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Abstract

One of the main open problems in the theory of multi-category margin classification is the

form of the optimal dependency of a guaranteed risk on the number C of categories, the sample

size m and the margin parameter γ. From a practical point of view, the theoretical analysis of

generalization performance contributes to the development of new learning algorithms. In this

paper, we focus only on the theoretical aspect of the question posed. More precisely, under

minimal learnability assumptions, we derive a new risk bound for multi-category margin classi-

fiers. We improve the dependency on C over the state of the art when the margin loss function

considered satisfies the Lipschitz condition. We start with the basic supremum inequality that

involves a Rademacher complexity as a capacity measure. This capacity measure is then linked

to the metric entropy through the chaining method. In this context, our improvement is based

on the introduction of a new combinatorial metric entropy bound.

1 Introduction

Although the theory of binary pattern classification is well established [1, 2], the theory of multi-

category classification is far from being complete. The research in this case addresses problems

such as the sample-complexity analysis of empirical risk minimization algorithms [3], or consistency

analysis of multi-class loss functions and of specific families of classifiers [4]. Another open question

is the optimal dependency of guaranteed risks of multi-category classifiers on the number C of

categories and the sample size m. It is all the more the case for the problems that involve a large

number of classes. When the considered classifiers are margin ones that take decision based on

a score per category, the dependency on the margin parameter γ also becomes relevant to the

characterization of their generalization performance. If this question has been mainly studied for

specific families of classifiers, be it k-nearest neighbors [5], kernel methods [6, 7] and decision trees

[8], tackling it under minimal learnability assumptions remains a challenging task. This paper

focuses on obtaining guaranteed risks under such assumptions.
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The first step in the derivation of risk bounds is the choice of the margin loss function. Two

families of margin loss functions can be distinguished: indicator margin loss functions and those

that satisfy the Lipschitz condition. Deriving guaranteed risks with the optimal dependency on

the parameters of interest is relatively straightforward in the first case [9]. The family of Lipschitz

continuous loss functions, on the other hand, offers a richer setting to this task. In this case, one

can obtain a guaranteed risk whose control term involves a Rademacher complexity [10]. Then a

sequence of transitions between capacity measures is performed. More precisely, using the chaining

method one can control the Rademacher complexity of a function class through the sum of its metric

entropies [11]. A combinatorial bound is then used to estimate the metric entropy of the class in

terms of its combinatorial dimension. In this sequence of transitions, one can choose the capacity

measure at the level of which to reduce the multi-class problem to an ensemble of bi-class ones,

that is, to perform a decomposition. Performing a decomposition for Rademacher complexity, a

linear dependency on C was obtained in [8]. This dependency has been improved to a sublinear

one in [9] by postponing the decomposition to the level of metric entropy.

In this paper, we exactly follow the pathway of [9]. Our contribution is based on the following

line of reasoning. Theorem 7 of [9] provides a sublinear (but still close to linear) dependency on C

using a decomposition result for metric entropies (Lemma 1 of [9]) in Lp-norm with p = 2 and the

combinatorial metric entropy bound of [12]. On the other hand, using the decomposition result

with p = ∞ and the L∞-norm metric entropy bound of [13], one can obtain a radical dependency

on C, this, however, at the expense of a degraded dependency on m. Hence, we consider the values

of p in between these two extreme ones, and extend the L2-norm bound of [12] to Lp-norms with

integer p > 2. When applied in the chaining, it results in an improved dependency on C over that

of Theorem 7 of [9]. Specifically, we obtain a radical dependency on C (up to logarithmic factors)

without worsening the dependencies on m and γ.

The organization of the paper is as follows. In the next section, we introduce the theoretical

framework and describe the transitions between the capacity measures. Then, Section 3 gives

the new combinatorial metric entropy bound, whose proof can be found in A. In Section 4, we

demonstrate how this result can be applied in the chaining to derive an improved upper bound on

the Rademacher complexity. Conclusions and ongoing research are highlighted in Section 5. All

intermediate results used in the proofs are collected in B.

Notation We denote the set of strictly positive reals by R+, and let N∗ = N \ {0}. [[ i, j ]] stands
for the set of integers from i to j. 1A stands for the indicator function for the event A such that

1A = 1 if A occurs, and 0 otherwise. ⌊x⌋ is the greatest integer less than or equal to x, ⌈x⌉ is the

smallest integer greater than or equal to x.
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2 Theoretical Framework

We consider C-category pattern classification problems with C > 3. Each object is represented

by its description x ∈ X and the categories y belong to Y = [[ 1, C ]]. We assume that (X ,AX )

and (Y,AY) are measurable spaces. Denote by AX ⊗ AY the product sigma-algebra on X × Y.
We assume that the link between descriptions and categories can be characterized by an unknown

probability measure P on the measurable space (X × Y,AX ⊗AY). Let Z = (X,Y ) be a random

pair with values in Z = X × Y, distributed according to P . The available information on P is

limited to an m-sample Zm = (Zi)16i6m = ((Xi, Yi))16i6m distributed according to Pm. In the

following, we distinguish the sample size m from the generic notation n which stands for a number

of points in a set that needs not be a realization of a random sample.

We consider multi-category margin classifiers that take their decisions based on a score per

category and focus on those that implement classes of functions with values in a hypercube of

R
C (thus, in contrast to [7], no correlation assumption is made on the component functions).

Most well-known classifiers, such as neural networks [14], support vector machines [4], and nearest

neighbors [5] are margin classifiers.

Definition 1 (Multi-category margin classifiers). Let G =
∏C

k=1 Gk be a class of functions from

X into [−MG ,MG ]
C

with MG ∈ [1,+∞). For each g = (gk)16k6C ∈ G, drg is a multi-category

margin classifier such that for all x ∈ X , drg(x) = argmax16k6C gk(x), breaking ties with a dummy

category ∗.

To sidestep the complications that might arise from the measurability of a supremum of an

uncountable set, we assume that the classes Gk, and in general, all sets of functions considered in

the sequel satisfy the “image admissibility Suslin” condition [15, page 101].

The classification performance of margin classifiers can be characterized based on the following

functions.

Definition 2 (Class FG of margin functions). Let G be as in Definition 1. For any g ∈ G, the
margin function fg : Z → [−MG ,MG ] is

∀(x, k) ∈ Z, fg (x, k) =
1

2

(

gk (x)−max
l 6=k

gl (x)

)

.

Then, we define FG = {fg : g ∈ G} .

Given g ∈ G, drg misclassifies (x, y) if drg(x) 6= y, or equivalently, if fg (x, y) 6 0. The goal of

the learning process is to minimize the probability of error or risk over G.

Definition 3 (Risk L). Let G be as in Definition 1. Let φ be the standard indicator loss function

defined as

∀t ∈ R, φ(t) = 1{t60}.
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For any g ∈ G, its risk L(g) is

L(g) = EZ [φ (fg (Z))] = P (drg(X) 6= Y ) .

To make use of the values of functions fg (and not just of their signs) in the assessment of the

classification performance, we appeal to the following margin loss function.

Definition 4 (Parameterized truncated hinge loss function φγ). For any γ ∈ (0, 1], the parame-

terized truncated hinge loss function φγ is defined as

∀t ∈ R, φγ(t) = 1{t60} +

(

1− t

γ

)

1{t∈(0,γ]}.

It is clear from the definition that φγ dominates the standard indicator loss function given in

Definition 3 and that it is Lipschitz continuous. Observe that when this loss function is applied to

fg, the values of the latter strictly above γ and below zero become irrelevant to the estimation of the

classification accuracy. Taking benefit from this fact, we introduce functions fg,γ by restricting the

codomain of fg to [0, γ] for all g ∈ G. In [8], a partial restriction is the main source of improvement

upon the result of [10] in terms of the dependency on C. The use of the set of functions fg,γ leads

to even a finer bound, this time in terms of the diameter of the function class as we switch from

2MG to γ.

Definition 5 (Class FG,γ of truncated margin functions). Let FG be a class of functions satisfying

Definition 2. Fix γ ∈ (0, 1]. For any fg ∈ FG, we define fg,γ : Z → [0, γ] as

∀(x, k) ∈ Z, fg,γ (x, k) = max(0,min (γ, fg (x, k))) ,

and FG,γ = {fg,γ : g ∈ G}.

For any g ∈ G, its risk, L(g) can be upper bounded by the margin risk Lγ(g) obtained on the

basis of the loss function φγ . It is the m-sample Zm based estimate of Lγ that appears in our

guaranteed risk.

Definition 6 (Margin risk Lγ and empirical margin risk Lγ,m). Let G be a class of functions

satisfying Definition 1. Let φγ be as in Definition 4. Then, for γ ∈ (0, 1], the margin risk Lγ

associated with any g ∈ G is

Lγ(g) = EZ [φγ (fg,γ (Z))] .

Its m-sample Zm based estimate is the empirical margin risk defined as

Lγ,m(g) =
1

m

m
∑

i=1

φγ (fg,γ (Zi)) .

In what follows, we give the definitions of the capacity measures we use and outline the transi-

tions between them, which are at the basis of the derivation of our result. We use F to denote a

uniformly bounded class of functions on a generic measurable space (T ,AT ). First, we recall the

definition of the Rademacher complexity.

4



Definition 7 (Rademacher complexity). Let PT be a probability measure on (T ,AT ) and Tn =

(Ti)16i6n a sequence of independently distributed according to PT random variables with values in

T . Let σn = (σi)16i6n be a Rademacher sequence, i.e.,a sequence of independent random variables

uniformly distributed in {−1,+1}. Then, the empirical Rademacher complexity of F given Tn is

defined as

R̂n (F) = Eσn

[

sup
f∈F

1

n

n
∑

i=1

σif (Ti)

∣

∣

∣

∣

∣

Tn

]

and its Rademacher complexity is Rn (F) = ETn

[

R̂n (F)
]

.

The capacity measures central in the derivation of our result are covering/packing numbers.

Their definitions require the introduction of the following empirical pseudo-metrics: for any f, f ′ ∈
F and tn = (ti)16i6n ∈ T n,

dp,tn(f, f
′) =











(

1
n

∑n
i=1 |f(ti)− f ′(ti)|p

)
1
p , if p ∈ [1,+∞)

max16i6n |f(ti)− f ′(ti)| , if p = +∞.

Definition 8 (Covering numbers, metric entropy, packing numbers). The Lp-norm ǫ-covering

number of F , N (ǫ,F , dp,tn), is the smallest cardinality of the ǫ-nets of F , i.e., subsets F̄ ⊆ F
such that ∀f ∈ F there exists f̄ ∈ F̄ such that dp,tn(f, f̄) < ǫ. The logarithm of N (ǫ,F , dp,tn)
is the metric entropy of F . A subset F̄ of F is ǫ-separated with respect to dp,tn if, for any two

distinct elements f, f ′ ∈ F̄ , dp,tn(f, f
′) > ǫ. The ǫ-packing number of F , M (ǫ,F , dp,tn), is the

maximal cardinality of its ǫ-separated subsets. The uniform covering and packing numbers are

Np (ǫ,F , n) = sup
tn∈T n

N (ǫ,F , dp,tn)

and

Mp (ǫ,F , n) = sup
tn∈T n

M (ǫ,F , dp,tn) ,

respectively.

The capacity measures appearing last in our bounds are combinatorial dimensions. They pro-

vide useful information about whether the class of interest uniformly satisfies the classical limit

theorems [16].

Definition 9 (Fat-shattering dimension [17], strong dimension [13]). For γ ∈ R+, a subset S =

{ti : 1 6 i 6 n} of T is said to be γ-shattered by F if there is a function v : S → R such that, for

every vector sn = (si)16i6n ∈ {−1, 1}n, there is a function fsn ∈ F satisfying

∀i ∈ [[ 1, n ]] , si (fsn (ti)− v (ti)) > γ.

The fat-shattering dimension of F at scale γ, γ-dim (F), is the maximal cardinality of a subset

of T γ-shattered by F , if such a maximum exists. Otherwise, γ-dim (F) = ∞. For a class F of

integer valued functions, the notion of strong dimension, S-dim (F), is obtained from the definition

of the fat-shattering dimension by setting γ = 1 and restricting the co-domain of v to Z.
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As in [9, 18, 19], we make the hypothesis that the fat-shattering dimensions of the classes Gk,

γ-dim (Gk), grow no faster than polynomially with γ−1.

Hypothesis 1. Let G be a class of functions satisfying Definition 1. We assume that there exists

a pair (KG , dG) ∈ R
2
+ such that

∀ǫ ∈ (0,MG ] , max
16k6C

ǫ-dim (Gk) 6 KGǫ
−dG .

Among the well-known examples of classifiers that satisfy such an assumption are support vector

machines with dG = 2 (Theorem 4.6 in [20]) and feedforward neural networks with dG = 2l for l

layers (Corollary 27 in [2]). It should be noted that Lipschitz classifiers, such as nearest neighbours

also satisfy this assumption as demonstrated by Corollary 4 in [21]. Depending on the growth rate

dG , our assumptions regarding the data are summarized in Table 1.

Table 1: Assumptions made on the sample size m and the number of categories C with respect to

the growth rate dG of the fat-shattering dimensions in Hypothesis 1.

Growth rate Assumptions

dG 6 2 m > C > 4

dG > 2 m > C1.2, C > 4

Our starting point is the following basic supremum inequality that bounds the risk by the

empirical margin risk plus a control term based on a Rademacher complexity.

Theorem 1 (Theorem 5 in [9]). Let G be a class of functions satisfying Definition 1. For γ ∈ (0, 1],

let FG,γ be the class of functions deduced from G according to Definition 2. For fixed γ ∈ (0, 1] and

δ ∈ (0, 1), with Pm probability at least 1− δ,

∀g ∈ G, L(g) 6 Lγ,m(g) +
2

γ
Rm (Fg,γ) +

√

ln(1δ )

2m
.

We perform the following sequence of transitions between the capacity measures to derive our

result. First, we relate the empirical Rademacher complexity of FG,γ to its metric entropy through

the chaining method (see [11]). More precisely, we use the following formulation of the chaining

bound due to [9]:

R̂m (FG,γ) 6 h(N) + 2

N
∑

j=1

(h(j) + h(j − 1))

√

lnN (h(j),FG,γ , d2,zm)

m
, (1)

where N ∈ N
∗ and h : N → R+ is a decreasing function satifying h(0) > γ. Next, using Lemma 1

in [9], we decompose the metric entropy of FG,γ in terms of the ones of the classes Gk:

∀p ∈ [1,+∞] , lnN (ǫ,FG,γ , dp,zm) 6

C
∑

k=1

lnN
( ǫ

C1/p
,Gk, dp,xm

)

, (2)

where xm = (xi)16i6m ∈ Xm. Finally, our combinatorial bound derived below gives an estimate

on the metric entropies of the classes Gk in terms of their fat-shattering dimensions.
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3 Lp-norm Combinatorial Metric Entropy Bound

We extend the L2-norm metric entropy bound of [12] to Lp-norms with p ∈ N
∗ \ {1, 2}. The

bound of [12] does not depend on the sample size thanks to the use of the probabilistic extraction

principle. In our extension we derive two bounds. In one of them, we keep the dependency on the

sample size, and in the other, we remove it using the Lp-norm generalization of the aforementioned

principle. Under Hypothesis 1, depending on the value of dG , the application of one or the other

bound in the chaining allows us to optimize the dependency on C while not degrading the ones on

m and γ, as will be seen in Section 4.

Specifically, we have the following Lp-norm metric entropy bounds, whose proof is given in A.

Theorem 2. Let F be a class of functions from T into [−MF ,MF ] with MF ∈ [1,+∞). For

ǫ ∈ (0,MF ], let d (ǫ) = ǫ-dim (F). For all values of p ∈ N
∗ \ {1, 2} and ǫ ∈ (0,MF ],

(a) if n > d
(

ǫ
15p

)

, then

lnNp (ǫ,F , n) 6 2d

(

ǫ

15p

)

ln





15epnMF

d
(

ǫ
15p

)

ǫ



 ;

(b) if n > d
(

ǫ
37p

)

, then

lnNp (ǫ,F , n) 6 10p d

(

ǫ

36p

)

ln

(

7p
1
7MF

ǫ

)

.

From (2) one can see that, based on C
1
p = 2(

1
p
log2(C)), the dependency on C in the scale of

covering numbers can be eliminated for all p > log2(C). The combination of the decomposition

formula (2) with Theorem 2 using p = ⌈log2(C)⌉ for C > 4 yields the following result.

Corollary 1. Let G be a class of functions as in Definition 1. For γ ∈ (0, 1], let FG,γ be

the class of functions deduced from G according to Definition 5. For ǫ ∈ (0,MG ], let d (ǫ) =

max16k6C ǫ-dim (Gk). Then, for ǫ ∈ (0, γ] and C > 4,

lnNp (ǫ,FG,γ ,m) 6 2Cd

(

ǫ

30 log2(2C)

)

ln

(

30en log2 (2C)MG

ǫ

)

, (3)

and

lnNp (ǫ,FG,γ,m) 6 10C log2 (2C) d

(

ǫ

72 log2(2C)

)

ln

(

14 log
1
7

2 (2C)MG

ǫ

)

. (4)

Proof. Inequality (3) follows from the application of (2) and part (a) of Theorem 2 (where we drop

d(ǫ) from the denominator inside the logarithm as it is greater than one), along with the fact that

C1/⌈log2(C)⌉ < 2 and ⌈log2(C)⌉ < log2(2C). We obtain Inequality (4) in a similar way using part

(b) of Theorem 2 instead.
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4 Bound on the Rademacher complexity

As it was noted in [18], under Hypothesis 1, the growth rate of the fat-shattering dimension has a

dramatic effect on the behavior of the Rademacher complexity of the function class. The availability

of two kinds of metric entropy bounds allows us to adapt to this impact in the chaining so as to

optimize the dependency on C without worsening those on m and γ. Under the aforementioned

hypothesis, two cases can be distinguished. For dG ∈ (0, 2), the formula (1) can be upper bounded

by an integral and the use of the dimension-free bound (4) leads to the optimized result. For

dG > 2, such a result is obtained from the application of (3) in (1). The second case can also

be characterized by the fact that there is a freedom in the choice of the number N of steps to

construct the chaining. To optimize this construction when dG > 2, we make the non-restrictive

assumption that m is greater than a small power of C.

Theorem 3. Let G be a class of functions as in Definition 1. For γ ∈ (0, 1], let FG,γ be the class of

functions deduced from G according to Definition 2. Then, under Hypothesis 1, there is a function

K (γ, dG ,KG) such that for all C > 4,

Rm (FG,γ) 6K (γ, dG ,KG)

√

C

m

×



































(ln(C))
dG
2

+ 1
2 , if 0 < dG < 2,

ln(C) ln
(m

C

)

ln
1
2

(

m ln
2
3 (C)

C
1
3

)

, if dG = 2,

m
1
2
− 1

dG (ln(C))2−
dG
2 ln

1
2

(

m
1+ 1

dG

ln(C)

)

, if dG > 2 and m > C1.2.

Compared to Theorem 7 of [9], one can see that in all three cases, the dependency on C is

improved: the powers of C are replaced by powers of ln(C) without losing in the dependencies on

m and γ. It is interesting to note that, in the third case, when dG > 4, which is true for instance

for feedforward neural networks (see Corollary 27 in [2]), the dependency on C is slightly better

than radical. This is, however, at the cost of the constant factor ddG

G .

Proof of Theorem 3. For all j ∈ N, we set h(j) = γ2−α(dG)j with α(dG) > 0 for all dG ∈ R∗
+ in (1).

In the following, we use the relation

∀r > q > 0, N (ǫ,F , dq,tn) 6 N (ǫ,F , dr,tn) (5)

which follows directly from the fact that

∀f, f ′ ∈ F , dq,tn(f, f
′) 6 dr,tn(f, f

′).

First case: dG ∈ (0, 2) This is the only case where Pollard’s entropy condition [16] is satisfied.

For this case we could directly use Dudley’s integral formula (Formula 33 in [9]), however, to
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optimize with respect to constants, we start from (1) and upper bound it by an integral in the

following way.

Apply (5) and (4) in sequence to the right-hand side of (1) and use Hypothesis 1 to get

R̂m (FG,γ) 6γ2
−α(dG)N + 2

√

10C log2(2C)

m

N
∑

j=1

(

γ2−α(dG)j + γ2−α(dG)(j−1)
)

×
[

d

(

γ2−α(dG)j

72 log2(2C)

)

ln

(

14MG log
1
7

2 (2C)

γ2−α(dG)j

)]1/2

6γ2−α(dG)N + 2

√

10C log2(2C)KG

m
(72 log2(2C))

dG
2 γ1−

dG
2

(

1 + 2α(dG)
)

×
N
∑

j=1

2
−α(dG)

(

1−
dG
2

)

j
ln

1
2

(

14MG log
1
7

2 (2C)

γ2−α(dG)j

)

.

Letting α(dG) =
2

2− dG
, we obtain

R̂m (FG,γ) 6γ2
− 2

2−dG
N
+ 2

√

10C log2(2C)KG

m
(72 log2(2C))

dG
2 γ1−

dG
2

(

1 + 2
2

2−dG

)

×
N
∑

j=1

2−j ln
1
2

(

14MG log
1
7

2 (2C)

γ2
− 2

2−dG
j

)

=γ2
− 2

2−dG
N
+ 4

√

10C log2(2C)KG

m
(72 log2(2C))

dG
2 γ1−

dG
2

(

1 + 2
2

2−dG

)

×
N
∑

j=1

(

2−j − 2−j−1
)

ln
1
2

(

14MG log
1
7

2 (2C)

γ2
− 2

2−dG
j

)

.

Taking N → ∞, we can upper bound the last expression as

R̂m (FG,γ) 64

√

10C log2(2C)KG

m
(72 log2(2C))

dG
2 γ1−

dG
2

(

1 + 2
2

2−dG

)

×
∫ 1/2

0

ln
1
2

(

14MG log
1
7

2 (2C)

γǫ
2

2−dG

)

dǫ.

Denote K = 14MG log
1
7

2 (2C) /γ and let us now compute the integral

L =

∫ 1/2

0

ln
1
2

(

K/ǫ
2

2−dG

)

dǫ =

√

2

2− dG

∫ 1/2

0

ln
1
2

(

K
2−dG

2

ǫ

)

dǫ.

Set ǫ = K
2−dG

2 e−t2 . Then,

L =

√

2

2− dG
K

2−dG
2

∫ ∞

ln
1
2

(

2K
2−dG

2

) t · (2te−t2)dt.

Applying the integration by parts formula, we obtain

L =

√

2

2− dG
K

2−dG
2





ln
1
2

(

2K
2−dG

2

)

2K
2−dG

2

+

∫ ∞

ln
1
2

(

2K
2−dG

2

) e−t2dt





6
1

√

2(2− dG)



ln
1
2

(

2K
2−dG

2

)

+
1

2 ln
1
2

(

2K
2−dG

2

)



 .
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Consequently,

R̂m (FG,γ) 64

√

10 · 72dG ·KG

2(2− dG)
·
√
C(log2(2C))

1/2+dG/2

√
m

γ1−
dG
2

(

1 + 2
2

2−dG

)

×



ln
1
2

(

2K
2−dG

2

)

+
1

2 ln
1
2

(

2K
2−dG

2

)



 .

Second case: dG > 2 In this case, we apply (5) and (3) to (1) and use Hypothesis 1 to get

R̂m (FG,γ) 6γ2
−α(dG)N + 2

√

2C

m

N
∑

j=1

(

γ2−α(dG)j + γ2−α(dG)(j−1)
)

×
[

d

(

γ2−α(dG)j

30 log2(2C)

)

ln

(

30emMG log2 (2C)

γ2−α(dG)j

)]1/2

6γ2−α(dG)N + 2

√

2CKG

m
(30 log2(2C))

dG/2 γ1−
dG
2

(

1 + 2α(dG)
)

×
N
∑

j=1

2
α(dG)

(

dG−2

2

)

j
ln

1
2

(

30emMG log2 (2C) · 2α(dG)j

γ

)

. (6)

Unlike the first case, we now control the number of steps N in (6) through the parameters of

interest, C and m. The aim is to optimize the dependencies with respect to them while making

sure that (i) N is a strictly positive integer and (ii) as m→ ∞, N → ∞.

Now, if dG = 2, set α(dG) = 1. Thus, from (6), we have

R̂m (FG,γ) 6 γ2−N + 180

√

2CKG

m
log2(2C)

N
∑

j=1

ln
1
2

(

30emMG log2 (2C) · 2j
γ

)

.

Setting N =

⌈

log2

(√

m

C

)⌉

and bounding the series, we obtain

R̂m (FG,γ) 6 γ

√

C

m
+ 180

√

2CKG

m
log2(2C)

N
∑

j=1

ln
1
2

(

30emMG log2 (2C) · 2j
γ

)

< γ

√

C

m

+ 180

√

2CKG

m
log2(2C)

⌈

log2

(√

m

C

)⌉

ln
1
2

(

60em3/2 log2 (2C)MG

γ
√
C

)

.

For the final case, dG > 2, we set α(dG) =
2

dG − 2
in (6) and bound the geometric series:

R̂m (FG,γ) 6γ2
− 2

dG−2
N
+ 2

√

2CKG

m
(30 log2(2C))

dG/2 γ1−
dG
2 (1 + 2

2
dG−2 )

×
N
∑

j=1

2j ln
1
2

(

30emMG log2 (2C) · 2
2

dG−2
j

γ

)

6γ2
− 2

dG−2
N
+ 4 · 2N

√

2CKG

m
(30 log2(2C))

dG/2 γ1−
dG
2 (1 + 2

2
dG−2 )

× ln
1
2

(

30emMG log2 (2C) · 2
2

dG−2
N

γ

)

. (7)
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Now, let N =

⌈

dG − 2

2dG
log2

(

m

log2dG

2 (2C)
1

dG

)⌉

. Note that, with the assumption m > C1.2, m >

log2dG

2 (2C)
1

dG for all dG > 2 and thus, N is a strictly positive integer. Applying it to (7), we get

R̂m (FG,γ) 6
γ log22(2C)

1
dG

m
1

dG

+ 8
√

2KG · 30dG/2ddG−2
G γ1−

dG
2 (1 + 2

2
dG−2 )

×
√
C (log2(2C))

2−dG/2

m
1

dG

ln
1
2

(

60ed2Gm
1+ 1

dG MG

γ log2 (2C)

)

.

5 Conclusions

We derived a sharper risk bound for multi-category margin classifiers following the pathway of [9].

In this pathway, the first capacity measure that appears in the control term of the guaranteed

risk is a Rademacher complexity. It is then related to the metric entropy through the chaining

method. Using a decomposition for metric entropy, we transition from the multi-class setting to

the bi-class one. Finally, a combinatorial bound gives an estimate on the metric entropy in terms

of the combinatorial dimension. The metric entropy bound used in [9] is the L2-norm one of [12],

which in this paper we generalized to Lp-norms with integer p > 2. This generalization resulted

in an improved dependency on the number C of categories compared to [9] without worsening the

dependency on the sample size m nor the one on the margin parameter γ.

So far, to get an explicit dependency on C under minimal learnability assumptions, a transition

from the multi-class case to the bi-class one has been been performed at the level of one of two

capacity measures. Realizing it at the level of a Rademacher complexity, a linear dependency

on C was obtained in [8]. In this paper, as in [9], we showed that postponing it to the level of

metric entropy, this dependency can be improved to a sublinear one. The case that remains to

be studied is a decomposition at the level of a combinatorial dimension, more precisely, at that of

the fat-shattering dimension. The goal is to complete the picture of the impact that performing a

decomposition at the level of one of three different capacity measures has on the dependencies on

C, m and γ.

A Proof of Theorem 2

Let Tn = {ti : 1 6 i 6 n} ⊂ T and tn = (ti)16i6n. Let Fǫ be an ǫ-separated with respect to the

pseudo-metric dp,tn subset of F of maximal cardinality. By definition, |Fǫ| = M (ǫ,F , dp,tn) =

M
(

ǫ, Fǫ|Tn
, dp,tn

)

= | Fǫ|Tn
|, where Fǫ|Tn

denotes the class Fǫ whose domain is restricted to

Tn. We distinguish three major steps in the proof: i) discretize functions in the set Fǫ|Tn
, ii)

demonstrate that the set of discretized functions is separated, and iii) upper bound the cardinality

of the discretized set. The purpose of discretizing the set of real-valued functions is to reduce the

11



original problem into the one that can be addressed by combinatorial means: we upper bound the

packing number of the discretized set which is then related to that of the original set via the step

(ii).

(a) Let ǫ′ = 4(4Kp)
1/p, η =

ǫ

ǫ′ + 2
and N = ⌊2MF/η⌋. Define the class F̃η of functions from

Tn into [[ 0, N ]] obtained by the discretization of functions in Fǫ in the following way:

F̃η =

{

f̃ : f̃(ti) =

⌊

f(ti) +MF

η

⌋

, i ∈ [[ 1, n ]] , f ∈ Fǫ|Tn

}

.

We claim that with such a discretization, for any f̃1, f̃2 ∈ F̃η, dp,tn

(

f̃1, f̃2

)

> ǫ′. Using |⌊a⌋ −
⌊b⌋|p > (max(0, |a− b| − 1))p for all a, b ∈ R+,

dp,tn

(

f̃1, f̃2

)

=

(

1

n

n
∑

i=1

∣

∣

∣

∣

⌊

f1(ti) +MF

η

⌋

−
⌊

f2(ti) +MF

η

⌋∣

∣

∣

∣

p
)

1
p

>

(

1

n

∑

i∈I

(

1

η
|f1(ti)− f2(ti)| − 1

)p
)

1
p

,

where I denotes the set of indices such that
1

η
|f1(ti)− f2(ti)| > 1, for all i ∈ I. Next, by the inverse

triangle inequality, dp,tn(f1, f2) > dp,tn(f1, 0) − dp,tn(f2, 0) for all f1, f2 ∈ F , the right-hand side

of the above inequality can be bounded as

dp,tn

(

f̃1, f̃2

)

>
1

η

(

1

n

∑

i∈I

|f1(ti)− f2(ti)|p
)

1
p

−
( |I|
n

)
1
p

>
1

η

(

1

n

∑

i∈I

|f1(ti)− f2(ti)|p
)

1
p

− 1. (8)

Let Ic denote the complement of I. Now, by definition of Fǫ,

1

n

∑

i∈I

|f1(ti)− f2(ti)|p +
1

n

∑

i∈Ic

|f1(ti)− f2(ti)|p > ǫp.

It follows that

ǫp 6
1

n

∑

i∈I

|f1(ti)− f2(ti)|p +
|Ic|ηp
n

6
1

n

∑

i∈I

|f1(ti)− f2(ti)|p + ηp

=⇒ (ǫp − ηp)
1/p

6

(

1

n

∑

i∈I

|f1(ti)− f2(ti)|p
)1/p

.

Applying the last inequality to (8) and using ((a − b) + b) 6 ((a − b)1/p + b1/p)p with a, b ∈ R+

and a > b (where we set a = (ǫ′ + 2)
p
and b = 1), we get

dp,tn

(

f̃1, f̃2

)

>
1

η
(ǫp − ηp)

1/p − 1 = ((ǫ′ + 2)p − 1)
1/p − 1 > ǫ′.

This proves our claim. Then, it follows that

M (ǫ,Fǫ, dp,tn) 6 M(ǫ′, F̃η, dp,tn) = |F̃η|. (9)
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The major step that remains to perform to arrive at the claimed bound is to upper bound the

right-hand side of (9). To this end, we appeal to Proposition 3. Let ds be the strong dimension of

F̃η. By part (1) of Lemma 3.2 in [13],

ds 6
(η

2

)

-dim(Fǫ|Tn
) =

(

ǫ

8(4Kp)1/p + 4

)

-dim(Fǫ|Tn
).

By Lemma 1 and the fact that p > 3, on the other hand, we have

8(4Kp)
1/p + 4 < 8 · 41/pp+ 4 < 15p.

We can plug this result in the upper bound on ds based on the fact that the fat-shattering dimension

decreases with the scale:

ds 6

(

ǫ

15p

)

-dim(Fǫ|Tn
)

6

(

ǫ

15p

)

-dim(F) = d

(

ǫ

15p

)

.

Now, according to Proposition 3,

|F̃η| 6





eNn

d
(

ǫ
15p

)





2d( ǫ
15p )

6





en

d
(

ǫ
15p

)

⌊

2MF

η

⌋





2d( ǫ
15p )

6





en

d
(

ǫ
15p

)

(

8MF(4Kp)
1/p + 4MF

ǫ

)





2d( ǫ
15p )

. (10)

Applying Lemma 1 to the right-hand side of (10) and simplifying it we get

|F̃η| 6





15enMFp

ǫd
(

ǫ
15p

)





2d( ǫ
15p )

. (11)

We apply the relation (9) and the following well-known inequality [23]

N (ǫ,F , dp,tn) 6 M (ǫ,F , dp,tn) (12)

in sequence to the left-hand side of (11). Finally, to obtain the claimed result, we take supremum

over tn ∈ T n of both sides of the obtained bound.

(b) To derive a dimension-free combinatorial bound we use the Lp-norm generalization of prob-

abilistic extraction principle: Lemma 8 of [9]. According to this lemma, there exists a subset

Tq = {tik : 1 6 k 6 q} of Tn of cardinality

q 6
112 (2MF)

2p
ln (|Fǫ|)

3ǫ2p
, (13)
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such that Fǫ is ǫ1 = ǫ/2
p+1

p -separated with respect to dp,tq , with tq = (tik)16k6q . Let Fǫ|Tq
denote

the class Fǫ whose domain is restricted to Tq. We have

|Fǫ| = M
(

ǫ1,Fǫ, dp,tq
)

= M
(

ǫ1, Fǫ|Tq
, dp,tq

)

= | Fǫ|Tq
|. (14)

We let η =
ǫ1

ǫ′ + 2
and discretize the functions in the set Fǫ|Tq

in a similar way as in part (a):

F̃η =

{

f̃ : f̃(tik) =

⌊

f(tik) +MF

η

⌋

, k ∈ [[ 1, q ]] , f ∈ Fǫ|Tq

}

.

Applying the same procedure as in the proof of part (a), we obtain that for any f̃1, f̃2 ∈ F̃η,

dp,tq

(

f̃1, f̃2

)

> ǫ′, and hence

M
(

ǫ1,Fǫ, dp,tq
)

6 M(ǫ′, F̃η, dp,tq ) = |F̃η|. (15)

By Proposition 3,

|F̃η| 6
(

eNq

ds

)2ds

,

where ds is the strong dimension of F̃η. Plugging the value of N and performing similar compu-

tations as in Inequalties (10)-(11) of part (a), we get

|F̃η| 6
(

23eqMF(4Kp)
1/p

ǫds

)2ds

. (16)

Now, we go back from the discretized set F̃η to Fǫ using the relations (14) and (15) which yield:

|Fǫ| 6 |F̃η|. Using it and Inequality (13) in (16) give:

ln (|Fǫ|) 6 2ds ln

(

2576 · 22peM2p+1
F (4Kp)

1/p ln (|Fǫ|)
3ǫ2p+1ds

)

.

Now, based on ln(u) <
√
u and by a straightforward computation,

ln (|Fǫ|) 6 4ds ln

(

2576 · 22p+1eM2p+1
F (4Kp)

1/p

3ǫ2p+1

)

. (17)

Next, we bound ds using part (1) of Lemma 3.2 in [13] and Lemma 1:

ds 6
(η

2

)

-dim(Fǫ|Tq
)

=

(

ǫ

2
4p+1

p (4Kp)1/p + 2
3p+1

p

)

-dim(Fǫ|Tq
)

6

(

ǫ

16 · 2 3
p p+ 8 · 2 1

p

)

-dim(Fǫ|Tq
)

6

(

ǫ

36p

)

-dim(Fǫ|Tq
).

Plugging this into (17) and applying Lemma 1 to Kp, we obtain

ln (|Fǫ|) 6 4d

(

ǫ

36p

)

ln

(

2576 · 22p+1eM2p+1
F 41/pp

3ǫ2p+1

)

6 10p d

(

ǫ

36p

)

ln

(

7p
1
7MF

ǫ

)

.

14



The claim follows from the application of |Fǫ| = M(ǫ,F , dp,tn), Inequality (12) and taking supre-

mum over tn ∈ T n of both sides of the obtained bound.

B Technical Results

Lemma 1. For all p ∈ N
∗ \ {1, 2},

∞
∑

k=1

kp

2k
< pp.

Proof. By Formula (8.5) in [24, page 119],

∞
∑

k=1

kp

uk
=

uψp(−u)
(u− 1)(p+1)

,

where ψp(u) =
p−1
∑

j=0

(−1)j
(

p
j+1

)

(u + 1)jψ(p−1)−j(u) is an Eulerian polynomial in u of degree p − 1

with ψ0(u) = ψ1(u) = 1 (see page 116 in [24] for explicit form of this polynomial for smaller values

of p). Thus for u = 2,
∞
∑

k=1

kp

2k
= 2ψp(−2).

We now show by induction that for all p > 2, ψp(−2) <
pp

2
. By definition,

ψp(−2) =

p−1
∑

j=0

(

p

j + 1

)

ψ(p−1)−j(−2).

For the base case, p = 3, it is easily seen that ψ3(−2) < 33/2. Now, assume for k > 3, ψk(−2) <

kk/2. Then,

ψk+1(−2) =

k
∑

j=0

(

k + 1

j + 1

)

ψk−j(−2)

= (k + 1)ψk(−2) +

k
∑

j=1

(

k + 1

j + 1

)

ψk−j(−2)

< (k + 1)kk/2 +

k−1
∑

j=0

(

k + 1

j + 2

)

ψ(k−1)−j(−2)

= (k + 1)kk/2 +

k−1
∑

j=0

((

k

j + 1

)

+

(

k

j + 2

))

ψ(k−1)−j(−2). (18)

We have that
(

k

j + 2

)

=
k!

(j + 2)!(k − (j + 2))!

=
k!

(j + 1)!(k − (j + 2))!
· k − (j + 1)

(k − (j + 1))(j + 2)

=
k!

(j + 1)!(k − (j + 1))!
· k − (j + 1)

j + 2

< k

(

k

j + 1

)

.
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Applying it in (18), we obtain

ψk+1(−2) < (k + 1)kk/2 +
k−1
∑

j=0

(k + 1)

(

k

j + 1

)

ψ(k−1)−j(−2)

< (k + 1)kk/2 + (k + 1)ψk(−2)

< (k + 1)kk.

Now, by the binomial theorem, for all k > 1,

(k + 1)k =

(

k

0

)

k0 + · · ·+
(

k

k − 1

)

kk−1 +

(

k

k

)

kk

= 1 + · · ·+ k · kk−1 + kk

> 2kk.

Consequently,

ψk+1(−2) < (k + 1) · (k + 1)k/2 = (k + 1)k+1/2,

where we used the convention that ∀k > n,

(

n

k

)

= 0.

The results demonstrated hereafter are the generalizations of those in [12]. In the following, we

denote Kp =

∞
∑

k=1

kp

2k
with p ∈ N

∗ \ {1, 2}.

Lemma 2 (After Lemma 5 of [12]). Let X be a bounded random variable. Let Mp(X) =

(E|X |p])1/p. Then, there exist numbers a ∈ R and β ∈ (0, 1/2], such that

P

{

X > a+
Mp(X)

4(2Kp)1/p

}

>
β

2
and P

{

X < a− Mp(X)

4(2Kp)1/p

}

> 1− β,

or vice versa.

Proof. The proof closely follows that of Lemma 5 of [12] where the variance of X is replaced by

its higher moments.

Divide R+ into the intervals Ik of length cMp(X) with

1

2(2Kp)1/p
< c <

1

(2Kp)1/p

by setting

Ik = (cMp(X)k, cMp(X)(k + 1)], k > 0.

Assume the lemma does not hold and let (βi)i>0 be a non-increasing sequence of non-negative

numbers such that

P{X > 0} = β0 6 1/2

and

P{X ∈ Ik} = βk − βk+1, k > 0.
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For the conclusion of the lemma to fail it should hold that

∀k > 0, βk+1 6 βk/2. (19)

Now, assume that for some k, βk+1 > βk/2 and consider intervals

J1 = (−∞, 0] ∪ (0, cMp(X)k] = (−∞, 0] ∪





⋃

06j6k−1

Ij





and J2 = (cMp(X)(k + 1),∞). Then,

P{X ∈ J1} = (1 − β0) +
∑

06j6k−1

(βj − βj+1) = 1− βk

and

P{X ∈ J2} =
∑

j>k+1

(βj − βj+1) = βk+1.

By definition of (βi)i>0 and by our assumption, 1/2 > β0 > βk > βk+1 > βk/2 > 0, which means

that βk ∈ (0, 1/2]. Now, let a be the middle point between the intervals J1 and J2 and let β = βk.

We have that

cMp(X)k = a− cMp(X)

2
< a− Mp(X)

4(2Kp)1/p
=⇒ 1− β 6 P

{

X < a− Mp(X)

4(2Kp)1/p

}

and

cMp(X)(k + 1)=a+
cMp(X)

2
>a+

Mp(X)

4(2Kp)1/p
=⇒ β

2
6P

{

X > a+
Mp(X)

4(2Kp)1/p

}

.

Thus, the lemma holds. This proves (19). Now, by induction from (19) we get that

βk 6 1/2k+1.

We use it in the computation of Mp
p (X). By definition,

Mp
p (X) =

∫ ∞

0

P{|X | > t}dtp =

∫ ∞

0

P{X > t}dtp +
∫ ∞

0

P{X < −t}dtp.

By construction, whenever t ∈ Ik, P{X > t} 6 P{X > cMp(X)k} = P{X ∈ ⋃

l>k

Il} =
∑

l>k

(βl − βl+1) = βk. Thus,

∫ ∞

0

P{X > t}dtp 6
∑

k>0

∫

Ik

βkpt
p−1dt

6 (cMp(X))
p
∑

k>0

(k + 1)p − kp

2k+1

6 (cMp(X))p
∑

k>1

kp

2k

= (cMp(X))pKp

< Mp
p (X)/2.
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By a similar procedure, it can be proved that

∫ ∞

0

P{X < −t}dtp < Mp
p (X)/2.

This produces a contradiction Mp
p (X) < Mp

p (X)/2 +Mp
p (X)/2 =Mp

p (X) proving the lemma.

In the following, T = {ti : 1 6 i 6 n} is a finite set and tn = (ti)16i6n.

Lemma 3 (After Lemma 6 of [12]). Let F be a finite class of functions from T into [0,MF ] with

MF ∈ R+ and |F| > 1. Assume that for some ǫ ∈ (0,MF ], F is ǫ-separated in the pseudo-metric

dp,tn . Then there exist i ∈ [[ 1, n ]], a ∈ R and β ∈ (0, 1/2] such that

∣

∣

∣

∣

{

f ∈ F : f(ti) > a+
ǫ

8(4Kp)1/p

}∣

∣

∣

∣

> p1 |F|
∣

∣

∣

∣

{

f ∈ F : f(ti) < a− ǫ

8(4Kp)1/p

}∣

∣

∣

∣

> p2 |F| ,

with p1 >
β
2 and p2 > 1− β or vice versa.

Proof. F can be viewed as a finite probability space (F ,A, PF ) with a uniform probability mea-

sure PF (A) = |A|/|F| for any A ∈ A. Then, for any two random elements f, f ′ ∈ F selected

independently according to PF ,

Ef,f ′∼PF
(dp,tn (f, f ′))

p
= Ef,f ′∼PF

[

1

n

n
∑

i=1

|f(ti)− f ′(ti)|p
]

=
1

n

n
∑

i=1

Ef,f ′∼PF
|f(ti)− f ′(ti)|p .

By the Minkowski inequality, for any i ∈ [[ 1, n ]],

Ef,f ′∼PF
|f(ti)− f ′(ti)|p 6

(

(Ef∼PF
|f(ti)|p)1/p +

(

Ef ′∼PF
|−f ′(ti)|p

)1/p
)p

=
(

(Ef∼PF
|f(ti)|p)1/p +

(

Ef ′∼PF
|f ′(ti)|p

)1/p
)p

= 2pEf∼PF
|f(ti)|p .

Taking it into account in the formula above, we obtain,

Ef,f ′∼PF
(dp,tn (f, f ′))

p
6

2p

n

n
∑

i=1

Ef∼PF
|f(ti)|p .

Now, the event that the realizations of f and f ′ are different elements in F happens with probability

1− 1/|F|. Then, by the separation assumption on F we have

Ef,f ′∼PF
(dp,tn (f, f ′))

p
> (1− 1/|F|) ǫp > (1− 1/2) ǫp = ǫp/2.

Thus,

1

n

n
∑

i=1

Ef∼PF
|f(ti)|p >

ǫp

2p+1
.
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It means that there exists i ∈ [[ 1, n ]], such that

Ef∼PF
|f(ti)|p >

ǫp

2p+1
.

Next, we apply Lemma 2 to the random element f and take into account that

Mp(f(ti)) >
ǫ

21+1/p

and that
Mp(f(ti))

4(2Kp)1/p
>

ǫ

8× 21/p(2Kp)1/p
=

ǫ

8(4Kp)1/p
.

Then, it follows that

β

2
6 PF

{

f(ti) > a+
Mp(f(ti))

4(2Kp)1/p

}

6 PF

{

f(ti) > a+
ǫ

8(4Kp)1/p

}

and, similarly,

1− β 6 PF

{

f(ti) < a− Mp(f(ti))

4(2Kp)1/p

}

6 PF

{

f(ti) < a− ǫ

8(4Kp)1/p

}

.

Finally, the claim follows from the definition of PF .

The results given in the sequel call for the introduction of the definition of the ǫ-separating

tree.

Definition 10. Let F be a class of functions on T . A tree T (F) is a finite collection of subsets

of F , such that its any two elements are either disjoint or one of them contains the other. A son

of F̄ ∈ T (F) is its maximal (with respect to inclusion) proper subset. An element of T (F) with no

sons is called a leaf. Let ǫ > 0. If every F̄ ∈ T (F) which is not a leaf has exactly two sons F̄+, F̄−

and

∃i ∈ [[ 1, n ]] , ∀(f+, f−) ∈
(

F̄+, F̄−

)

, f+(ti) > f−(ti) + ǫ,

then T (F) is an ǫ-separating tree.

Proposition 1 (After Proposition 8 in [12]). Let F be a finite class of functions from T into

[0,MF ] with MF ∈ R+. Assume that for some ǫ ∈ (0,MF ], F is ǫ-separated in the pseudo-metric

dp,tn . Then, there is a ǫ/4(4Kp)
1/p-separating tree of F with at least |F|1/2 leaves.

Proof. By Lemma 3, F has two subsets F+ and F− such that

∃i ∈ [[ 1, n ]] , ∃a ∈ R, ∀(f+, f−) ∈ F+ ×F−,











f+(ti) > a+ ǫ/8(4Kp)
1/p

f−(ti) < a− ǫ/8(4Kp)
1/p,

which implies

f+(ti) < f−(ti) + ǫ/4(4Kp)
1/p.

The rest of the proof is based on induction on the cardinality of F and is exactly as in [12], except

that the tree is now ǫ/4(4Kp)
1/p-separated.
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Proposition 2 (After Proposition 10 in [12]). Let F be a class of functions from T into a finite

set B of integers. Let S ⊆ T and let v : S → B. The number of pairs (S, v) strongly shattered by

F is at least the number of leaves in any 1-separating tree of F .

Proof. The proof follows exactly the one of Proposition 10 in [12], with a few minor technical

changes. Let F̄ be a node in a 1-separating tree of F . Let N(A) denote the number of pairs

strongly shattered by a set A. For the proof it suffices to show that if F̄+ and F̄− are two sons of

F̄ , then

N(F̄) > N(F̄+) +N(F̄−). (20)

By definition of the 1-separating tree, there exists i0 ∈ [[ 1, n ]] such that

∀(f+, f−) ∈
(

F̄+, F̄−

)

, f+(ti0) > f−(ti0) + 1.

It follows that

∃b ∈ B, ∀(f+, f−) ∈
(

F̄+, F̄−

)

,











f+(ti0) > b

f−(ti0) < b.

(21)

If a pair is strongly shattered either by F̄+ or F̄−, then it is also strongly shattered by F̄ . On the

other hand, if a pair (S, v) is strongly shattered both by F̄+ and F̄−, then ti0 6∈ S. Otherwise,

there would exist (f ′
+, f

′
−) ∈

(

F̄+, F̄−

)

satisfying f ′
+(ti0 ) 6 v(ti0) − 1 and f ′

−(ti0) > v(ti0) + 1.

Combining it with (21) yields a contradiction:

b+ 1 < v(ti0) < b− 1.

Now, consider a pair (S ∪ {ti0}, v′), where v′(ti) = v(ti) for all ti ∈ S and v′(ti0) = b. This pair is

shattered by F̄ , but neither by F̄+ or F̄−. As S is shattered both by F̄+ and F̄−, then from (21)

it follows that,

∀(si)16i6n ∈ {−1, 1}n, ∃f+ ∈ F̄+,











∀i ∈ [[ 1, n ]] , si (f+(ti)− v(ti)) > 1,

f+(ti0 ) > b+ 1,

similarly,

∀(si)16i6n ∈ {−1, 1}n, ∃f− ∈ F̄−,











∀i ∈ [[ 1, n ]] , si (f−(ti)− v(ti)) > 1,

f−(ti0) 6 b− 1.

It proves the claim that F̄ shatters the pair (S ∪ {ti0}, v′). Therefore, in both cases we get (20).

The next result is obtained by combining Propositions 1 and 2.

Corollary 2 (After Corollary 11 in [12]). Let F be a class of functions from T into a finite set B

of integers. Let S ⊆ T and let v : S → B. If F is 4(4Kp)
1/p-separated in the pseudo-metric dp,tn ,

then it strongly shatters at least |F|1/2 pairs (S, v) .
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Proposition 3 (After Proposition 12 in [12]). Let F be a class of functions from T into [[ 0, b ]].

Let ds = S-dim(F). Assume F is 4(4Kp)
1/p-separated in the pseudo-metric dp,tn . Then for any

d > ds,

|F| 6
(

ebn

d

)2d

.

Proof. By Corollary 2, F strongly shatters at least |F|1/2 pairs (S, v). On the other hand, the

total number of such pairs for which the cardinality of S is at most ds is bounded above by

ds
∑

k=0

(

n

k

)

bk.

To see this, note that there are at most

(

n

k

)

number of sets S of size k and for each such S the

number of functions h is bounded above by bk. Therefore,

|F|1/2 6

ds
∑

k=0

(

n

k

)

bk.

The proof is completed by bounding the right-hand side of the above inequality in a standard way

as follows:

ds
∑

k=0

(

n

k

)

bk 6

d
∑

k=0

(

n

k

)

bk 6 bd
d
∑

k=0

nk

k!
6 bd

d
∑

k=0

dk

k!
·
(n

d

)k

6

(

bn

d

)d d
∑

k=0

dk

k!
6

(

enb

d

)d

,

where we used the convention that for all k > n,

(

n

k

)

= 0.
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