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Introduction

Although the theory of binary pattern classification is well established [START_REF] Vapnik | Statistical Learning Theory[END_REF][START_REF] Bartlett | The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network[END_REF], the theory of multicategory classification is far from being complete. The research in this case addresses problems such as the sample-complexity analysis of empirical risk minimization algorithms [START_REF] Daniely | Multiclass learnability and the ERM principle[END_REF], or consistency analysis of multi-class loss functions and of specific families of classifiers [START_REF] Dogan | A unified view on multi-class support vector classification[END_REF]. Another open question is the optimal dependency of guaranteed risks of multi-category classifiers on the number C of categories and the sample size m. It is all the more the case for the problems that involve a large number of classes. When the considered classifiers are margin ones that take decision based on a score per category, the dependency on the margin parameter γ also becomes relevant to the characterization of their generalization performance. If this question has been mainly studied for specific families of classifiers, be it k-nearest neighbors [START_REF] Kontorovich | Maximum margin muliclass nearest neighbors[END_REF], kernel methods [START_REF] Zhang | Statistical analysis of some multi-category large margin classification methods[END_REF][START_REF] Lei | Multi-class SVMs: From tighter data-dependent generalization bounds to novel algorithms[END_REF] and decision trees [START_REF] Kuznetsov | Multi-class deep boosting[END_REF], tackling it under minimal learnability assumptions remains a challenging task. This paper focuses on obtaining guaranteed risks under such assumptions.

The first step in the derivation of risk bounds is the choice of the margin loss function. Two families of margin loss functions can be distinguished: indicator margin loss functions and those that satisfy the Lipschitz condition. Deriving guaranteed risks with the optimal dependency on the parameters of interest is relatively straightforward in the first case [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF]. The family of Lipschitz continuous loss functions, on the other hand, offers a richer setting to this task. In this case, one can obtain a guaranteed risk whose control term involves a Rademacher complexity [START_REF] Koltchinskii | Empirical margin distributions and bounding the generalization error of combined classifiers[END_REF]. Then a sequence of transitions between capacity measures is performed. More precisely, using the chaining method one can control the Rademacher complexity of a function class through the sum of its metric entropies [START_REF] Talagrand | Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems[END_REF]. A combinatorial bound is then used to estimate the metric entropy of the class in terms of its combinatorial dimension. In this sequence of transitions, one can choose the capacity measure at the level of which to reduce the multi-class problem to an ensemble of bi-class ones, that is, to perform a decomposition. Performing a decomposition for Rademacher complexity, a linear dependency on C was obtained in [START_REF] Kuznetsov | Multi-class deep boosting[END_REF]. This dependency has been improved to a sublinear one in [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF] by postponing the decomposition to the level of metric entropy.

In this paper, we exactly follow the pathway of [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF]. Our contribution is based on the following line of reasoning. Theorem 7 of [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF] provides a sublinear (but still close to linear) dependency on C using a decomposition result for metric entropies (Lemma 1 of [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF]) in L p -norm with p = 2 and the combinatorial metric entropy bound of [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF]. On the other hand, using the decomposition result with p = ∞ and the L ∞ -norm metric entropy bound of [START_REF] Alon | Scale-sensitive dimensions, uniform convergence, and learnability[END_REF], one can obtain a radical dependency on C, this, however, at the expense of a degraded dependency on m. Hence, we consider the values of p in between these two extreme ones, and extend the L 2 -norm bound of [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF] to L p -norms with integer p > 2. When applied in the chaining, it results in an improved dependency on C over that of Theorem 7 of [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF]. Specifically, we obtain a radical dependency on C (up to logarithmic factors) without worsening the dependencies on m and γ.

The organization of the paper is as follows. In the next section, we introduce the theoretical framework and describe the transitions between the capacity measures. Then, Section 3 gives the new combinatorial metric entropy bound, whose proof can be found in A. In Section 4, we demonstrate how this result can be applied in the chaining to derive an improved upper bound on the Rademacher complexity. Conclusions and ongoing research are highlighted in Section 5. All intermediate results used in the proofs are collected in B.

Notation

We denote the set of strictly positive reals by R + , and let

N * = N \ {0}. [ [ i, j ] ] stands
for the set of integers from i to j. 1 A stands for the indicator function for the event A such that 1 A = 1 if A occurs, and 0 otherwise. ⌊x⌋ is the greatest integer less than or equal to x, ⌈x⌉ is the smallest integer greater than or equal to x.

Theoretical Framework

We consider C-category pattern classification problems with C 3. Each object is represented by its description x ∈ X and the categories y belong to Y = [ [ 1, C ] ]. We assume that (X , A X ) and (Y, A Y ) are measurable spaces. Denote by A X ⊗ A Y the product sigma-algebra on X × Y.

We assume that the link between descriptions and categories can be characterized by an unknown probability measure P on the measurable space (X × Y, A X ⊗ A Y ). Let Z = (X, Y ) be a random pair with values in Z = X × Y, distributed according to P . The available information on P is

limited to an m-sample Z m = (Z i ) 1 i m = ((X i , Y i ))
1 i m distributed according to P m . In the following, we distinguish the sample size m from the generic notation n which stands for a number of points in a set that needs not be a realization of a random sample.

We consider multi-category margin classifiers that take their decisions based on a score per category and focus on those that implement classes of functions with values in a hypercube of R C (thus, in contrast to [START_REF] Lei | Multi-class SVMs: From tighter data-dependent generalization bounds to novel algorithms[END_REF], no correlation assumption is made on the component functions).

Most well-known classifiers, such as neural networks [START_REF] Anthony | Neural Network Learning: Theoretical Foundations[END_REF], support vector machines [START_REF] Dogan | A unified view on multi-class support vector classification[END_REF], and nearest neighbors [START_REF] Kontorovich | Maximum margin muliclass nearest neighbors[END_REF] are margin classifiers.

Definition 1 (Multi-category margin classifiers). Let G = C k=1 G k be a class of functions from X into [-M G , M G ] C with M G ∈ [1, +∞). For each g = (g k ) 1 k C ∈ G, dr g is a multi-category
margin classifier such that for all x ∈ X , dr g (x) = argmax 1 k C g k (x), breaking ties with a dummy category * .

To sidestep the complications that might arise from the measurability of a supremum of an uncountable set, we assume that the classes G k , and in general, all sets of functions considered in the sequel satisfy the "image admissibility Suslin" condition [15, page 101].

The classification performance of margin classifiers can be characterized based on the following functions.

Definition 2 (Class F G of margin functions). Let G be as in Definition 1. For any g ∈ G, the margin function

f g : Z → [-M G , M G ] is ∀(x, k) ∈ Z, f g (x, k) = 1 2 g k (x)-max l =k g l (x) .
Then, we define F G = {f g : g ∈ G} .

Given g ∈ G, dr g misclassifies (x, y) if dr g (x) = y, or equivalently, if f g (x, y) 0. The goal of the learning process is to minimize the probability of error or risk over G.

Definition 3 (Risk L). Let G be as in Definition 1. Let φ be the standard indicator loss function defined as

∀t ∈ R, φ(t) = 1 {t 0} .
For any g ∈ G, its risk L(g) is

L(g) = E Z [φ (f g (Z))] = P (dr g (X) = Y ) .
To make use of the values of functions f g (and not just of their signs) in the assessment of the classification performance, we appeal to the following margin loss function.

Definition 4 (Parameterized truncated hinge loss function φ γ ). For any γ ∈ (0, 1], the parameterized truncated hinge loss function φ γ is defined as

∀t ∈ R, φ γ (t) = 1 {t 0} + 1 - t γ 1 {t∈(0,γ]} .
It is clear from the definition that φ γ dominates the standard indicator loss function given in Definition 3 and that it is Lipschitz continuous. Observe that when this loss function is applied to f g , the values of the latter strictly above γ and below zero become irrelevant to the estimation of the classification accuracy. Taking benefit from this fact, we introduce functions f g,γ by restricting the codomain of f g to [0, γ] for all g ∈ G. In [START_REF] Kuznetsov | Multi-class deep boosting[END_REF], a partial restriction is the main source of improvement upon the result of [START_REF] Koltchinskii | Empirical margin distributions and bounding the generalization error of combined classifiers[END_REF] in terms of the dependency on C. The use of the set of functions f g,γ leads to even a finer bound, this time in terms of the diameter of the function class as we switch from 2M G to γ.

Definition 5 (Class F G,γ of truncated margin functions). Let F G be a class of functions satisfying Definition 2. Fix γ ∈ (0, 1]. For any f g ∈ F G , we define f g,γ : Z → [0, γ] as

∀(x, k) ∈ Z, f g,γ (x, k) = max(0, min (γ, f g (x, k))) ,
and F G,γ = {f g,γ : g ∈ G}.

For any g ∈ G, its risk, L(g) can be upper bounded by the margin risk L γ (g) obtained on the basis of the loss function φ γ . It is the m-sample Z m based estimate of L γ that appears in our guaranteed risk.

Definition 6 (Margin risk L γ and empirical margin risk L γ,m ). Let G be a class of functions satisfying Definition 1. Let φ γ be as in Definition 4. Then, for γ ∈ (0, 1], the margin risk L γ associated with any g ∈ G is

L γ (g) = E Z [φ γ (f g,γ (Z))] .
Its m-sample Z m based estimate is the empirical margin risk defined as

L γ,m (g) = 1 m m i=1 φ γ (f g,γ (Z i )) .
In what follows, we give the definitions of the capacity measures we use and outline the transitions between them, which are at the basis of the derivation of our result. We use F to denote a uniformly bounded class of functions on a generic measurable space (T , A T ). First, we recall the definition of the Rademacher complexity.

Definition 7 (Rademacher complexity). Let P T be a probability measure on (T , A T ) and T n = (T i ) 1 i n a sequence of independently distributed according to P T random variables with values in T . Let σ n = (σ i ) 1 i n be a Rademacher sequence, i.e.,a sequence of independent random variables uniformly distributed in {-1, +1}. Then, the empirical Rademacher complexity of F given T n is defined as

Rn (F ) = E σ n sup f ∈F 1 n n i=1 σ i f (T i ) T n
and its Rademacher complexity is R n (F ) = E Tn Rn (F ) .

The capacity measures central in the derivation of our result are covering/packing numbers.

Their definitions require the introduction of the following empirical pseudo-metrics: for any f, f ′ ∈ F and t n = (t i )

1 i n ∈ T n , d p,tn (f, f ′ ) =      1 n n i=1 |f (t i ) -f ′ (t i )| p 1 p , if p ∈ [1, +∞) max 1 i n |f (t i ) -f ′ (t i )| , if p = +∞.
Definition 8 (Covering numbers, metric entropy, packing numbers). The L p -norm ǫ-covering

number of F , N (ǫ, F , d p,tn ), is the smallest cardinality of the ǫ-nets of F , i.e., subsets F ⊆ F such that ∀f ∈ F there exists f ∈ F such that d p,tn (f, f ) < ǫ. The logarithm of N (ǫ, F , d p,tn ) is the metric entropy of F . A subset F of F is ǫ-separated with respect to d p,tn if, for any two distinct elements f, f ′ ∈ F , d p,tn (f, f ′ ) ǫ.
The ǫ-packing number of F , M (ǫ, F , d p,tn ), is the maximal cardinality of its ǫ-separated subsets. The uniform covering and packing numbers are

N p (ǫ, F , n) = sup tn∈T n N (ǫ, F , d p,tn )
and

M p (ǫ, F , n) = sup tn∈T n M (ǫ, F , d p,tn ) ,
respectively.

The capacity measures appearing last in our bounds are combinatorial dimensions. They provide useful information about whether the class of interest uniformly satisfies the classical limit theorems [START_REF] Dudley | Uniform central limit theorems[END_REF].

Definition 9 (Fat-shattering dimension [START_REF] Kearns | Efficient distribution-free learning of probabilistic concepts[END_REF], strong dimension [START_REF] Alon | Scale-sensitive dimensions, uniform convergence, and learnability[END_REF]). For γ ∈ R + , a subset S = {t i : 1 i n} of T is said to be γ-shattered by F if there is a function v : S → R such that, for every vector

s n = (s i ) 1 i n ∈ {-1, 1} n , there is a function f sn ∈ F satisfying ∀i ∈ [ [ 1, n ] ] , s i (f sn (t i ) -v (t i )) γ.
The fat-shattering dimension of F at scale γ, γ-dim (F ), is the maximal cardinality of a subset of T γ-shattered by F , if such a maximum exists. Otherwise, γ-dim (F ) = ∞. For a class F of integer valued functions, the notion of strong dimension, S-dim (F ), is obtained from the definition of the fat-shattering dimension by setting γ = 1 and restricting the co-domain of v to Z.

As in [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF][START_REF] Mendelson | Rademacher averages and phase transitions in Glivenko-Cantelli classes[END_REF][START_REF] Mendelson | The shattering dimension of sets of linear functionals[END_REF], we make the hypothesis that the fat-shattering dimensions of the classes G k , γ-dim (G k ), grow no faster than polynomially with γ -1 .

Hypothesis 1. Let G be a class of functions satisfying Definition 1. We assume that there exists

a pair (K G , d G ) ∈ R 2 + such that ∀ǫ ∈ (0, M G ] , max 1 k C ǫ-dim (G k ) K G ǫ -dG .
Among the well-known examples of classifiers that satisfy such an assumption are support vector machines with d G = 2 (Theorem 4.6 in [START_REF] Bartlett | Generalization performance of support vector machines and other pattern classifiers[END_REF]) and feedforward neural networks with d G = 2l for l layers (Corollary 27 in [START_REF] Bartlett | The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network[END_REF]). It should be noted that Lipschitz classifiers, such as nearest neighbours also satisfy this assumption as demonstrated by Corollary 4 in [START_REF] Gottlieb | Efficient classification for metric data[END_REF]. Depending on the growth rate d G , our assumptions regarding the data are summarized in Table 1.

Table 1: Assumptions made on the sample size m and the number of categories C with respect to the growth rate d G of the fat-shattering dimensions in Hypothesis 1.

Growth rate Assumptions

d G 2 m > C > 4 d G > 2 m C 1.2 , C > 4
Our starting point is the following basic supremum inequality that bounds the risk by the empirical margin risk plus a control term based on a Rademacher complexity.

Theorem 1 (Theorem 5 in [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF]). Let G be a class of functions satisfying Definition 1. For γ ∈ (0, 1],

let F G,γ be the class of functions deduced from G according to Definition 2. For fixed γ ∈ (0, 1] and δ ∈ (0, 1), with P m probability at least 1δ,

∀g ∈ G, L(g) L γ,m (g) + 2 γ R m (F g,γ ) + ln( 1 δ ) 2m
.

We perform the following sequence of transitions between the capacity measures to derive our result. First, we relate the empirical Rademacher complexity of F G,γ to its metric entropy through the chaining method (see [START_REF] Talagrand | Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems[END_REF]). More precisely, we use the following formulation of the chaining bound due to [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF]:

Rm (F G,γ ) h(N ) + 2 N j=1 (h(j) + h(j -1)) ln N (h(j), F G,γ , d 2,zm ) m , (1) 
where N ∈ N * and h : N → R + is a decreasing function satifying h(0) γ. Next, using Lemma 1 in [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF], we decompose the metric entropy of F G,γ in terms of the ones of the classes G k :

∀p ∈ [1, +∞] , ln N (ǫ, F G,γ , d p,zm ) C k=1 ln N ǫ C 1/p , G k , d p,xm , (2) 
where x m = (x i ) 1 i m ∈ X m . Finally, our combinatorial bound derived below gives an estimate on the metric entropies of the classes G k in terms of their fat-shattering dimensions.

L p -norm Combinatorial Metric Entropy Bound

We extend the L 2 -norm metric entropy bound of [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF] to L p -norms with p ∈ N * \ {1, 2}. The bound of [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF] does not depend on the sample size thanks to the use of the probabilistic extraction principle. In our extension we derive two bounds. In one of them, we keep the dependency on the sample size, and in the other, we remove it using the L p -norm generalization of the aforementioned principle. Under Hypothesis 1, depending on the value of d G , the application of one or the other bound in the chaining allows us to optimize the dependency on C while not degrading the ones on m and γ, as will be seen in Section 4.

Specifically, we have the following L p -norm metric entropy bounds, whose proof is given in A.

Theorem 2. Let F be a class of functions from T into [-M F , M F ] with M F ∈ [1, +∞). For ǫ ∈ (0, M F ], let d (ǫ) = ǫ-dim (F ). For all values of p ∈ N * \ {1, 2} and ǫ ∈ (0, M F ], (a) if n d ǫ 15p , then ln N p (ǫ, F , n) 2d ǫ 15p ln   15epnM F d ǫ 15p ǫ   ; (b) if n d ǫ 37p , then ln N p (ǫ, F , n) 10p d ǫ 36p ln 7p 1 7 M F ǫ .
From (2) one can see that, based on C 

∈ (0, M G ], let d (ǫ) = max 1 k C ǫ-dim (G k ). Then, for ǫ ∈ (0, γ] and C > 4, ln N p (ǫ, F G,γ , m) 2Cd ǫ 30 log 2 (2C) ln 30en log 2 (2C) M G ǫ , (3) 
and

ln N p (ǫ, F G,γ , m) 10C log 2 (2C) d ǫ 72 log 2 (2C) ln 14 log 1 7 2 (2C) M G ǫ . (4) 
Proof. Inequality (3) follows from the application of (2) and part (a) of Theorem 2 (where we drop d(ǫ) from the denominator inside the logarithm as it is greater than one), along with the fact that C 1/⌈log 2 (C)⌉ < 2 and ⌈log 2 (C)⌉ < log 2 (2C). We obtain Inequality (4) in a similar way using part (b) of Theorem 2 instead.

As it was noted in [START_REF] Mendelson | Rademacher averages and phase transitions in Glivenko-Cantelli classes[END_REF], under Hypothesis 1, the growth rate of the fat-shattering dimension has a dramatic effect on the behavior of the Rademacher complexity of the function class. The availability of two kinds of metric entropy bounds allows us to adapt to this impact in the chaining so as to optimize the dependency on C without worsening those on m and γ. Under the aforementioned hypothesis, two cases can be distinguished. For d G ∈ (0, 2), the formula (1) can be upper bounded by an integral and the use of the dimension-free bound (4) leads to the optimized result. For

d G 2
, such a result is obtained from the application of ( 3) in [START_REF] Vapnik | Statistical Learning Theory[END_REF]. The second case can also be characterized by the fact that there is a freedom in the choice of the number N of steps to construct the chaining. To optimize this construction when d G > 2, we make the non-restrictive assumption that m is greater than a small power of C.

Theorem 3. Let G be a class of functions as in Definition 1. For γ ∈ (0, 1], let F G,γ be the class of functions deduced from G according to Definition 2. Then, under Hypothesis 1, there is a function

K (γ, d G , K G ) such that for all C > 4, R m (F G,γ ) K (γ, d G , K G ) C m ×                  (ln(C)) d G 2 + 1 2 , if 0 < d G < 2, ln(C) ln m C ln 1 2 m ln 2 3 (C) C 1 3 , if d G = 2, m 1 2 -1 d G (ln(C)) 2-d G 2 ln 1 2 m 1+ 1 d G ln(C) , if d G > 2 and m C 1.2 .
Compared to Theorem 7 of [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF], one can see that in all three cases, the dependency on C is improved: the powers of C are replaced by powers of ln(C) without losing in the dependencies on m and γ. It is interesting to note that, in the third case, when d G 4, which is true for instance for feedforward neural networks (see Corollary 27 in [START_REF] Bartlett | The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network[END_REF]), the dependency on C is slightly better than radical. This is, however, at the cost of the constant factor d dG G .

Proof of Theorem 3. For all j ∈ N, we set h(j) = γ2 -α(dG)j with α(d G ) > 0 for all d G ∈ R * + in (1). In the following, we use the relation

∀r > q > 0, N (ǫ, F , d q,tn ) N (ǫ, F , d r,tn ) (5) 
which follows directly from the fact that

∀f, f ′ ∈ F , d q,tn (f, f ′ ) d r,tn (f, f ′ ).
First case: d G ∈ (0, 2) This is the only case where Pollard's entropy condition [START_REF] Dudley | Uniform central limit theorems[END_REF] is satisfied.

For this case we could directly use Dudley's integral formula (Formula 33 in [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF]), however, to optimize with respect to constants, we start from ( 1) and upper bound it by an integral in the following way.

Apply ( 5) and ( 4) in sequence to the right-hand side of (1) and use Hypothesis to get

Rm (F G,γ ) γ2 -α(dG)N + 2 10C log 2 (2C) m N j=1 γ2 -α(dG)j + γ2 -α(dG)(j-1) × d γ2 -α(dG)j 72 log 2 (2C) ln 14M G log 1 7 2 (2C) γ2 -α(dG)j 1/2 γ2 -α(dG)N + 2 10C log 2 (2C)K G m (72 log 2 (2C)) d G 2 γ 1-d G 2 1 + α(dG) × N j=1 2 -α(dG) 1- d G 2 j ln 1 2 14M G log 1 7 2 (2C) γ2 -α(dG)j . Letting α(d G ) = 2 2 -d G , we obtain Rm (F G,γ ) γ2 -2 2-d G N + 2 10C log 2 (2C)K G m (72 log 2 (2C)) d G 2 γ 1-d G 2 1 + 2 2-d G × N j=1 2 -j ln 1 2 14M G log 1 7 2 (2C) γ2 -2 2-d G j =γ2 -2 2-d G N + 4 10C log 2 (2C)K G m (72 log 2 (2C)) d G 2 γ 1-d G 2 1 + 2 2-d G × N j=1 2 -j -2 -j-1 ln 1 2 14M G log 1 7 2 (2C) γ2 -2 2-d G j .
Taking N → ∞, we can upper bound the last expression as

Rm (F G,γ ) 4 10C log 2 (2C)K G m (72 log 2 (2C)) d G 2 γ 1-d G 2 1 + 2 2 2-d G × 1/2 0 ln 1 2 14M G log 1 7 2 (2C) γǫ 2 2-d G dǫ. Denote K = 14M G log 1 7
2 (2C) /γ and let us now compute the integral

L = 1/2 0 ln 1 2 K/ǫ 2 2-d G dǫ = 2 2 -d G 1/2 0 ln 1 2 K 2-d G 2 ǫ dǫ. Set ǫ = K 2-d G 2 e -t 2 . Then, L = 2 2 -d G K 2-d G 2 ∞ ln 1 2 2K 2-d G 2 t • (2te -t 2 )dt.
Applying the integration by parts formula, we obtain

L = 2 2 -d G K 2-d G 2   ln 1 2 2K 2-d G 2 2K 2-d G 2 + ∞ ln 1 2 2K 2-d G 2 e -t 2 dt   1 2(2 -d G )   ln 1 2 2K 2-d G 2 + 1 2 ln 1 2 2K 2-d G 2   . Consequently, Rm (F G,γ ) 4 10 • 72 dG • K G 2(2 -d G ) • √ C(log 2 (2C)) 1/2+dG /2 √ m γ 1-d G 2 1 + 2 2 2-d G ×   ln 1 2 2K 2-d G 2 + 1 2 ln 1 2 2K 2-d G 2   .
Second case: d G 2 In this case, we apply ( 5) and ( 3) to (1) and use Hypothesis 1 to get

Rm (F G,γ ) γ2 -α(dG)N + 2 2C m N j=1 γ2 -α(dG)j + γ2 -α(dG)(j-1) × d γ2 -α(dG)j 30 log 2 (2C) ln 30emM G log 2 (2C) γ2 -α(dG)j 1/2 γ2 -α(dG)N + 2 2CK G m (30 log 2 (2C)) dG/2 γ 1-d G 2 1 + 2 α(dG) × N j=1 2 α(dG) d G -2 2 j ln 1 2 30emM G log 2 (2C) • 2 α(dG)j γ . (6) 
Unlike the first case, we now control the number of steps N in (6) through the parameters of interest, C and m. The aim is to optimize the dependencies with respect to them while making sure that (i) N is a strictly positive integer and (ii) as m → ∞, N → ∞.

Now, if d G = 2, set α(d G ) = 1. Thus, from (6) 
, we have

Rm (F G,γ ) γ2 -N + 180 2CK G m log 2 (2C) N j=1 ln 1 2 30emM G log 2 (2C) • 2 j γ .
Setting N = log 2 m C and bounding the series, we obtain

Rm (F G,γ ) γ C m + 180 2CK G m log 2 (2C) N j=1 ln 1 2 30emM G log 2 (2C) • 2 j γ < γ C m + 180 2CK G m log 2 (2C) log 2 m C ln 1 2 60em 3/2 log 2 (2C) M G γ √ C .
For the final case, 6) and bound the geometric series: 

d G > 2, we set α(d G ) = 2 d G -2 in (
Rm (F G,γ ) γ2 -2 d G -2 N + 2 2CK G m (30 log 2 (2C)) dG/2 γ 1-d G 2 (1 + 2 2 d G -2 ) × N j=1 2 j ln 1 2 30emM G log 2 (2C) • 2 2 d G -2 j γ γ2 -2 d G -2 N + 4 • 2 N 2CK G m (30 log 2 (2C)) dG/2 γ 1-d G 2 (1 + 2 2 d G -2 ) × ln 1 2 30emM G log 2 (2C) • 2 2 d G -2 N γ . ( 7 
) Now, let N = d G -2 2d G log 2 m log 2dG 2 (2C)
1 d G m 1 d G + 8 2K G • 30 dG/2 d dG -2 G γ 1-d G 2 (1 + 2 2 d G -2 ) × √ C (log 2 (2C)) 2-dG/2 m 1 d G ln 1 2 60ed 2 G m 1+ 1 d G M G γ log 2 (2C)
.

Conclusions

We derived a sharper risk bound for multi-category margin classifiers following the pathway of [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF].

In this pathway, the first capacity measure that appears in the control term of the guaranteed risk is a Rademacher complexity. It is then related to the metric entropy through the chaining method. Using a decomposition for metric entropy, we transition from the multi-class setting to the bi-class one. Finally, a combinatorial bound gives an estimate on the metric entropy in terms of the combinatorial dimension. The metric entropy bound used in [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF] is the L 2 -norm one of [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF],

which in this paper we generalized to L p -norms with integer p > 2. This generalization resulted in an improved dependency on the number C of categories compared to [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF] without worsening the dependency on the sample size m nor the one on the margin parameter γ.

So far, to get an explicit dependency on C under minimal learnability assumptions, a transition from the multi-class case to the bi-class one has been been performed at the level of one of two capacity measures. Realizing it at the level of a Rademacher complexity, a linear dependency on C was obtained in [START_REF] Kuznetsov | Multi-class deep boosting[END_REF]. In this paper, as in [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF], we showed that postponing it to the level of metric entropy, this dependency can be improved to a sublinear one. The case that remains to be studied is a decomposition at the level of a combinatorial dimension, more precisely, at that of the fat-shattering dimension. The goal is to complete the picture of the impact that performing a decomposition at the level of one of three different capacity measures has on the dependencies on C, m and γ.

A Proof of Theorem 2 

Let T n = {t i : 1 i n} ⊂ T and t n = (t i ) 1 i n . Let
T n into [ [ 0, N ]
] obtained by the discretization of functions in F ǫ in the following way:

F η = f : f (t i ) = f (t i ) + M F η , i ∈ [ [ 1, n ] ] , f ∈ F ǫ | Tn .
We claim that with such a discretization, for any f1

, f2 ∈ F η , d p,tn f1 , f2 ǫ ′ . Using |⌊a⌋ - ⌊b⌋| p (max(0, |a -b| -1)) p for all a, b ∈ R + , d p,tn f1 , f2 = 1 n n i=1 f 1 (t i ) + M F η - f 2 (t i ) + M F η p 1 p 1 n i∈I 1 η |f 1 (t i ) -f 2 (t i )| -1 p 1 p
, where I denotes the set of indices such that

1 η |f 1 (t i ) -f 2 (t i )| 1, for all i ∈ I. Next, by the inverse triangle inequality, d p,tn (f 1 , f 2 ) d p,tn (f 1 , 0) -d p,tn (f 2 , 0) for all f 1 , f 2 ∈ F , the right-hand side
of the above inequality can be bounded as

d p,tn f1 , f2 1 η 1 n i∈I |f 1 (t i ) -f 2 (t i )| p 1 p - |I| n 1 p 1 η 1 n i∈I |f 1 (t i ) -f 2 (t i )| p 1 p -1. ( 8 
)
Let I c denote the complement of I. Now, by definition of F ǫ ,

1 n i∈I |f 1 (t i ) -f 2 (t i )| p + 1 n i∈I c |f 1 (t i ) -f 2 (t i )| p ǫ p .
It follows that

ǫ p 1 n i∈I |f 1 (t i ) -f 2 (t i )| p + |I c |η p n 1 n i∈I |f 1 (t i ) -f 2 (t i )| p + η p =⇒ (ǫ p -η p ) 1/p 1 n i∈I |f 1 (t i ) -f 2 (t i )| p 1/p .
Applying the last inequality to (8) and using ((

a -b) + b) ((a -b) 1/p + b 1/p ) p with a, b ∈ R +
and a b (where we set a = (ǫ ′ + 2) p and b = 1), we get

d p,tn f1 , f2 1 η (ǫ p -η p ) 1/p -1 = ((ǫ ′ + 2) p -1) 1/p -1 ǫ ′ .
This proves our claim. Then, it follows that

M (ǫ, F ǫ , d p,tn ) M(ǫ ′ , F η , d p,tn ) = | F η |. (9) 
The major step that remains to perform to arrive at the claimed bound is to upper bound the right-hand side of [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF]. To this end, we appeal to Proposition 3. Let d s be the strong dimension of F η . By part (1) of Lemma 3.2 in [START_REF] Alon | Scale-sensitive dimensions, uniform convergence, and learnability[END_REF],

d s η 2 -dim( F ǫ | Tn ) = ǫ 8(4K p ) 1/p + 4 -dim( F ǫ | Tn ).
By Lemma 1 and the fact that p 3, on the other hand, we have

8(4K p ) 1/p + 4 < 8 • 4 1/p p + 4 < 15p.
We can plug this result in the upper bound on d s based on the fact that the fat-shattering dimension decreases with the scale:

d s ǫ 15p -dim( F ǫ | Tn ) ǫ 15p -dim(F ) = d ǫ 15p
.

Now, according to Proposition 3,

| F η |   eN n d ǫ 15p   2d( ǫ 15p )   en d ǫ 15p 2M F η   2d( ǫ 15p )   en d ǫ 15p 8M F (4K p ) 1/p + 4M F ǫ   2d( ǫ 15p ) . (10) 
Applying Lemma 1 to the right-hand side of [START_REF] Koltchinskii | Empirical margin distributions and bounding the generalization error of combined classifiers[END_REF] and simplifying it we get

| F η |   15enM F p ǫd ǫ 15p   2d( ǫ 15p ) . (11) 
We apply the relation ( 9) and the following well-known inequality [START_REF] Kolmogorov | ǫ-entropy and ǫ-capacity of sets in functional spaces[END_REF] N

(ǫ, F , d p,tn ) M (ǫ, F , d p,tn ) (12) 
in sequence to the left-hand side of [START_REF] Talagrand | Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems[END_REF]. Finally, to obtain the claimed result, we take supremum over t n ∈ T n of both sides of the obtained bound.

(b) To derive a dimension-free combinatorial bound we use the L p -norm generalization of probabilistic extraction principle: Lemma 8 of [START_REF] Guermeur | L p -norm Sauer-Shelah lemma for margin multi-category classifiers[END_REF]. According to this lemma, there exists a subset

T q = {t i k : 1 k q} of T n of cardinality q 112 (2M F ) 2p ln (|F ǫ |) 3ǫ 2p , (13) 
such that F ǫ is ǫ 1 = ǫ/2 p+1 p -separated with respect to d p,tq , with t q = (t i k ) 1 k q . Let F ǫ | Tq denote the class F ǫ whose domain is restricted to T q . We have

|F ǫ | = M ǫ 1 , F ǫ , d p,tq = M ǫ 1 , F ǫ | Tq , d p,tq = | F ǫ | Tq |. (14) 
We let η = ǫ 1 ǫ ′ + 2 and discretize the functions in the set F ǫ | Tq in a similar way as in part (a):

F η = f : f (t i k ) = f (t i k ) + M F η , k ∈ [ [ 1, q ] ] , f ∈ F ǫ | Tq .
Applying the same procedure as in the proof of part (a), we obtain that for any f1 , f2 ∈ F η , d p,tq f1 , f2 ǫ ′ , and hence

M ǫ 1 , F ǫ , d p,tq M(ǫ ′ , F η , d p,tq ) = | F η |. (15) 
By Proposition 3,

| F η | eN q d s 2ds ,
where d s is the strong dimension of F η . Plugging the value of N and performing similar computations as in Inequalties ( 10)-( 11) of part (a), we get

| F η | 23eqM F (4K p ) 1/p ǫd s 2ds . (16) 
Now, we go back from the discretized set F η to F ǫ using the relations ( 14) and ( 15) which yield:

|F ǫ | | F η |.
Using it and Inequality (13) in [START_REF] Dudley | Uniform central limit theorems[END_REF] give:

ln (|F ǫ |) 2d s ln 2576 • 2 2p eM 2p+1 F (4K p ) 1/p ln (|F ǫ |) 3ǫ 2p+1 d s .
Now, based on ln(u) < √ u and by a straightforward computation,

ln (|F ǫ |) 4d s ln 2576 • 2 2p+1 eM 2p+1 F (4K p ) 1/p 3ǫ 2p+1 . (17) 
Next, we bound d s using part (1) of Lemma 3.2 in [START_REF] Alon | Scale-sensitive dimensions, uniform convergence, and learnability[END_REF] and Lemma 1:

d s η 2 -dim( F ǫ | Tq ) = ǫ 2 4p+1 p (4K p ) 1/p + 2 3p+1 p -dim( F ǫ | Tq ) ǫ 16 • 2 3 p p + 8 • 2 1 p -dim( F ǫ | Tq ) ǫ 36p -dim( F ǫ | Tq ).
Plugging this into [START_REF] Kearns | Efficient distribution-free learning of probabilistic concepts[END_REF] and applying Lemma 1 to K p , we obtain

ln (|F ǫ |) 4d ǫ 36p ln 2576 • 2 2p+1 eM 2p+1 F 4 1/p p 3ǫ 2p+1 10p d ǫ 36p ln 7p 1 7 M F ǫ .
The claim follows from the application of |F ǫ | = M(ǫ, F , d p,tn ), Inequality [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF] and taking supremum over t n ∈ T n of both sides of the obtained bound.

B Technical Results

Lemma 1. For all p ∈ N * \ {1, 2},

∞ k=1 k p 2 k < p p .
Proof. By Formula (8.5) in [24, page 119],

∞ k=1 k p u k = uψ p (-u) (u -1) (p+1) ,
where ψ p (u) = p-1 j=0 (-1) j p j+1 (u + 1) j ψ (p-1)-j (u) is an Eulerian polynomial in u of degree p -1 with ψ 0 (u) = ψ 1 (u) = 1 (see page 116 in [START_REF] Berndt | Ramanujan's Notebooks, Part I[END_REF] for explicit form of this polynomial for smaller values of p). Thus for u = 2,

∞ k=1 k p 2 k = 2ψ p (-2).
We now show by induction that for all p > 2, ψ p (-2) < p p 2 . By definition,

ψ p (-2) = p-1 j=0 p j + 1 ψ (p-1)-j (-2).
For the base case, p = 3, it is easily seen that ψ 3 (-2) < 3 3 /2. Now, assume for k > 3, ψ k (-2) < k k /2. Then,

ψ k+1 (-2) = k j=0 k + 1 j + 1 ψ k-j (-2) = (k + 1)ψ k (-2) + k j=1 k + 1 j + 1 ψ k-j (-2) < (k + 1)k k /2 + k-1 j=0 k + 1 j + 2 ψ (k-1)-j (-2) = (k + 1)k k /2 + k-1 j=0 k j + 1 + k j + 2 ψ (k-1)-j (-2). ( 18 
)
We have that

k j + 2 = k! (j + 2)!(k -(j + 2))! = k! (j + 1)!(k -(j + 2))! • k -(j + 1) (k -(j + 1))(j + 2) = k! (j + 1)!(k -(j + 1))! • k -(j + 1) j + 2 < k k j + 1 .
Applying it in [START_REF] Mendelson | Rademacher averages and phase transitions in Glivenko-Cantelli classes[END_REF], we obtain

ψ k+1 (-2) < (k + 1)k k /2 + k-1 j=0 (k + 1) k j + 1 ψ (k-1)-j (-2) < (k + 1)k k /2 + (k + 1)ψ k (-2) < (k + 1)k k .
Now, by the binomial theorem, for all k > 1,

(k + 1) k = k 0 k 0 + • • • + k k -1 k k-1 + k k k k = 1 + • • • + k • k k-1 + k k > 2k k .
Consequently,

ψ k+1 (-2) < (k + 1) • (k + 1) k /2 = (k + 1) k+1 /2,
where we used the convention that ∀k > n, n k = 0.

The results demonstrated hereafter are the generalizations of those in [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF]. In the following, we

denote K p = ∞ k=1 k p 2 k with p ∈ N * \ {1, 2}.
Lemma 2 (After Lemma 5 of [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF]). Let X be a bounded random variable. Let M p (X) = (E|X| p ]) 1/p . Then, there exist numbers a ∈ R and β ∈ (0, 1/2], such that

P X > a + M p (X) 4(2K p ) 1/p β 2 and P X < a - M p (X) 4(2K p ) 1/p 1 -β,
or vice versa.

Proof. The proof closely follows that of Lemma 5 of [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF] where the variance of X is replaced by its higher moments.

Divide R + into the intervals I k of length cM p (X) with

1 2(2K p ) 1/p < c < 1 (2K p ) 1/p
by setting

I k = (cM p (X)k, cM p (X)(k + 1)], k 0.
Assume the lemma does not hold and let (β i ) i 0 be a non-increasing sequence of non-negative numbers such that

P{X > 0} = β 0 1/2 and P{X ∈ I k } = β k -β k+1 , k 0.
For the conclusion of the lemma to fail it should hold that ∀k 0, β k+1 β k /2.

(

Now, assume that for some k, β k+1 > β k /2 and consider intervals

J 1 = (-∞, 0] ∪ (0, cM p (X)k] = (-∞, 0] ∪   0 j k-1 I j   and J 2 = (cM p (X)(k + 1), ∞). Then, P{X ∈ J 1 } = (1 -β 0 ) + 0 j k-1 (β j -β j+1 ) = 1 -β k and P{X ∈ J 2 } = j k+1 (β j -β j+1 ) = β k+1 .
By definition of (β i ) i 0 and by our assumption, 1/2 β 0 β k β k+1 > β k /2 0, which means that β k ∈ (0, 1/2]. Now, let a be the middle point between the intervals J 1 and J 2 and let β = β k .

We have that

cM p (X)k = a - cM p (X) 2 < a - M p (X) 4(2K p ) 1/p =⇒ 1 -β P X < a - M p (X) 4(2K p ) 1/p and cM p (X)(k + 1) = a + cM p (X) 2 > a + M p (X) 4(2K p ) 1/p =⇒ β 2 P X > a + M p (X) 4(2K p ) 1/p .
Thus, the lemma holds. This proves [START_REF] Mendelson | The shattering dimension of sets of linear functionals[END_REF]. Now, by induction from [START_REF] Mendelson | The shattering dimension of sets of linear functionals[END_REF] we get that

β k 1/2 k+1 .
We use it in the computation of M p p (X). By definition,

M p p (X) = ∞ 0 P{|X| > t}dt p = ∞ 0 P{X > t}dt p + ∞ 0 P{X < -t}dt p .
By construction, whenever

t ∈ I k , P{X > t} P{X > cM p (X)k} = P{X ∈ l k I l } = l k (β l -β l+1 ) = β k . Thus, ∞ 0 P{X > t}dt p k 0 I k β k pt p-1 dt (cM p (X)) p k 0 (k + 1) p -k p 2 k+1 (cM p (X)) p k 1 k p 2 k = (cM p (X)) p K p < M p p (X)/2.
By a similar procedure, it can be proved that

∞ 0 P{X < -t}dt p < M p p (X)/2.
This produces a contradiction M p p (X) < M p p (X)/2 + M p p (X)/2 = M p p (X) proving the lemma.

In the following, T = {t i : 1 i n} is a finite set and t n = (t i ) 1 i n .

Lemma 3 (After Lemma 6 of [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF]). Let F be a finite class of functions from T into [0, M F ] with

M F ∈ R + and |F | > 1. Assume that for some ǫ ∈ (0, M F ], F is ǫ-separated in the pseudo-metric d p,tn . Then there exist i ∈ [ [ 1, n ] ], a ∈ R and β ∈ (0, 1/2] such that f ∈ F : f (t i ) > a + ǫ 8(4K p ) 1/p p 1 |F | f ∈ F : f (t i ) < a - ǫ 8(4K p ) 1/p p 2 |F | ,
with p 1 β 2 and p 2 1β or vice versa.

Proof. F can be viewed as a finite probability space (F , A, P F ) with a uniform probability measure P F (A) = |A|/|F | for any A ∈ A. Then, for any two random elements f, f ′ ∈ F selected independently according to P F ,

E f,f ′ ∼PF (d p,tn (f, f ′ )) p = E f,f ′ ∼PF 1 n n i=1 |f (t i ) -f ′ (t i )| p = 1 n n i=1 E f,f ′ ∼PF |f (t i ) -f ′ (t i )| p .

By the Minkowski inequality, for any

i ∈ [ [ 1, n ] ], E f,f ′ ∼PF |f (t i ) -f ′ (t i )| p (E f ∼PF |f (t i )| p ) 1/p + E f ′ ∼PF |-f ′ (t i )| p 1/p p = (E f ∼PF |f (t i )| p ) 1/p + E f ′ ∼PF |f ′ (t i )| p 1/p p = 2 p E f ∼PF |f (t i )| p .
Taking it into account in the formula above, we obtain,

E f,f ′ ∼PF (d p,tn (f, f ′ )) p 2 p n n i=1 E f ∼PF |f (t i )| p .
Now, the event that the realizations of f and f ′ are different elements in F happens with probability 1 -1/|F |. Then, by the separation assumption on F we have

E f,f ′ ∼PF (d p,tn (f, f ′ )) p (1 -1/|F |) ǫ p (1 -1/2) ǫ p = ǫ p /2.
Thus,

1 n n i=1 E f ∼PF |f (t i )| p ǫ p 2 p+1 .

It means that there exists

i ∈ [ [ 1, n ] ], such that E f ∼PF |f (t i )| p ǫ p 2 p+1 .
Next, we apply Lemma 2 to the random element f and take into account that

M p (f (t i )) ǫ 2 1+1/p and that M p (f (t i )) 4(2K p ) 1/p ǫ 8 × 2 1/p (2K p ) 1/p = ǫ 8(4K p ) 1/p .
Then, it follows that

β 2 P F f (t i ) > a + M p (f (t i )) 4(2K p ) 1/p P F f (t i ) > a + ǫ 8(4K p ) 1/p
and, similarly,

1 -β P F f (t i ) < a - M p (f (t i )) 4(2K p ) 1/p P F f (t i ) < a - ǫ 8(4K p ) 1/p .
Finally, the claim follows from the definition of P F .

The results given in the sequel call for the introduction of the definition of the ǫ-separating tree.

Definition 10. Let F be a class of functions on T . A tree T (F ) is a finite collection of subsets of F , such that its any two elements are either disjoint or one of them contains the other. A son of F ∈ T (F ) is its maximal (with respect to inclusion) proper subset. An element of T (F ) with no sons is called a leaf. Let ǫ > 0. If every F ∈ T (F ) which is not a leaf has exactly two sons F+ , F-

and ∃i ∈ [ [ 1, n ] ] , ∀(f + , f -) ∈ F+ , F-, f + (t i ) > f -(t i ) + ǫ,
then T (F ) is an ǫ-separating tree.

Proposition 1 (After Proposition 8 in [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF]). Let F be a finite class of functions from T into

[0, M F ] with M F ∈ R + .
Assume that for some ǫ ∈ (0, M F ], F is ǫ-separated in the pseudo-metric d p,tn . Then, there is a ǫ/4(4K p ) 1/p -separating tree of F with at least |F | 1/2 leaves.

Proof. By Lemma 3, F has two subsets F + and

F -such that ∃i ∈ [ [ 1, n ] ] , ∃a ∈ R, ∀(f + , f -) ∈ F + × F -,      f + (t i ) > a + ǫ/8(4K p ) 1/p
f -(t i ) < aǫ/8(4K p ) 1/p , which implies

f + (t i ) < f -(t i ) + ǫ/4(4K p ) 1/p .
The rest of the proof is based on induction on the cardinality of F and is exactly as in [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF], except that the tree is now ǫ/4(4K p ) 1/p -separated.

Proposition 2 (After Proposition 10 in [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF]). Let F be a class of functions from T into a finite set B of integers. Let S ⊆ T and let v : S → B. The number of pairs (S, v) strongly shattered by F is at least the number of leaves in any 1-separating tree of F .

Proof. The proof follows exactly the one of Proposition 10 in [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF], with a few minor technical changes. Let F be a node in a 1-separating tree of F . Let N (A) denote the number of pairs strongly shattered by a set A. For the proof it suffices to show that if F+ and Fare two sons of F , then

N ( F ) N ( F+ ) + N ( F-). ( 20 
)
By definition of the 1-separating tree, there exists i 0 ∈ [ [ 1, n ] ] such that

∀(f + , f -) ∈ F+ , F-, f + (t i0 ) > f -(t i0 ) + 1.
It follows that

∃b ∈ B, ∀(f + , f -) ∈ F+ , F-,      f + (t i0 ) > b f -(t i0 ) < b. (21) 
If a pair is strongly shattered either by F+ or F-, then it is also strongly shattered by F . On the other hand, if a pair (S, v) is strongly shattered both by F+ and F-, then t i0 ∈ S. Otherwise, there would exist (f ′ + , f ′ -) ∈ F+ , Fsatisfying f ′ + (t i0 ) v(t i0 ) -1 and f ′ -(t i0 ) v(t i0 ) + 1.

Combining it with (21) yields a contradiction:

b + 1 < v(t i0 ) < b -1.
Now, consider a pair (S ∪ {t i0 }, v ′ ), where v ′ (t i ) = v(t i ) for all t i ∈ S and v ′ (t i0 ) = b. This pair is shattered by F , but neither by F+ or F-. As S is shattered both by F+ and F-, then from [START_REF] Gottlieb | Efficient classification for metric data[END_REF] it follows that,

∀(s i ) 1 i n ∈ {-1, 1} n , ∃f + ∈ F+ ,      ∀i ∈ [ [ 1, n ] ] , s i (f + (t i ) -v(t i )) 1, f + (t i0 ) b + 1, similarly, ∀(s i ) 1 i n ∈ {-1, 1} n , ∃f -∈ F-,      ∀i ∈ [ [ 1, n ] ] , s i (f -(t i ) -v(t i )) 1, f -(t i0 ) b -1.
It proves the claim that F shatters the pair (S ∪ {t i0 }, v ′ ). Therefore, in both cases we get [START_REF] Bartlett | Generalization performance of support vector machines and other pattern classifiers[END_REF].

The next result is obtained by combining Propositions 1 and 2.

Corollary 2 (After Corollary 11 in [START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF]). Let F be a class of functions from T into a finite set B where we used the convention that for all k > n, n k = 0.

1 p

 1 = 2 ( 1 p log 2 (C)) , the dependency on C in the scale of covering numbers can be eliminated for all p log 2 (C). The combination of the decomposition formula (2) with Theorem 2 using p = ⌈log 2 (C)⌉ for C > 4 yields the following result. Corollary 1. Let G be a class of functions as in Definition 1. For γ ∈ (0, 1], let F G,γ be the class of functions deduced from G according to Definition 5. For ǫ

F

  ǫ be an ǫ-separated with respect to the pseudo-metric d p,tn subset of F of maximal cardinality. By definition, |F ǫ | = M (ǫ, F , d p,tn ) = M ǫ, F ǫ | Tn , d p,tn = | F ǫ | Tn |, where F ǫ | Tn denotes the class F ǫ whose domain is restricted to T n . We distinguish three major steps in the proof: i) discretize functions in the set F ǫ | Tn , ii) demonstrate that the set of discretized functions is separated, and iii) upper bound the cardinality of the discretized set. The purpose of discretizing the set of real-valued functions is to reduce the original problem into the one that can be addressed by combinatorial means: we upper bound the packing number of the discretized set which is then related to that of the original set via the step (ii). (a) Let ǫ ′ = 4(4K p ) 1/p , η = ǫ ǫ ′ + 2 and N = ⌊2M F /η⌋. Define the class F η of functions from

  of integers. Let S ⊆ T and let v : S → B. If F is 4(4K p ) 1/p -separated in the pseudo-metric d p,tn , then it strongly shatters at least |F | 1/2 pairs (S, v) . Proposition 3 (After Proposition 12 in[START_REF] Mendelson | Entropy and the combinatorial dimension[END_REF]). Let F be a class of functions fromT into [ [ 0, b ] ]. Let d s = S-dim(F ). Assume F is 4(4K p )1/p -separated in the pseudo-metric d p,tn . Then for any d d s , By Corollary 2, F strongly shatters at least |F | 1/2 pairs (S, v). On the other hand, the total number of such pairs for which the cardinality of S is at most d s is bounded above by To see this, note that there are at most n k number of sets S of size k and for each such S the number of functions h is bounded above by b k . Therefore, The proof is completed by bounding the right-hand side of the above inequality in a standard way as follows: