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1 Problem description

The generalized traveling salesman problem with time windows (GTSPTW) can be defined
as follows. Let G = (V ,A) be a directed graph, where the set of vertices V = {0, 1, ..., N}
is partitioned to C0 = {0}, C1, ..., CK clusters. K = {0, 1, ..., K} denotes the cluster index
set. Cluster C0 contains only the depot. Arcs are only defined between vertices belonging to
different clusters, that is, A = {(i, j) : i ∈ Ck, j ∈ Cl, k 6= l}. Each arc (i, j) ∈ A is associated
with a traveling cost Cij and time Tij . Each vertex is associated with a time window (TW)
[Ei, Li] with [E0, L0] = [0, T ]. A visit can only be made to a vertex during its TW. The objective
of the GTSPTW is to find a minimum cost tour starting and ending at the depot such that
each cluster is visited exactly once and time constraints are respected. Three variables are
introduced: binaries yi and xij represent if vertex i and arc (i, j) are chosen or not in the tour;
real variable ti is the arrival time at vertex i. The GTSPTW can be modeled as follows.

min
∑

(i,j)∈A
Cijxij (1)

s.t.
∑
i∈Ck

yi = 1 k ∈ {0, 1, ..., K}, (2)

∑
(i,j)∈δ+(i)

xij =
∑

(j,i)∈δ−(i)
xji = yi ∀i ∈ V , (3)

Eiyi ≤ ti ≤ Liyi ∀i ∈ V , (4)
ti − tj + Tijxij ≤ Liyi − Ejyj − (Li − Ej)xij ∀(i, j) ∈ A, j 6= 0, (5)
ti + Ti0xi0 ≤ L0 ∀i ∈ V \ {0}, (6)
yi ∈ {0, 1} ∀i ∈ V , (7)
xij ∈ {0, 1} ∀(i, j) ∈ A. (8)

The objective function (1) minimizes the overall costs. Constraints (2) ensure that exactly
one vertex from each cluster is visited. Constraints (3) are flow conservation constraints.
Constraints (4) ensure that a vertex is visited during its TW. Constraints (5) ensure that
the arrival and traveling time are consistent, meanwhile eliminating subtours. Constraints (7)
and (8) are variable definitions.

The GTSPTW reduces to the well-known Generalized Traveling Salesman Problem [1] when
TWs are not considered. For the multi-vehicle case, the problem is named Generalized Vehicle
Routing Problem with TWs [2].



2 Methodology

2.1 Polynomial families of valid inequalities for GTSPTW
• Arc orientation inequality. xij + xji ≤ yi i, j ∈ V , i 6= j.

In any feasible solution either (i, j) or (j, i) is used, but not both.

• Arc-or-vertex inequality. xij +
∑
h∈Cij

k
yh ≤ 1 i, j ∈ V , i 6= j, k ∈ K \ {0},

where Cijk = {h ∈ Ck|Eh + SPhi + Tij > Lj or Eh + SPhi > Li, Ei + Tij + SPjh > Lh or
Ej + SPjh > Lh}.
SPij represents the shortest traveling time from vertex i to vertex j. When the triangle
inequality is not satisfied, the shortest path to go from i to j can include the visit of
other vertices. These constraints detect if a vertex and an arc can not be simultaneously
selected in a feasible solution due to TWs.

2.2 Exponential families of valid inequalities for the GTSPTW
• Generalized subtour elimination inequality (GSEC).∑

(i,j)∈δ+(S) xij ≥ 1 ∀S = ∪h∈HCh, H ⊂ K, 2 ≤ |H| ≤ K − 1.

GSEC avoids tours visiting a subset of clusters.

• Clique inequality.
∑
i∈S yi ≤ |S| − 1, S ⊂ V .

If no feasible path passing through all the vertices of set S ⊂ V exists (due to TWs),
then the vertices of S that can be visited in any feasible solution are less than its size .

2.3 A branch-and-cut scheme
We develop a branch-and-cut algorithm for the GTSPTW. We include at the root node of
the branch and bound tree all the inequalities defined in Section 2.1. On the other side, due
to their exponential cardinality, we separate the GSEC inequalities using a classical approach
based on the resolution of a max-flow problem using Gomory-Hu algorithm.

Clique inequalities on subsets S of V with cardinality up to 3 are directly introduced at the
root node of the branch and bound tree. In addition, clique inequalities on subsets S of V with
cardinality of 4 are dynamically added whenever a fractional solution violates one of them.

Please note that GSECs and clique inequality are satisfied for any feasible integer solution
of the GTSPTW and they are not problem defining. However, they are helpful to improve the
linear relaxation lower bound during the branch and bound algorithm.

3 Conclusions and perspectives
The branch-and-cut algorithm is tested on the instances we propose for the GTSPTW created
from instances for the GTSP. Instances with up to 16 clusters with 76 nodes can be solved to
optimality. Undergoing work is on the development of heuristic algorithms to obtain initial
feasible solutions. Meanwhile new families of cuts based on infeasibility detection are under
development.
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