2.2 The Multi-ML language

multi-ml [2,3] (https://git.lacl.fr/vallombert/Multi-ML) is based on the idea
of executing bsml-like codes on every stage of a multi-bsp architecture. This
approach facilitates incremental development from bsml codes to multi-ml
ones. multi-ml follows the multi-bsp approach where the hierarchical ar-
chitecture is composed of nodes and leaves. On nodes, it is possible to build
parallel vectors, as in bsml. This parallel data structure aims to manage values
that are stored on the sub-nodes: at stage i, the code let v=<<e>> evaluates
the expression e on each i− 1 stages. Inside a parallel vector, we note #x# to
copy the value x stored at stage i to the memory i− 1.

We also introduce the concept of multi-function to recursively go through
a multi-bsp architecture. A multi-function is a particular recursive function,
defined by the keyword let multi, which is composed of two codes: the node
and the leaf codes. The recursion is initiated by calling the multi-function
(recursively) inside the scope of a parallel vector, that is to say, on the sub-
nodes. The evaluation of a multi-function starts (and ends) on the root node.

https://git.lacl.fr/vallombert/Multi-ML

6 Victor Allombert, Frédéric Gava

The code of Fig. 5 shows how a multi-function is defined. After the definition
of the multi-function mf on line 1 where [args] symbolises a set of arguments,
we define the node code (from line 2 to 6). The recursive call of the multi-
function is done on line 5, within the scope of a parallel vector. The node
code ends with a value v, which is available as a result of the recursive call
from the upper node. The leaf code, from lines 7 to 9 consists of sequential
computations.

1 let multi mf [args]=
2

∣∣ where node =
3

∣∣ ∣∣ (∗ BSML code∗)
4

∣∣ ∣∣ ...
5

∣∣ ∣∣ <<mf [args]>>
6

∣∣ ∣∣ ... in v
7

∣∣ where leaf =
8

∣∣ ∣∣ (∗ OCaml code ∗)
9

∣∣ ∣∣ ... in v

Fig. 5 A multi-function code.

As expected, the synchronous communica-
tion primitives of bsml are also available to
communicate values from/to parallel vectors.
We also propose another parallel data struc-
ture called tree. A tree is a distributed struc-
ture where a value is stored in every node
and leave memories. A tree can be built using
a multi-tree-function, using the let multi tree
keyword. We propose three primitives to han-
dle such a parallel data structure: (1) To eas-
ily construct a tree with a simple expression,

mktree e can be used; It aims to execute the expression e on each component
of the architecture, resulting in a tree; (2) The function at can be used to
access the value of a tree within a component; (3) The global identifier gid is
shaped as a tree of identifiers, and is useful, for example, to distribute data
depending on the position in the architecture.

3 Application cases

We now compare bsml and multi-ml. To do so, we have selected three typi-
cal cases of various domains: state space calculation (basis of model-checking);
implementation of the fft using algorithmic skeletons; and finally a classical
big-data problem that is computing the similarity of millions of pairs. We first
describe our methodology for the comparison and apply it to each case.

In this paper we present non optimal implementations that cannot be com-
pared to cutting-edge implementations: we neither use specific data-structures
nor domain specific tricks. For example, in the state-space algorithms, our sets
of states do not use shared possibilities of the states as modern model-checkers
do [9]. We use the standard ocaml’s sets and a naive representation of the
states. Here, our objective is to compare the languages and their performances.
Programming the most optimised implementations is not the purpose of this
work.

3.1 Methodology

bsml and multi-ml have been designed to program parallel algorithms incre-
mentally: from a sequential ocaml code to a bsp code in bsml and finally to

Programming bsp and multi-bsp algorithms in ml 7

a multi-bsp code in multi-ml. We presume that the programs will be, un-
fortunately, more and more complex. But we can expect better performance.

To measure the difficulty we have used: (a) The halstead effort (he)
which depends on both the length and complexity of the code; The halstead
difficulty (hd) considers the amount of different operators used; (b) The Mc-
Cabe cyclomatic complexity (cc) that is the number of linearly independent
paths through the source; (c) The maintainability index (mi) which depends
on he and cc.

To do so we have adapted the ocaml metrics tool (http://forge.ocamlcore.
org/projects/ocaml-metrics/) to bsml and multi-ml. We now count, as an
operand, each parallel primitive; And, as a new path, each multi function
and vector.

Benchmarks were performed on two architectures: (mirev2) 8 nodes with
2 quad-cores (amd 2376 at 2.3Ghz) with 16GB of memory per node and a
1Gbit/s network; (mirev3) 4 nodes with 2 octo-cores with 2 hyper-threads
(intel xeon E5 − 2650 at 2.6Ghz) with 64GB of memory per node and a
10Gbit/s network. We measure the speedup for different sizes of data and dif-
ferent configurations of our architectures with a variation of the number of
nodes × processors × cores × threads used. The configurations were chosen
arbitrarily, in order to compare performances with a growing number of compo-
nents with both distributed and shared memories. All the sources and data are
available in the multi-ml’s git repository. We note∞ when the program fails.

Thus, we aim to compare both the code difficulty and the difference, in
terms of performances, between bsml and multi-ml codes.

3.2 First case: symbolic computation

Our first experiment is about model-checking (mc) which is a formal method
often used to verify safety-critical systems [9]. Before verifying a logical for-
mula, one must first compute the state-space of the systems. The parallelisation
of this construction is a frequently used method in the industry [11].

1 let algo_seq succ s0 =
2

∣∣ let known=HashSet.empty
3

∣∣ and todo=HashSet.empty in
4

∣∣ HashSet.add s0 todo;
5

∣∣ while not(todo 6= ∅) do
6

∣∣ ∣∣ let t=RandChoose todo in
7

∣∣ ∣∣ HashSet.remove t todo;
8

∣∣ ∣∣ HashSet.add known t;
9

∣∣ ∣∣ update todo known (succ t);
10

∣∣ done

Fig. 6 The ocaml code for mc.

The finite state-space construction
problem consists of exploring all the
states accessible via a successor function
succ (returning a set of states) from an
initial state s0. This problem is comput-
ing and data intensive because realis-
tic systems have a tremendous amount
of scenarios. Usually, during this oper-
ation, all the explored states must be
kept in memory in order to avoid multi-
ple explorations of a same state. Fig. 6
shows the usual sequential algorithm in

ml where a set called known contains all the states that have been processed
and would finally contain the state-space. It also involves a set todo that is

http://forge.ocamlcore.org/projects/ocaml-metrics/
http://forge.ocamlcore.org/projects/ocaml-metrics/

8 Victor Allombert, Frédéric Gava

used to hold all the states whose successors have not yet been constructed; each
state t from todo is processed in turn (lines 5 to 10) and added to known (line 8)
while its successors are added to todo unless they are already known —line 9.

1 let algo_bsp succ s0 =
2

∣∣ let finish=ref false in
3

∣∣ let known=<<HashSet.empty>> in
4

∣∣ let todo=<<HashSet.empty>> in
5

∣∣ <<$todo$:=HashSet.add s0 $todo$>> ;
6

∣∣ while not(!finish) do
7

∣∣ ∣∣ let tosend=<<local_successors succ
8

∣∣ ∣∣ $this$ $known$ $todo$>>
9

∣∣ ∣∣ in exchange finish todo known tosend
10

∣∣ done

Fig. 7 The bsml code for mc.

The standard parallelisation
of this problem is based on the
idea that each process only com-
putes the successors for its own
states. The mc code written with
bsml is given in Fig. 7. To do
this incremental parallelisation,
a partition function (hashing) re-
turns, for each state, a processor
id; i.e. hash(s) returns the owner
of s. Sets known and todo are still
used but become local to each

processor and thus provide only a partial view of the ongoing computations
(lines 3−4). Initially, only state s0 is known and only its owner puts it in its
todo set (line 5). Once again, processors enlarge their own local sets of states
by applying the successor function on the received states; recursively to their
descendants until no new states are computed (line 7). Then, a synchronous
communication primitive computes and performs, for each processor, the set of
received states that are not yet locally known (line 9). To ensure termination,
we use the additional variable finish in which we test if some states have
been exchanged or not by the processors. If not, there is no need to continue
the computation (line 6).

1 let algo_multi succ s0 =
2

∣∣ let known=mktree HashSet.empty
3

∣∣ and todo =mktree HashSet.empty in
4

∣∣ let multi space toPerform =
5

∣∣ ∣∣ where node =
6

∣∣ ∣∣ ∣∣ let sendBrothers=[| Map.empty ... Map.empty |] in
7

∣∣ ∣∣ ∣∣ let sendUp=[| Map.empty ... Map.empty |] in
8

∣∣ ∣∣ ∣∣ if (isEmpty toPerform) then (sendUp,sendBrothers)
9

∣∣ ∣∣ ∣∣ else
10

∣∣ ∣∣ ∣∣ ∣∣ let finish = ref false in
11

∣∣ ∣∣ ∣∣ ∣∣ let scatt = (scatterDown toPerform mygid nbChildren) in
12

∣∣ ∣∣ ∣∣ ∣∣ while not(!finish) do
13

∣∣ ∣∣ ∣∣ ∣∣ ∣∣ let up = exchange finish <<space #scatt#>> scatt in
14

∣∣ ∣∣ ∣∣ ∣∣ ∣∣ gatherUp up sendUp sendBrothers mygid nbChildren;
15

∣∣ ∣∣ ∣∣ ∣∣ done;
16

∣∣ ∣∣ ∣∣ ∣∣ (sendUp,sendBrothers)
17

∣∣ ∣∣ where leaf =
18

∣∣ ∣∣ ∣∣ local_successors succ (at gid) nbSiblings (at known) toPerform.(at gid)
19

∣∣ in space [| ...hash(HashSet.single(s0)) ... |]

Fig. 8 The multi-ml code for mc.

Programming bsp and multi-bsp algorithms in ml 9

The main difference between the bsp and multi-bsp codes is that the
multi-bsp algorithm uses a hashing function to distribute the states on the
sub-trees. Fig. 8 summarises the multi-ml code. Each sub-tree of the multi-
bsp architecture is in charge of keeping the states it owns. Moreover, on two
different sub-trees, there could be different numbers of supersteps depending of
the verifying system: the synchronous communication primitive is performed
on different sub-trees leading to implicit sub-group synchronisations. Due to
a random strategy of walk (hashing) in the set of states, the load-balancing
is mainly preserved —with specific industrial systems, different kinds of load-
balancing strategies would be necessary for an industrial development. There
is not only communication between the siblings but also between parents and
children. Indeed, some states might not be in their right sub-trees. Thus, each
leaf only computes its own states, like in the bsp algorithm (line 18). Each
node manages the sub-trees of its children by performing exchanges between
siblings as in the bsp algorithm (line 13) but also gathers the states that are
not in the right sub-trees (line 14); It also distributes the states between the
sub-trees of its children (line 11). To perform the communications, the code
uses two arrays of sets, each of the size of the number of siblings of each level
of the multi-bsp architecture. The reader can notice that the multi-ml code
is again an incremental update of the bsml one, using the hierarchical ability
of the multi-bsp model: “same” main loop and local computations.

For our experiments, we compute the state-space of the well-known cryp-
tographic Needham-Schroeder Public-Key protocol with a standard universal
Dolev-Yao intruder residing in the network. Note that during the computa-
tion, most of the scenarios can be detected as faulty at their very beginning
using a specialised mc; But this is not the subject of this article.

Fig. 9 summarises the benchmarks. To measure the code difficulty, we take
into account the algorithm part only and not the reading of the data. We
recall that: The halstead effort (he) which depends on both the length and
complexity of the code; The halstead difficulty (hd) considers the amount of
different operators used; The McCabe cyclomatic complexity (cc) that is the
number of linearly independent paths through the source; The maintainability
index (mi) which depends on he and cc. As intended, the multi-ml code is
the more complex: by a factor of 2 compared to bsml, which is also 2 times
more complex than the ocaml code.

To measure the code performance we use the version 4.02.1 of ocaml and
mpich 3.1. We execute the codes on mirev2 and mirev3 by using different
configurations. For example, 2 × 2 × 8 × 2 means that the code is executed
on an architecture made by 2 nodes with 2 multi-cores using 8 cores with 2
threads; thus, we use 64 computing units. Using the hierarchical capacities
is not beneficial for small architectures. But when the number of cores in-
creases too much on nodes, for both mirev2 and mirev3, multi-ml exceeds
bsml. This is not surprising since more communications append between cores
without communicating through the network at every step of the algorithm.
The bsp algorithm saturates the network with a large amount of communi-
cations and thus, this congestion drastically decreases the performances. On

10 Victor Allombert, Frédéric Gava

Languages
Measures he hd cc mi

ocaml 2k 25 6 208
bsml 17k 56 15 420
multi-ml 110k 346 78 845

ocaml
{

mirev2→22m49s
mirev3→12m14s

bsml multi-ml

mirev2 2× 2× 2 3.2 3
mirev2 4× 2× 1 4.3 5.3
mirev2 8× 2× 1 5.8 12.5
mirev2 8× 2× 4 7 14.7
mirev3 2× 2× 2× 1 4 4.9
mirev3 2× 2× 4× 1 5.4 8
mirev3 2× 2× 8× 1 1.2 6.5
mirev3 2× 2× 8× 2 0.9 6.7

Fig. 9 Benchmarks (measures and speedup) of the mc of a security protocol.

the contrary, the multi-ml program focuses on communications through local
memories and communicates through the network only when necessary. Thus,
the network is less saturated and the performance is better. On a configura-
tion with many cores and physical threads but for a small number of machines,
the performance is disappointing. This is due to too much caches-misses and
ram congestion. Indeed, our current algorithms take into account the different
network capacities but not the memory sizes.

We have notice a strange behaviour when using ocaml +mpi. Indeed, the
ocaml’s runtime slows down by a factor of ' 2 when it massively allocates
memory. We suspect an overhead (or incompatibility) between the ocaml
garbage collector and the mpi’s memory allocation system.

3.3 Second case: algorithmic skeletons and a numerical application

We can observe that many parallel algorithms can be characterised and classi-
fied by their adherence to a small number of generic patterns of computation.
Skeletal programming proposes that such patterns can be abstracted and pro-
vided as a programmer’s toolkit with specifications. Thus, they can transcend
architectural variations with implementations which enhance performance [10].

A disadvantage of skeleton languages is that the only admitted parallelism
is, usually, the skeleton one, while many applications cannot be easily expressed
as instances of known skeletons. Skeleton languages must be constructed to
allow the integration of skeletal and ad-hoc parallelism [10]. In this way, having
skeletons in a more general language would combine the expression power of
collective communication patterns with the clarity of the skeleton approach.

In this work we consider the implementation of well-known data-parallel
skeletons as they are simpler to use than task-parallel ones and because they
encode many scientific computation problems and scale naturally. Even if this

Programming bsp and multi-bsp algorithms in ml 11

implementation is surely less efficient compared to a dedicated skeleton lan-
guage, the programmer can compose skeletons when it is natural for him to
do so and use a bsml or multi-ml programming style when new patterns are
needed.

The functional semantics of the considered set of data-parallel skeletons in
described in [4,10]. It can also be seen as a naive sequential implementation
using lists. The skeletons work as follows: skeleton repl creates a new list con-
taining n times element x. The map and mapidx skeletons are equivalent to
the classical single-program-multiple-data (spmd) style of parallel program-
ming, where a single program f is applied to different data, in parallel. The
scan skeleton, like the collective operation MPI_Scan, computes the partial
(prefix) sums for all list elements. A more complex data-parallel skeleton, the
distributable homomorphism (dh) presented in [4], is used to express divide-
and-conquer algorithms. dh ⊕ ⊗ l transforms a list l = [x1, · · · , xn] of size
n = 2m into a result list r = [y1, · · · , yn] of the same size, whose elements are
recursively computed as follows:

yi =

{
ui ⊕ vi if i ≤ n

2
ui−n

2
⊗ vi−n

2
otherwise

where u = dh ⊕ ⊗ [x1, . . . , xn
2
], i.e. dh applied to the left half of the input

list l and v = dh ⊕ × [xn
2 +1, . . . , xn], i.e. dh applied to the right half of l. The

dh skeleton provides the well-known butterfly pattern of computation which
can be used to implement many computations.

With appropriate ⊕ and ⊗ operators, we can get different applications [4].
We choose the fast fourier transform (fft) where a list x = [x0, . . . , xn−1]
of length n = 2m yields a list where the ith element is defined as: (FFT x)i =∑n−1
k=0 xkω

ki
n where ωn denotes the nth complex root of unity e2π

√
−1/n. The

skeletal code is:

(fft l) ≡ letΩ = scan + 1 (repl (ω n) n2)
in mapπ1 (dh⊕Ω ⊗Ω (mapidx triple l))

The code for asynchronous skeletons such as map is trivial. Using bsml:

1 let map f fl = <<(Lisp.map f) fl>>

Each processor owns a sub-part of the list. The scan code for both bsml
and multi-ml can be found in [3]: we use a logarithmic parallel reducing
algorithm for bsml and a divide-and-conquer one for multi-ml.

The code for dh in bsml looks like a reducing. The one for multi-ml is
in Fig. 10 and works as follows. We recursively split the list (lines 4− 5) from
the root node to the leaf where local_dh computes, locally, the dh skeleton.
Then we gather the temporary results and perform a local_dh on the data
(line 7). Note that these skeletons do not change the size of the “lists” so they
can be implemented using vector of arrays, that is one array per processor. It
is still a divide-and-conquer strategy and, in this case, the codes for bsml and

12 Victor Allombert, Frédéric Gava

Languages
Measures he hd cc mi

ocaml 46 62 11 304
bsml 118k 158 29 149
multi-ml 81k 139 17 607

bsml multi-ml
19 21 19 21

mirev2 2× 2× 2 4.3 3.7 2.5 2.7
mirev2 4× 2× 1 3.6 4.2 3.1 3.2
mirev2 8× 2× 1 4.2 5 4 3.8
mirev2 8× 2× 4 3.8 3.9 2.6 2.8
mirev3 2× 2× 2× 1 3.5 4.5 3.4 3.3
mirev3 2× 2× 4× 1 3.6 4.3 3.7 3.8
mirev3 2× 2× 8× 1 3.5 4.5 2.6 2.5
mirev3 4× 2× 8× 1 2.6 3.9 3.8 4.5

For ocaml:
m= 19 21

mirev2 16s 74s
mirev3 10s 41s

Fig. 11 Benchmarks (measures and speedup) of fft using skeletons.

multi-ml really differ. This is mainly due to the fact that there is no subgroup
synchronisation using bsml whereas it is natural using multi-ml.

1 let dh op1 op2 arr =
2

∣∣ let multi dh_call arr =
3

∣∣ where node =
4

∣∣ ∣∣ let v=mkpar (fun i →
5

∣∣ ∣∣ split arr nbChildren i) in
6

∣∣ ∣∣ let res=gather <<dh_call $ v $>>
7

∣∣ ∣∣ in local_dh op1 op2 res; res
8

∣∣ where leaf=local_dh op1 op2 arr; arr
9 in dh_call arr

Fig. 10 The multi-ml code for dh.

We have tested our two im-
plementations of the dh skeleton.
To measure the difficulty, we use
the implementation of the skele-
tons only. We test the fft for two
values of m, 19 and 21, leading
to 2m elements as input. We can
notice an overhead with multi-
ml on small architecture with a
small input; and thus a speedup in
favour of bsml. This is mainly due

to the fact that the multi-ml dh implementation needs to transfer the data be-
tween each memory level of the architecture. This issue was an expected draw-
back of the multi-ml algorithm. In this algorithm, the sub-synchronisation
mechanism on multi-ml is under-exploited. As the architecture grows in terms
of both machines and cores, multi-ml takes a small advantage on mirev3 as
bsml floods the network. However, the complexity of the code is in favour of
multi-ml. So there is ultimately no problem using it. The overall performance
of both implementations are disappointing but it is the best we can hope for
such a toy implementation of the fft.

Programming bsp and multi-bsp algorithms in ml 13

3.4 Third case: big-data application

Given a collection of objects, the all pairs similarity search problem (apss)
involves discovering all the pairs of objects whose similarity is above a given
threshold. It may be used to detect redundant documents, similar users in so-
cial networks, etc. Due the huge number of objects present in real-life systems
and its quadratic complexity, similarity scores are usually computed off-line.

Assuming a set of n documents of terms D = {d1, d2, · · · , dn}. Each doc-
ument d is represented as a sparse vector containing at most m terms. d[i]
denotes the number of occurrences of the ith term in the document d. The
problem is to find all pairs (x, y) of documents and their exact value of sim-
ilarity sim(x, y) =

∑m
i x[i] ∗ y[i] if the similarity is greater than a certain

threshold σ.
Different parallel algorithms have been proposed to apss [1] and some of

them deal with approximation techniques. Our work focuses on exact solutions
only and we use inverted indexes as it is now the most common technique [5]
(our ocaml code is an implementation of this kind of algorithm). For bsp-like
computing two algorithms [1] are mainly used. The first algorithm is based on
a systolic-like loop. We assume that each processor i holds a subset of doc-
uments Di. Initially, each processor i computes the similarity sim(Di, Di) of
Di’s documents with each other documents of Di. Then each subset is passed
around from processor to processor in a sequence of p/2 supersteps (exploiting
the symmetric similarity of two subsets): each processor receives a subset Dj

and calculates sim(Di, Dj) and then it sends Dj to its right-hand neighbour,
while at the same time receiving the documents from its left-hand neighbour.
If p is odd, half of the processors perform an additional exchange.

1 let algoMapReduce vectors =
2

∣∣ (∗ indexing ∗)
3

∣∣ let map1=<<merge $vectors$>> in
4

∣∣ shuffle map1;
5

∣∣ (∗ Similarity ∗)
6

∣∣ let map2=<<allPairs $map1$>> in
7

∣∣ shuffle map2;
8

∣∣ <<reduce $map2$>>

Fig. 12 The bsml code for apps.

The second algorithm is based on
two simple mapreduce [20] phases
as illustrated in Fig 12: (1) Index-
ing; for each term in the document,
each processor merges the term as
key, and a pair (d, d[t]) consisting of
document id d and weight of the term
as the value (line 3). Then the algo-
rithm handles the grouping by key
of these pairs (the shuffle, line 4); (2)

Similarity; each processor emits pairs of document ids that are in the same
group G as keys (line 6). There will be m × (m − 1)/2 exchange pairs where
m = |G| for the shuffle (line 7); Then they associate to each pair the product of
the corresponding term weights. Finally they reduce the sums of all the partial
similarity scores for a pair to generate the final similarity scores (line 8).

The multi-bsp algorithm is again an incremental improvement of the two
above bsp algorithms. It is based on the following idea (Fig 13): Initially, on
leaves, we perform a systolic-like loop to initiating the index lists and the sim-
ilarities. Then, each node selects some documents (on the sub-nodes, line 4)
that already have a similarity: these documents are thus a greater opportunity

14 Victor Allombert, Frédéric Gava

Languages
Measures he hd cc mi

ocaml 47k 38 10 203
bsml(mapreduce-like) 148k 104 26 863
bsml(systolic loop) 128k 68 19 424
multi-ml (hybrid) 250k 224 33 1100

In seconds bsml multi-ml
10M 17M 10M 17M

mirev2 2× 2× 2 ∞ ∞ ∞ ∞
mirev2 4× 2× 1 201 ∞ 190 ∞
mirev2 8× 2× 1 91 155 87 143
mirev2 8× 2× 4 38 269 31 253
mirev3 2× 2× 2× 1 ∞ ∞ ∞ ∞
mirev3 2× 2× 4× 1 ∞ ∞ 785 ∞
mirev3 2× 2× 8× 1 64 96 57 90
mirev3 2× 2× 8× 2 41 87 39 72

Fig. 14 Benchmarks of the all pairs similarity search problem (apps).

to be similar with other documents. These documents are passed around from
sibling to sibling (line 5) and are passed down to leaves as pairs as in the
mapreduce method. Now all the leaves update their similarity scores (line
7). And so on until no more documents are sending around siblings.

1 let multi apps docs =
2

∣∣ where node =
3

∣∣ ∣∣ while not(newDoc) do
4

∣∣ ∣∣ ∣∣ let down=proj <<apps (select docs)>> in
5

∣∣ ∣∣ ∣∣ systolic <<apps (#down# (at gid))>>
6

∣∣ ∣∣ done
7

∣∣ where leaf = update (at indexList) docs

Fig. 13 The multi-ml code for apps.

As before, to measure
the performances and the
difficulty of writing the
programs, we take into
account the algorithm part
only and not the reading
of the data. We use the
Twitter’s follower graph
(July 2009, 24GB file

with approximately 1.5 billion of followings) available at http://an.kaist.ac.
kr/traces/WWW2010.html as data-set. For our experiments, we take sub-parts of
the original file. A pair corresponds to the same kind of following. We do not
use any disk to store temporary results. There are 600M (resp. 1.5G) of pairs
for 10M (resp. 17M) followings. The sequential code fails on these too large
data-sets (not enough memory) so we give the execution times only. We do not
use the common pruning of documents [5]: that reduces the overall computing
time by reducing the number of documents to be compared and communicated
but that is “independent” of using parallel algorithms. Our threshold is very
low (even if it’s not realistic), thus many pairs are computed. The number of
pairs quadratically increases to the size of the data-set. The fails (∞) corre-
sponds to “out of memory” or mpi fails when too much data is exchanged (i.e.
when less nodes take part in the computation or there are too many cores in
use on a single node).

http://an.kaist.ac.kr/traces/WWW2010.html
http://an.kaist.ac.kr/traces/WWW2010.html

Programming bsp and multi-bsp algorithms in ml 15

As already seen in [1], for bsp computing, the systolic method is faster than
the mapreduce one by an important order of magnitude. This is mainly due
to a quadratic number of sending pairs. Thus, we do not give these timings.

The performances of the programs are not impressive because we use the
generic data structures of ocaml which are not optimised for pairs and thus
consumes too much memory. The losses are mainly due to a large use of the
ram. As intended, the multi-bsp code is more complex but gives better per-
formance. The gain is not spectacular: using a bsp systolic algorithm, only
one core sends data to a another core of a machine. So there are few data
exchanged in the network and there is thus not a congestion as in the mc ex-
ample. This also explains why the performances are better using mirev2 than
mirev3: there are too many memory accesses in the ram. However when using
the multi-bsp algorithm, even if the computations and the memory uses are
of the same order of magnitude as in the bsp algorithm, there is a massive use
of synchronisation of sub-machines which allow a better load-balancing. Even
if there is more (local) supersteps, each performs less computation leading to
less congestion when accessing to the ram.

We can conclude that to have efficient multi-bsp algorithms, we need to
massively exchanges data between the fastest memories. Indeed, on standard
intel or amd architectures, memories close to the physical threads (L1, L2
and L3 memories) are very fast. As a counter part, they are so small that it
is a challenge to maximise their usage. As expected, we must concentrate on
maximising data exchanges between computation units of the same memory
locality.

4 Related work

Hierarchical programming and Multi-BSP libraries. There are many
papers about the gains of mixing shared and distributed memories, e.g. mpi
and open-mp [7]. As intended, the programmer must manage the distribution
of the data for these two different models. For example, with the mc case, the
algorithm of [19] handles a specific data-structure (with locks) shared by the
threads on cores and distributes the states across the nodes using the hash
technique. We can also cite the work of [14] in which a bsp extension of C++
runs the same code on both a cluster and on multi-cores. But it is the respon-
sibility of the programmer to avoid harmful nested parallelism. This is thus
not a dedicated language working for hierarchical architectures. We can also
highlight the work of neststep [15] which is a c/java library for bsp comput-
ing, which authorises nested computations in case of a cluster of multi-cores
— but without any safety.

Distributed functional languages. Except in [17], there is a lack of
comparisons between parallel functional languages. It is difficult to compare
them since many parameters have to be taken into account: efficiency, scal-
ability, expressiveness, etc. A data-parallel extension of haskell call nepal
has been done in [8], an abstract machine is responsible for the distribution

16 Victor Allombert, Frédéric Gava

of the data over the available processors. MultiMLton [21] is a multi-core
aware runtime for standard ml, which is an extension of the mlton compiler.
It manages composable and asynchronous events using, in particular, safe-
futures. A description of other bridging models for hierarchical architectures
and other parallel languages can be found in [2]. Currently, we are not aware
of any safe and efficient functional parallel language dedicated to hierarchical
architectures.

5 Conclusion and future work

5.1 Conclusion

We have benchmarked different distributed applications using a flat bridging
model (bsp) and its hierarchical extension (multi-bsp). We used two ml-like
languages for both. We tried to compare both speedup and difficulty to write
code using different methodologies. Currently, we are not aware of similar
works in the literature. Regarding the proposed case study, the hierarchical
programs are more efficient, in general, but they are more difficult to write
as a counterpart. As expected, there are also some cases where designing and
programming a hierarchical algorithm does not yield much. Intuitively, to get a
performance gain, you have to maximise the locality (in the lowest memories of
your machine) of calculations as well as the synchronisations/communications.

Thanks to our approach, the bsp programs have been written incrementally
from the sequential ones, as well as the multi-bsp programs extend the bsp
ones. This seems to be an interesting point for software hpc development
engineering: in a project, it is possible to work by successive additions of
codes and it is not necessary to rewrite the code from scratch. However, it
still less flexible than the skeleton approach where only the patterns need
to be efficiently implemented. Nevertheless, regarding an efficient multi-bsp
algorithm, it is simpler to implement it using multi-ml code rather than in a
skeleton framework.

5.2 Future work

The next phase will be to work on the optimisation of the previous programs.
For example, how the states are kept in the memories is not optimised at all
and induces many cache-misses. Using the last parameter of the multi-bsp
model, that is the size of the memories, should leads to better algorithms.
That should also reduce the execution time for exact apss by using a cache-
conscious data layout. Our methodology also suffers from the fact that we make
the hypothesis that the algorithms are known. However, designing an efficient
bsp algorithm is harder than a sequential one. The effort is even harder for
multi-bsp even though we perform an incremental development.

In the continuity of this work, we see two interesting points: (1) Doing
programming experiments of our languages with students or users; This will

Programming bsp and multi-bsp algorithms in ml 17

allow to test if coding multi-bsp algorithms using multi-ml is really more
difficult than coding bsp algorithms with bsml and/or sequential algorithms
with ocaml; We think that designing the algorithms themselves is clearly the
most difficult part; (2) Comparing the experimental timings with the expected
cost formulae. The second author has already done this work in the context of
bsp and bsml [12]. The conclusion is that the main difficulty is finding these
cost formulae.

References

1. M. A. Alabduljalil, X. Tang, and T. Yang. Optimizing Parallel Algorithms for All Pairs
Similarity Search. In Proceedings of the Sixth ACM International Conference on Web
Search and Data Mining, WSDM ’13, pages 203–212, New York, NY, USA, 2013. ACM.

2. V. Allombert. Functional Abstraction for Programming Multi-Level Architectures: For-
malisation and Implementation. PhD thesis, Université Paris Est, Créteil, France, July
2017.

3. V. Allombert, F. Gava, and J. Tesson. Multi-ML: Programming Multi-BSP Algorithms
in ML. International Journal of Parallel Programming, 45(2):20, Apr. 2017.

4. M. H. Alt. Using Algorithmic Skeletons for Efficient Grid Computing with Predictable
Performance. PhD thesis, Münster University, 2007.

5. R. J. Bayardo, Y. Ma, and R. Srikant. Scaling Up All Pairs Similarity Search. In
Proceedings of the 16th International Conference on World Wide Web, WWW ’07,
pages 131–140, New York, NY, USA, 2017. ACM.

6. R. H. Bisseling. Parallel Scientific Computation: A Structured Approach Using BSP
and MPI. Oxford University Press, 2004.

7. F. Cappello and D. Etiemble. MPI Versus MPI+OpenMP on IBM SP for the NAS
Benchmarks. In Proceedings of the 2000 ACM/IEEE Conference on Supercomputing,
SC ’00, Washington, DC, USA, 2000. IEEE Computer Society.

8. M. M. T. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel. Nepal - Nested
Data Parallelism in Haskell. In Proceedings of the 7th International Euro-Par Con-
ference Manchester on Parallel Processing, pages 524–534, London, UK, UK, 2001.
Springer-Verlag.

9. E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of Model Checking.
Springer International Publishing, 2012.

10. M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Comput., 30(3):389–406, Mar. 2004.

11. H. Garavel, R. Mateescu, and I. Smarandache. Parallel State Space Construction for
Model-Checking. Research Report, 2001.

12. F. Gava. BSP Functional Programming: Examples of a Cost Based Methodology. In
M. Bubak, G. D. van Albada, J. Dongarra, and P. M. A. Sloot, editors, Computational
Science – ICCS 2008, pages 375–385. Springer Berlin Heidelberg, June 2008.

13. L. Gesbert, F. Gava, F. Loulergue, and F. Dabrowski. Bulk synchronous parallel ML
with exceptions. Future Generation Computer Systems, 26(3):486–490, Mar. 2010.

14. K. Hamidouche, J. Falcou, and D. Etiemble. A Framework for an Automatic Hy-
brid MPI+OpenMP Code Generation. In Proceedings of the 19th High Performance
Computing Symposia, pages 48–55, San Diego, CA, USA, 2011. Society for Computer
Simulation International.

15. C. W. Kessler. NestStep: Nested Parallelism and Virtual Shared Memory for the BSP
Model. The Journal of Supercomputing, 17(3):245–262, Nov. 2000.

16. C. Li and G. Hains. SGL: Towards a Bridging Model for Heterogeneous Hierarchical
Platforms. International Journal of Parallel Programming, 7(2):139–151, Apr. 2012.

17. H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen,
G. J. Michaelson, R. Peña, S. Priebe, Á. J. Rebón, and P. W. Trinder. Comparing
Parallel Functional Languages: Programming and Performance. Higher Order Symbolic
Computing, 16(3):203–251, Sept. 2003.

18 Victor Allombert, Frédéric Gava

18. G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski. Pregel: A System for Large-scale Graph Processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, pages 135–146, New
York, NY, USA, 2010. ACM.

19. R. T. Saad, S. Dal Zilio, and B. Berthomieu. Mixed Shared-Distributed Hash Tables
Approaches for Parallel State Space Construction. In International Symposium on
Parallel and Distributed Computing (ISPDC 2011), page 8p., Cluj-Napoca, Romania,
July 2011.

20. S. Seo, E. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. HAMA: An Efficient Matrix
Computation with the MapReduce Framework. In 2010 IEEE Second International
Conference on Cloud Computing Technology and Science (CloudCom), pages 721–726,
Nov. 2010.

21. K. C. Sivaramakrishnan, L. Ziarek, and S. Jagannathan. MultiMLton: A multicore-
aware runtime for standard ML. Journal of Functional Programming, 24(06):613–674,
2014.

22. D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about BSP.
Scientific Programming, 6(3):249–274, 1997.

23. L. G. Valiant. A Bridging Model for Multi-core Computing. J. Comput. Syst. Sci.,
77(1):154–166, Jan. 2011.

	Introduction
	BSML and Multi-ML: similar but different languages
	Application cases
	Related work
	Conclusion and future work

