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Abstract

We present a generic coordinate descent solver for the minimization of a nonsmooth convex objective
with structure. The method can deal in particular with problems with linear constraints. The imple-
mentation makes use of efficient residual updates and automatically determines which dual variables
should be duplicated. A list of basic functional atoms is pre-compiled for efficiency and a modelling
language in Python allows the user to combine them at run time. So, the algorithm can be used to solve
a large variety of problems including Lasso, sparse multinomial logistic regression, linear and quadratic
programs.

1 Introduction

Coordinate descent methods decompose a large optimization problem into a sequence of one-dimensional
optimization problems. The algorithm was first described for the minimization of quadratic functions by
Gauss and Seidel in [Sei74]. Coordinate descent methods have become unavoidable in machine learning
because they are very efficient for key problems, namely Lasso [FHHT07], logistic regression [YHL11] and
support vector machines [Pla99, SSZ13]. Moreover, the decomposition into small subproblems means that
only a small part of the data is processed at each iteration and this makes coordinate descent easily scalable
to high dimensions.

One of the main ingredients of an efficient coordinate descent solver is its ability to compute efficiently
partial derivatives of the objective function [Nes12]. In the case of least squares for instance, this involves
the definition of a vector of residuals that will be updated during the run of the algorithm. As this operation
needs to be performed at each iteration, and millions of iterations are usually needed, the residual update
and directional derivative computation must be coded in a compiled programming language.

Many coordinate descent solvers have been written in order to solve a large variety of problems. However,
most of the existing solvers can only solve problems of the type

min
x∈RN

J∑
j=1

f(Ajx− bj) +

I∑
i=1

g(x(i))

where x(i) ∈ RNi is the ith block of x,
∑I
i=1Ni = N , Aj ∈ RMj×N is a matrix and bj ∈ RMj is a vector, and

where f is a convex differentiable function and g is a convex lower-semicontinuous function whose proximal
operator is easy to compute (a.k.a. a proximal-friendly convex function). Each piece of code usually covers
only one type of function [FCH+08, PVG+11]. Moreover, even when the user has a choice of objective
function, the same function is used for every block [BP16].

In this work, we propose a generic coordinate descent method for the resolution of the convex optimization
problem

min
x∈RN

J∑
j=1

cfj fj(A
f
j x− b

f
j ) +

I∑
i=1

cgi gi(D
g
i x

(i) − bgi ) +

L∑
l=1

chl hl(A
h
l x− bhl ) . (1)
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We shall call fj , gi and hl atom functions. Each of them may be different. We will assume that fj ’s are

differentiable and convex, gi’s and hl’s are proximal-friendly convex functions. As before Afj and Ahl are

matrices of appropriate sizes, Dg
i is a multiple of the identity matrix of size Ni, b

f
j , bgi and bhl are vectors,

cfj , cgi and chl are positive real numbers.
The algorithm we implemented is described in [FB15] and can be downloaded on https://bitbucket.

org/ofercoq/cd_solver. It deals with residual updates and dual variable duplication in a generic fashion
and includes a modelling interface in Python for the definition of the optimization problem. Note that unlike
most coordinate descent implementations, it can deal with nonseparable nonsmooth objectives and linear
constraints.

2 Description of the Algorithm

2.1 General scheme

The algorithm we implemented is a coordinate descent primal-dual method developed in [FB15]. Let us

denote F (x) =
∑J
j=1 c

f
j fj(A

f
j x− b

f
j ), G(x) =

∑I
i=1 c

g
i gi(D

g
i x

(i) − bgi ), H(z) =
∑L
l=1 c

h
l hl(z

(l) − bhl ), J (i) =

{j : Ahj,i 6= 0}, I(j) = {i : Ahj,i 6= 0}, mj = |I(j)| and ρ(A) the spectral radius of matrix A. The algorithm
writes then as Algorithm 1.

Algorithm 1 Coordinate-descent primal-dual algorithm with duplicated variables

Initialization: Choose x0 ∈ RN , y0 ∈ Rnnz(Ah). Choose step sizes τ ∈ RI+ and σ ∈ RL+ such that
∀i ∈ {1, . . . I},

τi <
1

βi + ρ
(∑

j∈J (i)mjσj(Ah)>j,iA
h
j,i

) . (2)

For all i ∈ {1, . . . , I}, set w
(i)
0 =

∑
j∈J (i)(A

h)>j,i y
(j)
0 (i).

For all j ∈ {1, . . . , J}, set z
(j)
0 = 1

mj

∑
i∈I(j) y

(j)
0 (i).

Iteration k: Define:

yk+1 = proxσ,H?

(
zk +D(σ)Ahxk

)
xk+1 = proxτ,G

(
xk −D(τ)

(
∇F (xk) + 2(Ah)>yk+1 − wk

) )
.

For i = ik+1 and for each j ∈ J (ik+1), update:

x
(i)
k+1 = x

(i)
k+1

y
(j)
k+1(i) = y

(j)
k+1

w
(i)
k+1 = w

(i)
k +

∑
j∈J(i)

(Ah)>j,i (y
(j)
k+1(i)− y

(j)
k (i))

z
(j)
k+1 = z

(j)
k +

1

mj
(y

(j)
k+1(i)− y

(j)
k (i)) .

Otherwise, set x
(i′)
k+1 = x

(i′)
k , w

(i′)
k+1 = w

(i′)
k , z

(j′)
k+1 = z

(j′)
k and y

(j′)
k+1(i′) = y

(j′)
k (i′).

We will denote U1, . . . , UI the columns of the identity matrix corresponding to the blocks of x =
(x(1), . . . , x(I)), so that Uix

(i) ∈ RN and V1, . . . , VJ the columns of the identity matrix corresponding to

the blocks of Afx− bf = (Af1x− b
f
1 , . . . , A

f
Jx− b

f
J).
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2.2 Computation of partial derivatives

For simplicity of implementation, we are assuming that G is separable and the blocks of variable will follow
the block structure of G. This implies in particular that at each iteration, only ∇iF (xk) needs to be
computed.

Denote rf,xk = Afxk − bf . By the chain rule, we have

∇iF (xk) =

J∑
j=1

cfj (Af )>j,i∇fj(A
f
j xk − b

f
j ) =

∑
j∈J f (i)

cfj (Af )>j,i∇fj((r
f,x
k )j)

If rf,xk is pre-computed, only O(|J f (i)|) operations are needed.

For an efficient implementation, we will update the residuals rf,xk as follows, using the fact that only the
coordinate block ik+1 is updated:

rf,xk+1 = Afxk+1 − bf = Af
(
xk + Uik+1

(x
(ik+1)
k+1 − x(ik+1)

k )
)
− bf = rf,xk +AfUik+1

(x
(ik+1)
k+1 − x(ik+1)

k )

= rf,xk +
∑

j∈J f (ik+1)

VjA
f
j,ik+1

(x
(ik+1)
k+1 − x(ik+1)

k )

Hence, updating rf,xk+1 also requires only O(|J f (ik+1)|) iterations.

Similarly, updating the residuals rh,xk = Ahxk − bh, wk and zk can be done in O(|J (ik+1)|) operations.

2.3 Computation of proximal operators using atom functions

Another major step in the method is the computation of the ith coordinate of proxτ,G(x) for a given x ∈ RN .
As Dg is assumed to be diagonal, G is separable. Hence, by the change of variable z̄ = Dg

i x̄− b
g
i ,

(proxτ,G(x))i = arg min
x̄∈RNi

cgi gi(D
g
i x̄− b

g
i ) +

1

2τi
‖x̄− x(i)‖2

= (Dg
i )−1

(
bgi + arg min

z̄∈RNi

cgi gi(z̄) +
1

2τi
‖(Dg

i )−1(bgi + z̄)− x(i)‖2
)

= (Dg
i )−1

(
bgi + arg min

z̄∈RNi

gi(z̄) +
1

2cgi (D
g
i )2τi

‖z̄ − (Dg
i x

(i) − bgi )‖
2
)

= (Dg
i )−1

(
bgi + proxcgi (Dg

i )2τig(D
g
i x

(i) − bgi )
)

where we used the abuse of notation that Dg
i is either the scaled identity matrix or any of its diagonal

elements. This derivation shows that to compute (proxτ,G(x))i we only need linear algebra and the proximal
operator of the atom function gi.

We can similarly compute proxH. To compute proxσ,H? , we use Moreau’s formula:

proxσ,H?(z) = z −D(σ) proxσ−1,H(D(σ)−1z)

2.4 Duplication of dual variables

Algorithm 1 maintains duplicated dual variables yk ∈ Rnnz(Ah) as well as averaged dual variables zk ∈ RM

where M =
∑L
l=1Ml and Ahl,i is of size Ml×Ni. The sets J (i) for all i are given by the sparse column format

representation of Ah. Yet, for all i, we need to construct the set of indices of yk+1 that need to be updated.
This is the table dual vars to update in the code. Moreover, as H is not separable in general, in order
to compute ȳjk+1, for j ∈ J (ik+1), we need to determine the set of dual indices j′ that belong to the same
block as j with respect to the block decomposition of H. This is the purpose of the tables inv blocks h

and blocks h.
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3 Code structure

def find_dual_variables_to_update

Class Problem

cdef compute_primal_value

cdef compute_smoothed_gap

cdef one_step_coordinate_descent

def coordinate_descent

cdef val_conj_not_implemented

cdef <atom_function>

cd_solver.pyx

atoms.pyx

1 call

1 call per 
print

1 call each n iterations

Many calls

May call

helpers.pyx

algorithms.pyx

cdef string_to_func

A few calls cdef prox_conj

May call

Figure 1: Code structure

The code is organized in seven files. The main file is cd solver.pyx. It contains the Python callable
and the data structure for the problem definition. The other files are atoms.pyx/pxd, algorithm.pyx/pxd,
and helpers.pyx/pxd. They contain the definition of the atom functions, the algorithms and functions for
computing objective value respectively. In Figure 1, we show in which function each subfunction is used. The
user needs to call the Python class Problem and the Python function coordinate descent. Atom functions
can be added by the user without modifying the main algorithm.

All tables are defined using Numpy’s array constructor in the coordinate descent function. The main
loop of coordinate descent and the atom functions are pre-compiled for efficiency.

4 Atom functions

The code allows us to define atom functions independently of the coordinate descent algorithm. As an
example, we provide in Figure 2 the code for the square function atom.

As inputs, it gets x (an array of numbers which is the point where the operation takes place), buff (the
buffer for vectorial outputs), nb coord (is the size of x), mode, prox param and prox param2 (numbers which
is needed when computing the proximal operator). The input mode can be:

• GRAD in order to compute the gradient.
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cdef DOUBLE square(DOUBLE[:] x, DOUBLE[:] buff, int nb_coord, MODE mode,

DOUBLE prox_param, DOUBLE prox_param2) nogil:

# Function x -> x**2

cdef int i

cdef DOUBLE val = 0.

if mode == GRAD:

for i in range(nb_coord):

buff[i] = 2. * x[i]

return buff[0]

elif mode == PROX:

for i in range(nb_coord):

buff[i] = x[i] / (1. + 2. * prox_param)

return buff[0]

elif mode == PROX_CONJ:

return prox_conj(square, x, buff, nb_coord, prox_param, prox_param2)

elif mode == LIPSCHITZ:

buff[0] = 2.

return buff[0]

elif mode == VAL_CONJ:

return val_conj_not_implemented(square, x, buff, nb_coord)

else: # mode == VAL

for i in range(nb_coord):

val += x[i] * x[i]

return val

Figure 2: Code for the square function atom

• PROX to compute the proximal operator.

• PROX CONJ uses Moreau’s formula to compute the proximal operator of the conjugate function.

• LIPSCHITZ to return the Lipschitz constant of the gradient.

• VAL CONJ to return the value of the conjugate function. As this mode is used only by compute smoothed gap

for printing purposes, its implementation is optional and can be approximated using the helper function
val conj not implemented.

• VAL to return the value of the function.

Some functions naturally require multi-dimensional inputs, like ‖·‖2 or the log-sum-exp function. For
consistency, we define all the atoms with multi-dimensional inputs: for an atom function f0 : R → R, we
extend it to an atom function f : RNi → R by f(x) =

∑Ni

l=1 f0(xl).
For efficiency purposes, we are bypassing the square atom function when computing a gradient and

implemented it directly in the algorithm.

5 Modelling language

In order to use the code in all its generality, we defined a modelling language that can be used to define the
optimization problem we want to solve (1).

The user defines a problem using the class Problem. Its arguments can be:

• N the number of variables, blocks the blocks of coordinates coded in the same fashion as the indptr
index of sparse matrices (default [0, 1, . . . , N]), x init the initial primal point (default 0) and y init

the initial duplicated dual variable (default 0)
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• Lists of strings f, g and h that code for the atom functions used. The function string to func is
responsible for linking the atom function that corresponds to the string. Our convention is that the
string code is exactly the name of the function in atoms.pyx. The size of the input of each atom
function is defined in blocks f, blocks and blocks h. The function strings f, g or h may be absent,
which means that the function does not appear in the problem to solve.

• Arrays and matrices cf, Af, bf, cg, Dg, bg, ch, Ah, bh. The class initiator transforms matrices into the
sparse column format and checks whether Dg is diagonal.

6 Extensions

6.1 Non-uniform probabilities

We added the following feature for an improved efficiency. Under the argument sampling=’kink half’, the
algorithms periodically detects the set of blocks Ikink such that i ∈ Ikink if x(i) is at a kink of gi. Then, block
i is selected with probability law

P(ik+1 = i) =


1
n if |Ikink| = n
1

2n if |Ikink| < n and i ∈ Ikink

1
2n + 1

2(n−|Ikink|) if |Ikink| < n and i 6∈ Ikink

The rationale for this probability law is that blocks at kinks are likely to incur no move when we try to
update them. We thus put more computational power for non-kinks. On the other hand, we still keep an
update probability weight of at least 1

2n for each block, so even in unfavourable cases, we should not observe
too much degradation in the performance as compared to the uniform law.

6.2 Acceleration

We also coded accelerated coordinate descent [FR15], as well as its restarted [FQ18] and primal-dual [ADFC17]
variants.

The accelerated algorithms improve the worst case guarantee as follows:

h = 0 h 6= 0

Alg. 1 O(1/k) O(1/
√
k)

APPROX / SMART-CD O(1/k2) O(1/k)

Table 1: Convergence speed of the algorithms implemented

However, accelerated algorithms do not take profit of regularity properties of the objective like strong
convexity. Hence, they are not guaranteed to be faster, even though restart may help.

6.3 Variable screening

The code includes the Gap Safe screening method presented in [Ndi18]. Note that the method has been

studied only for the case where h = 0. Given a non-differentiability point x
(i)
? of the function gi where the

subdifferential ∂gi(x
(i)
? ) has a non-empty interior, a test is derived to check whether x

(i)
? is the ith variable

of an optimal solution. If this is the case, one can set x(i) = x
(i)
? and stop updating this variable. This may

lead to a huge speed up in some cases. As the test relies on the computation of the duality gap, which has
a nonnegligible cost, it is only performed from time to time.
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Lasso
Pure Python 308.76s
cd solver 0.43s
Scikit learn Lasso 0.11s

SVM
Pure Python 126.24s
cd solver 0.31s
Liblinear SVM 0.13s

Table 2: Comparison of our code with a pure Python code and reference implementations for performing 100n
coordinate descent iterations for the Lasso problem on the Leukemia dataset with regularization parameter
λ = 0.1‖(Af )>bf‖∞, and for 10n coordinate descent iterations for the dual SVM problem on the RCV1
dataset with penalty parameter C = 10.

7 Numerical validation

7.1 Performance

In order to evaluate the performance of the implementation, we compare our implementation with a pure
Python coordinate descent solver and code written for specific problems: Scikit learn’s Lasso solver and
Liblinear’s SVM solver. We run the code on an Intel Xeon CPU at 3.07GHz.

We can see on Table 2 that our code is hundreds of times faster than the pure Python code. This is
due to the compiled nature of our code, that does not suffer from the huge number of iterations required
by coordinate descent. On the other hand, our code is about 4 times slower than state-of-the-art coordinate
descent implementations designed for a specific problem. We can see it in both examples we chose. This
overhead is the price of genericity.

We believe that, except for critical applications like Lasso or SVM, a 4 times speed-up does not justify
writing a new code from scratch, since a separate piece of code for each problem makes it difficult to maintain
and to improve with future algorithmic advances.

7.2 Genericity

We tested our algorithm on the following problems:

• Lasso problem

min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1

• Binomial logistic regression

min
x∈Rn

m∑
i=1

log(1 + exp(bi(Ax)i)) +
λ

2
‖x‖22

where bi ∈ {−1, 1} for all i.

• Sparse binomial logistic regression

min
x∈Rn

m∑
i=1

log(1 + exp(bi(Ax)i)) + λ‖x‖1

• Dual SVM without intercept

min
x∈Rn

1

2α
‖A>D(b)x‖22 − e>x+ ι[0,1]n(x)

where ι[0,1]n is the convex indicator function of the set [0, 1]n and encodes the constraint x ∈ [0, 1]n.
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• Dual SVM with intercept

min
x∈Rn

1

2α
‖A>D(b)x‖22 − e>x+ ι[0,1](x) + ι{0}(b

>x)

• Linearly constrained quadratic program

min
x∈Rn

1

2
‖(Af )>x− bf‖22 + ι{0}(A

hx− bh)

• Linear program
min
x∈Rn

c>x+ ιRn
+

(x) + ιRm
−

(Ax− b)

• TV-regularized regression

min
x∈Rn1n2n3

1

2
‖Ax− b‖22 + α‖Dx‖2,1

where D is the discrete gradient operator and ‖y‖2,1 =
∑
i,j,k

√∑3
l=1 y

2
i,j,k,l.

• Sparse multinomial logistic regression

min
x∈Rn×q

m∑
i=1

log
( q∑
j=1

exp
( n∑
l=1

Ai,lxl,j
))

+

n∑
i=1

q∑
j=1

xi,jbi,j +

n∑
l=1

√√√√ q∑
j=1

x2
l,j

where bi,j ∈ {0, 1} for all i, j.

This list demonstrates the ability of the method to deal with differentiable functions, separable or non-
separable nondifferentiable functions, as well as use several types of atom function in a single problem.
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