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Payo�s-Beliefs Duality and the Value of Information

Michel De Lara∗ Olivier Gossner†

November 30, 2018

Abstract

In decision problems under incomplete information, payo� vectors (indexed by states

of nature) and beliefs are naturally paired by bilinear duality. We exploit this duality to

analyze the value of information using convex analysis. We then derive global estimates

of the value of information of any information structure from local properties of the

value function and of the set of optimal actions taken at the prior belief only, and apply

our results to the marginal value of information.

1 Introduction

The value of a piece of information to an economic agent depends on the information at
hand, on the agent's prior on the state of nature, and on the decision problem faced. These
elements are intrinsically tied, and separating the in�uence of one of them from that of the
others is not straightforward.

The dependency of the value of information on agents' decisions and preferences is cer-
tainly a major reason why most information rankings are either uniform among agents or
restricted to certain classes of agents. Blackwell (1953)'s comparison of experiments, for in-
stance, is uniform; it states that an information structure is more informative than another if
all agents, no matter their available choices and preferences, weakly prefer the former to the
latter. Lehmann (1988); Persico (2000); Cabrales, Gossner, and Serrano (2013) are example
of papers that build information rankings based on restricted sets of decision problems.

The �ip side of this approach is that information rankings are silent as to the dependency
of the value of a �xed piece information on the agent's preferences and available choices. They
do not tell us what makes information more or less valuable to an arbitrary agent, and neither
can they identify the agents who value a given piece of information more than others. If we
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want to answer this type of questions, we need to examine carefully how information, priors,
decisions and preferences come into play.

The e�ect of priors and evidence on beliefs is well understood. Given a prior belief,
and after receiving some information, an agent forms a posterior belief. Posterior beliefs
average out to the prior belief, and information acquisition can usefully be represented by
the distribution of these posterior beliefs (see, e.g. Bohnenblust, Shapley, and Sherman, 1949;
Aumann and Maschler, 1967; Aumann and Hart, 1986).

In any decision problem, to each decision and state of nature corresponds to a payo�.
The decision problem can thus be represented as a set of available vector payo�s, where each
payo� is indexed by a state of nature (Blackwell, 1951). Given a posterior belief, the agent
makes a decision that maximizes her expected utility so that, to each (posterior) belief of
the agent corresponds an expected utility at this belief. The corresponding map from beliefs
to expected payo�s is called the value function. The value of a piece of information, de�ned
as the di�erence in expected utilities from having or not having the information at hand, is
thus the di�erence between the expectation of the value function at the posterior and at the
prior, and is non-negative by Jensen's inequality. Thus, the value function fully captures the
agent's preferences for information.

In this paper, we make use of convex analysis (Rockafellar, 1970) to exploit a bilinear
duality structure between payo�s and beliefs, that gives expected payo� (Dentcheva and
Ruszczy«ski, 2013). Primal variables are payo�s vectors, dual variables are beliefs (or, more
generally, signed measures) and the value function appears as the (restriction to beliefs) of
the support function of the set of available vector payo�s. This provides a correspondance
between convex analysis concepts and tools and economic objects. The set of beliefs com-
patible with an optimal action is related to the normal cone of the set of available vector
payo� at this optimal action. The subgradient of the value function at any belief can be
represented as the set of optimal choice of vector payo�s at this belief.

We express the value of information according to the in�uence it has on decisions. We
provide three upper and lower bounds on the value of information.

In the �rst upper and lower bounds, we characterize information with a positive value.
We show that information has a positive value when at least one of the optimal actions at
the prior becomes suboptimal for some of the posteriors. We thus de�ne the con�dence set
at a prior p̄ as the set of posterior beliefs for which all optimal actions at p̄ remain optimal.
We show that information has positive value if and only if posterior beliefs fall outside of
the con�dence set with positive probability. This result generalises insights from Hirshleifer
(1971) and Mirman, Samuelson, and Urbano (1993), who already noticed that information
can only be useful insofar as it in�uences choices. We provide corresponding lower and upper
bounds to the value of information.

In the second bounds, we express the fact that the value of information is maximal when
it in�uences actions the most, which happens when information breaks indi�erences between
several choices. We show that, when this is the case, the value of information can be suitably
measured by an expected distance between the prior and the posterior.

Finally, our third bounds apply to cases in which the agent's optimal choice is a smooth
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function of her belief around the prior. We show that, in this situation, the value function is
also smooth around the prior, and the value of information is essentially a quadratic function
of the expected distance between the prior and the posterior.

In a �nite decision problem such as shopping behavior (McFadden, 1973) or residential
location (McFadden, 1978), at any given prior, the agent either has an optimal action that is
locally constant, or is indi�erent between several optimal choices. The �rst and second upper
and lower bounds are particularly useful in �nite choice problems. The third bounds are most
useful in decision problems with a continuum of choices, such as scoring rules (Brier, 1950)
or investment decisions (Arrow, 1971). In certain decision problems, the behavior of optimal
choice as a function of the belief depends on the range of parameters, and the appropriate
bounds apply accordingly.

The paper is organized as follows. Section 2 presents the model and introduces the duality
between actions and the value of information. The main results are presented in section 3.
Section 4 is devoted to applications to the question of marginal value of information, and
Section 5 concludes. The Appendix contains reviews of convex analysis and the proofs.

2 Model and payo�s-beliefs duality

We consider the classical question of an agent who faces a decision problem under imperfect
information on a state of nature.

2.1 Information and action

The set of states of nature is a �nite set K. We identify the set Σ of signed measures on K
with RK . The agent holds a prior belief p̄ with full support in the set

∆ = ∆(K) ⊂ Σ (1)

of probability distributions over K. We identify ∆ with the simplex of RK .
A decision problem is given by an arbitrary compact convex choice set D and by a

continuous payo� function g : D ×K → R. The convexity of D is justi�ed by allowing the
agent to randomize over decisions. Consistent with the framework of Blackwell (1953), we
de�ne the set of actions as the compact convex subspace of RK given by:

A = {
(
g(d, k)

)
k∈K , d ∈ D} . (2)

The scalar product between a vector v ∈ RK and a signed measure s ∈ RK is

〈s , v〉 =
∑
k∈K

skvk . (3)

This scalar product induces a duality between payo�s/actions and beliefs. Such a duality is
at the core of a series of works in non-expected utility theory, such as Gilboa and Schmeidler
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(1989); Maccheroni, Marinacci, and Rustichini (2006); Cerreia-Vioglio, Maccheroni, Mari-
nacci, and Montrucchio (2011a,b).

Under belief p ∈ ∆, the decision maker chooses a decision d ∈ D that maximizes
∑

k pkg(d, k),
or, equivalently, an action a ∈ A that maximizes 〈p , a〉, and the corresponding expected pay-
o� is maxa∈A 〈p , a〉 ∈ R. We de�ne the value function vA : ∆→ R by:

vA(p) = max
a∈A
〈p , a〉 , ∀p ∈ ∆ . (4)

The value function vA : : ∆ → R is convex � as the supremum of the family of linear
maps 〈· , a〉 for a ∈ A� and continuous � as its domain is the whole convex set ∆ (Hiriart-
Ururty and Lemaréchal, 1993, p. 175).

We follow Bohnenblust, Shapley, and Sherman (1949); Blackwell (1953), and we describe
information through a distribution of posterior beliefs that average to the prior belief. Hence,
given the prior belief p̄, we de�ne an information structure as a random variable q with values
in ∆ describing the agent's posterior beliefs, and such that

Eq = p̄ , (5)

where E denotes the expectation operator.
Given the action set A and the information structure q, the value of information VoIA(q)

is the di�erence between the expected payo� for an agent who receives information according
to q and one whose prior is p̄. It is given by:

VoIA(q) = E vA(q)− vA(p̄) . (6)

2.2 Duality between payo�s and beliefs

Given a belief p ∈ ∆, we let A?(p) ⊂ A be the set of optimal actions at belief p, given by

A?(p) = arg max
a′∈A
〈p , a′〉 = {a ∈ A | ∀a′ ∈ A , 〈p , a′〉 ≤ 〈p , a〉} . (7)

The set A?(p) is nonempty, closed, convex (as A is convex and compact), and is a subset of
the boundary ∂A of A.

Conversely, an outside observer can make inferences on the agent's beliefs from observed
actions. For an action a ∈ A, the set ∆?

A(a) of beliefs revealed by action a is the set of all
beliefs for which a is an optimal action, given by:

∆?
A(a) = {p ∈ ∆ | ∀a′ ∈ A , 〈p , a′〉 ≤ 〈p , a〉} . (8)

Geometrically, the set ∆?
A(a) is the intersection with ∆ of the normal cone NA(a) (see (50)

for a proper de�nition).
Obviously, given a ∈ A and p ∈ ∆, a ∈ A?(p) i� p ∈ ∆?

A(a), as both express that action a
is optimal under belief p.

In this paper, we exploit the relationship between di�erentiability properties of the value
function vA at p̄ with the value of information VoIA for an agent with prior p̄.
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3 On the value of information

In this section, we relate the geometry of the set A of actions both with the behavior of the
agent around the prior p̄, with di�erentiability properties of the value function vA at the
prior p̄, and with the value of information VoIA. This approach allows us to derive bounds
on the value of information that depend on how information in�uences actions.

First, in Subsection 3.1, we consider information that does not allow us to eliminate
optimal actions. We introduce the con�dence set as the set of posterior beliefs at which all
optimal actions at the prior remain optimal. We show that information is valuable if and
only if, with positive probability, it can lead to a posterior outside this set.

Second, in Subsection 3.2, we consider the somewhat opposite case of tie-breaking in-
formation. This corresponds to situations in which the agent is indi�erent between several
actions, and the information allows her to select among them. We show that the value of
information can be related to an expected distance between the prior and the posterior,
provided that posterior beliefs move in these tie-breaking directions.

These two �rst approaches are suitable in �nite decision problems where the value func-
tion is piecewise linear. In the third approach, in Subsection 3.3, we look at situations in
which the optimal action is locally unique around the prior and depends on information
in a continuous and di�erentiable way. There, we show that the value of information can
essentially be measured as an expected square distance from the prior to the posterior. This
approach is particularly adapted to cases in which the space of actions is su�ciently rich,
and where small changes of beliefs lead to corresponding changes of actions.

3.1 Valuable information

Our �rst task is to formalize the idea that useful information is information that a�ects
optimal choices. Since there are potentially several optimal actions at a prior p̄ and at a
posterior p, there are in principle many ways to formalize this idea.

We say that a belief p is in the con�dence set ∆c

A(p̄) of p̄ when all optimal actions at p̄
are also optimal at p:

∆c

A(p̄) =
⋂

a∈A?(p̄)

∆?
A(a) . (9)

Another way to look at this notion is to consider an observer who sees choices by the decision
maker: p ∈ ∆c

A(p̄) when none of the actions chosen by the agent at p̄ would lead the observer
to refute the possibility that the agent has belief p.

The notion of a con�dence set allows for the characterization of valuable information as
follows.

Proposition 1 (Valuable information)

VoIA(q) = 0 i� ∃a∗ ∈ A?(p̄) , a∗ ∈ A?(q) a.s. (10a)

i� q ∈ ∆c

A(p̄) a.s. (10b)
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It is relatively straightforward to see that if all posteriors remain in the con�dence set,
information is valueless. In fact, when this is the case, the same action is optimal for all
of the posteriors, which means that the agent can play this action, while ignoring the new
information, and obtain the same value. The proposition shows that the converse result also
holds: the value of information is positive whenever posteriors fall outside of the con�dence
set with some positive probability.

More can be said about estimates on the value of information. To do so, we introduce
an ε-neighborhood of the con�dence set ∆c

A(p̄). For ε > 0, let

∆c

A,ε(p̄) = {q ∈ ∆ | d
(
q,∆c

A(p̄)
)
< ε} , (11)

where, by de�nition,
d
(
q,∆c

A(p̄)
)

= inf
p∈∆c

A(p̄)
‖p− q‖ . (12)

This leads us to a �rst estimate of the value of information.

Theorem 2 (Bound on the value of information based on con�dence sets) For ev-
ery ε > 0, there exist positive constants CA and cp̄,A,ε such that, for every information
structure q,

CAE d
(
q,∆c

A(p̄)
)
≥ VoIA(q) ≥ cp̄,A,εP{q 6∈ ∆c

A,ε(p̄)} . (13)

The upper bound tells us that the value of information is bounded by (a constant times)
the expected distance from the posterior to the con�dence set at the prior. In particular, it is
bounded by the expected distance from the posterior to the prior itself. The lower bound is a
converse result, but in which we need to replace the con�dence set by some ε-neighborhood.
It shows us that that the value of information is bounded below by (a constant times) the
probability that the posterior exits the con�dence set by more than ε, and, therefore, it
is also larger than the expected distance from the posterior to this ε neighborhood of the
con�dence set. Both the lower and upper bounds depend on the con�dence set ∆c

A(p̄), which
can be computed locally at p̄. On the other hand, they apply to all information structures.
The caveat is that the multiplicative constants CA and cp̄,A,ε depend on global, and not just
local, properties of the set A.

3.2 Undecided

We now consider situations in which information in�uences actions the most. Those are
situations of indi�erence in which, at the prior belief p̄, the agent is undecided between
several optimal actions. A small piece of information can then be enough to break this
indi�erence. As shown by the following proposition, the value function then exhibits a kink
at p̄.

Proposition 3 The two conditions are equivalent:
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• the set A?(p̄) of optimal actions at the prior belief p̄ contains more than one element;

• the value function vA is non-di�erentiable (in the standard sense) at the prior belief p̄.

At such beliefs p̄, the convexity gap of the value function vA is maximal in the directions
in which it is non-di�erentiable. This allows us to derive a second bound on the value of
information. Cases of indi�erence are typical of situations with a �nite number of action
choices.

We call indi�erence kernel Σi

A(p̄) at p̄ the vector space of signed measures

Σi

A(p̄) = [A?(p̄)− A?(p̄)]⊥ . (14)

Beliefs in the indi�erence kernel Σi

A(p̄) do not break any of the ties in A?(p̄), since:

p ∈ Σi

A(p̄) ⇐⇒ 〈p , a〉 = 〈p , a′〉 , ∀(a, a′) ∈ A?(p̄)2 . (15)

We note the inclusion
∆c

A(p̄) ⊂ Σi

A(p̄) ∩∆ , (16)

as every element in the con�dence set is necessarily in the indi�erence kernel and in the
simplex of probability measures.

Recall that a semi-norm on the signed measures Σ on K, identi�ed with RK , is a mapping
‖ · ‖ : RK → R+ which satis�es the requirements of a norm, except that the vector subpace
{s ∈ RK | ‖s‖ = 0} � called the kernel of the semi-norm ‖ · ‖ � is not necessarily reduced
to the null vector.

Theorem 4 (Bounds on the value of information for the undecided agent) There ex-
ists a positive constant CA and a semi-norm ‖ · ‖Σi

A(p̄) with kernel Σi

A(p̄), the indi�erence
kernel in (14), such that, for every information structure q,

CAE ‖q− p̄‖ ≥ VoIA(q) ≥ VoIA?(p̄)(q) ≥ E ‖q− p̄‖Σi

A(p̄) . (17)

The lower bound in Theorem 4 shows that a lower bound of the value of information is
the expectation of a semi-norm of the distance between the prior belief and the posterior
belief. To understand the role of the kernel Σi

A(p̄) of this semi-norm, let us �rst consider the
set of beliefs in this set. A posterior q is in Σi

A(p̄) = [A?(p̄)− A?(p̄)]⊥ if and only if, for any
two optimal actions a, a′ ∈ A?(p̄), 〈q , a〉 = 〈q , a′〉. In words, posteriors that do not break
any of the ties in A?(p̄) might not be valuable to the agent. On the other hand, Theorem 4
tells us that all other directions � i.e., those that allow at least one of the ties in A?(p̄) to
be broken � are valuable to the agent, and furthermore, in these directions, the value of
information behaves like an expected distance from the prior to the posterior.

The upper bound says that the value of information is bounded by an expected distance
from the prior to the posterior, and the second inequality states that the value of information
with decision set A is at least as large as with decision set A?(p̄).

Note that the bounds on Theorem 4 rely on the indi�erence kernel Σi

A(p̄), which can be
computed directly from the set A?(p̄). The multiplicative constant CA, however, depends on
more global properties of the set A.
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3.3 Flexible

Finally, we consider the case in which there is a unique optimal action for each belief in
the range considered, and this action depends in a certain smooth way on the belief. More
precisely, we assume that around the prior, optimal actions depend on a 1-1 way on the
belief in a certain di�erentiable way. This assumption is met when, for instance, the decision
problem faced by the agent is a scoring rule (Brier, 1950), or an investment problem (Arrow,
1971; Cabrales, Gossner, and Serrano, 2013).

Our �rst step is to characterize a class of situations of interest, in which the agent's
optimal action depends smoothly on her belief. The proposition o�ers three alternative
characterizations of these situations, based 1) on the local behavior of the agent's optimal
optimal choices, 2) on local properties of the geometry of the boundary of the set of actions,
and 3) on local second di�erentiability properties of the value function.

Proposition 5 Suppose that the action set A has boundary ∂A which is a C2 submanifold
of RK. The three following conditions are equivalent:

1. The set-valued mapping
A? : ∆ ⇒ A , p 7→ A?(p) (18)

is a local di�eomorphism 1 at the prior belief p̄;

2. The set A?(p̄) of optimal actions at the prior belief p̄ is reduced to a singleton at which
the curvature of the action set A is positive;

3. The value function vA is twice di�erentiable at the prior belief p̄, and the Hessian is
de�nite positive.

In this case, we say that the agent is �exible at p̄.

Theorem 6 (Bounds on the VoI for the �exible agent) If the agent is �exible at p̄,
then there exist positive constants Cp̄,A and cp̄,A such that, for every information structure q,

Cp̄,AE ||q− p̄||2 ≥ VoIA(q) ≥ cp̄,AE ||q− p̄||2 . (19)

Theorem 6 shows that, in the case of a �exible agent, the value of information is essentially
given by the expected square distance between the prior and the posterior, up to some
multiplicative constant. One of the strengths of the theorem is that its assumption that the
agent is �exible is a local one, whereas its conclusion is global, as it applies to all information
structures. On the other hand, the multiplicative constants themselves depend on the global
behavior of the value function, and hence cannot be inferred from local properties only.

1Meaning that the set A?(p) is a singleton for all p ∈ ∆, in which case we identify a singleton set with its
single element.
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4 The marginal value of information

Radner and Stiglitz (1984) study the question of the marginal value of information. They
provide joint conditions on a parametrized family of information structures together with a
decision problem such that, when the agent is close to receiving no information at all, the
marginal value of information is null. Their result was subsequently generalized by Chade
and Shlee (2002) and De Lara and Gilotte (2007), who also characterize joint conditions on
parametrized information and a decision problem leading to zero marginal value of informa-
tion.

In this section, we show how our bounds on the value of information apply to the marginal
value of information. In particular, we provide separate conditions on the decision problem
and on the family of parametrized information structures that result in a null value of
information. We then examine several parametrized families of information structures and
rely on our main results to study how the marginal value of information varies depending on
the decision problem faced.

Let (qθ)θ>0 be a family of information structures. As in Radner and Stiglitz (1984), we
are interested in the marginal value of information:

V + = lim sup
θ→0

1

θ
VoIA(qθ) . (20)

The following proposition is a straightforward consequence of Theorems 2 and 6.

Proposition 7 Assume either that

1. E d
(
qθ,∆c

A(p̄)
)

= o(θ),

2. the decision maker is �exible at p̄ and E ‖qθ − p̄‖2 = o(θ).

Then V + = 0.

The �rst condition is met automatically if E ‖qθ − p̄‖ = o(θ). It is also met if, for instance,
∆c

A(p̄) has a non-empty interior, and posteriors converge to the prior almost-surely.

We now discuss how our approach in Proposition 7 compares with the literature. In
Radner and Stiglitz (1984), one �nds joint conditions on the parameterized information
structure (qθ)θ>0 and the decision problem at hand A, leading to V + = 0. The second case
in Proposition 7, when the decision maker is �exible, compares with the original Radner-
Stiglitz assumptions for the smoothness part, but not for the uniqueness of optimal actions.
Indeed, Assumption (A0) in Radner and Stiglitz (1984) does not require that A?(qθ) be a
singleton, for all θ.

Chade and Shlee (2002) make a step towards disentangling conditions on the parameter-
ized information structure (qθ)θ>0 from conditions on the decision problem A that lead to a
null marginal value of information. However, like Radner and Stiglitz (1984), they make an
assumption on how the optimal action varies with information, which makes the comparison
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with Proposition 7 delicate. In addition, Chade and Shlee (2002) provide su�cient condi-
tions for V + = 0 that bear on the conditional distribution of the signal knowing the state of
nature. Our approach focuses on the posterior conditional distribution of the state of nature
knowing the signal.

De Lara and Gilotte (2007) provide separate conditions on the parameterized information
structure (qθ)θ>0 and the decision problem A that lead to V + = 0. Their condition �IIDV=0�
is that lim supθ→0

1
θ
E ‖qθ − p̄‖ = 0, or, equivalently, E ‖qθ − p̄‖ = o(θ), which implies the

�rst item of Proposition 7. Thus, this proposition implies the main result of De Lara and
Gilotte (2007).

4.1 Examples

Here, we study the marginal value of information for several typical parametrized information
structures. In the �rst, information consists on the observation of a Brownian motion with
known variance and a drift that depends on the state of nature. In the second, information
consists of the observation of a Poisson process whose probability of success depends on the
state of nature. In these two well studied families in the learning literature, the natural
parametrization of information is the length of the interval of time during which observation
takes place. In our third example, the agent observes a binary signal and the marginal
value of information depends on the asymptotic informativeness of these signals close to the
situation without information.

In all three following examples we assume binary states of nature: K = {0, 1}. The prior
belief on the state being 1 is denoted p̄. We follow the conditions under which we established
bounds on the value of information, and label as �undecided� the case in which the decision
problem faced by the decision maker is such that there is indi�erence between two actions
at p̄, ��exible� the case in which the optimal action is a smooth function of the belief in a
neighborhood of p̄, and �con�dent� the case in which there is a unique optimal action in an
open interval of beliefs containing p̄, and in this case we let (pl, ph) be the set of beliefs for
which this action is the unique optimal one.

Our aim is to develop estimates of the marginal value of information. There are three
possibilities: it can be in�nite, null, or positive and �nite. We denote these three cases by
V + =∞, V + = 0 and V + ' 1 respectively.

Example 1 (Brownian motion) Frameworks in which agents observe a Brownian motion
with known volatility and unknown drift include Bergemann and Välimäki (1997), Keller
and Rady (1999), Bolton and Harris (1999), as well as reputation models like Faingold and
Sannikov (2011).

Assume the agent observes the realization of a Brownian motion with variance 1 and
drift k ∈ {0, 1}:

dZt = kdt+ dBt (21)

for a small interval of time θ > 0.
If we let qt be the posterior belief at time t, it is well known2 that qt follows a di�usion

2See for instance Lemma 1 in Bolton and Harris (1999) or Lemma 2 in Faingold and Sannikov (2011).
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process of the form
dqt = qt(1− qt)dwt ,

where w is a standard Browian process.
Thus, for small values of θ,

E ‖qθ − p‖ ∼
√
θ , (22a)

E ‖qθ − p‖2 ∼ θ . (22b)

It follows from Theorems 2-6 that the marginal value of information is characterized, de-
pending on the decision problem, as:

1. In the con�dent case, V + = 0,

2. In the �exible case, V + ' 1,

3. In the undecided case, V + =∞.

Example 2 (Exponential learning) Exponential learning plays a central role in models
of strategic experimentation such as Keller, Rady, and Cripps (2005). Assume the agent
observes a Poisson process with intensity ρk during a small interval of time θ > 0, where ρ1 >
ρ0. The probability of two successes is negligible compared to the probability of one success
(of order θ2 compared to θ). A success leads to a posterior that converges, as θ → 0, from
below to

q+ =
p̄ρ1

p̄ρ1 + (1− p̄)ρ0

> p̄ , (23)

and happens with probability of order ∼ θ. In the absence of success, the posterior belief
converges to p̄ as θ → 0.

In particular:

E ‖qθ − p‖ ∼ θ , (24a)

E ‖qθ − p‖2 ∼ θ . (24b)

Hence, we obtain the following estimates on the marginal value of information:

1. In the con�dent case,

(a) V + ' 1 if q+ > ph,

(b) V + ' 0 if q+ ≤ ph,

2. In the �exible case, V + ' 1,

3. In the undecided case, V + ' 1.
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Example 3 (Equally likely signals) In our third example, we consider binary and equally
likely signals, which lead to a �split� of beliefs around the prior p̄. Depending on the precision
of these signals as a function of θ, the posterior beliefs are p±θα for a certain parameter α >
0. Lower values of α correspond to more spread out beliefs around the prior, hence to more
accurate information.

In this case we easily compute:

E ‖qθ − p‖ = θα , (25a)

E ‖qθ − p‖2 = θ2α . (25b)

Here again, the marginal value of information is deduced from Theorems 2�6:

1. In the con�dent case, V + = 0,

2. In the �exible case,

(a) V + =∞ if α < 1
2
,

(b) V + ' 1 if α = 1
2
,

(c) V + = 0 if α > 1
2
,

3. In the undecided case,

(a) V + =∞ if α < 1,

(b) V + ' 1 if α = 1,

(c) V + = 0 if α > 1.

Table 1 summarizes the marginal value of information in all of our examples.

V + con�dent �exible undecided

Poisson 0 or 1 1 1
Brownian 0 1 ∞
EL, α < 1

2
0 ∞ ∞

EL, α = 1
2

0 1 ∞
EL, 1

2
< α < 1 0 0 ∞

EL, α = 1 0 0 1
EL, α > 1 0 0 0

Table 1: Marginal value of information in the di�erent examples. EL stands for the equally
likely signals case, 1 represents a positive and �nite marginal value of information.

In all cases except one, the marginal value of information is completely determined by
the local behavior of the value function around the prior. For the Poisson case, the marginal
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value of information is 0 or positive, depending on whether the observation of a success is
su�cient to lead to a decision reversal.

The marginal value of information is always weakly higher in the �exible case than in the
undecided case, and weakly higher in the undecided case than in other cases. In the con�dent
case, the marginal value of information is null, except in the Poisson case with q+ > ph. This
is driven by the fact that, in all other cases, posteriors are, with high probability, too close
to the prior to lead to a decision reversal. In the undecided situation, the marginal value of
information is always positive or in�nite, except for su�ciently uninformative binary signals
(α > 1). Finally, in the �exible case, the most representative of decision problems with
a continuum of actions, the value of information is positive or in�nite, except with quite
uninformative binary signals (α > 1/2).

5 Conclusion

In decision problems under incomplete information, we have formalized the natural corre-
spondence, given by duality, between the set of available choices to a decision maker and
the value function expressed as a function of her belief. This, in turn, has allowed us to
derive bounds on the value of any piece of information, bounds that are based solely on local
properties of the agent's behavior around her prior. Finally, we have provided applications
to the question of the marginal value of information.
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A Convex analysis and geometry background

The set of states of nature is a �nite set K. We denote by Σ the set of signed measures
on K, identi�ed with RK . The set ∆ of probability distribution on K is a convex subset of
the set Σ, identi�ed with the simplex of RK .

A.1 Some reviews of convex analysis

We rely mostly on the reference book Hiriart-Ururty and Lemaréchal (1993) for reminders
on convex analysis.

Let C ⊂ RK be a nonempty convex set. The support function σC of the set C is the
convex function de�ned by

σC(s) = sup
x∈C
〈s , x〉 , ∀s ∈ Σ . (26)

For any signed measure s ∈ Σ, the (exposed) face of C in the direction s ∈ Σ is

FC(s) = arg max
x′∈C
〈s , x′〉 = {x ∈ C | ∀x′ ∈ C , 〈s , x′〉 ≤ 〈s , x〉} ⊂ C . (27)

For any x in C, the normal cone to the closed convex set C at x ∈ C is

NC(x) = {s ∈ Σ | ∀x′ ∈ C , 〈s , x′〉 ≤ 〈s , x〉} ⊂ Σ . (28)

Proposition 8 Let C ⊂ RK be a nonempty convex set.

1. Exposed face and normal cone are conjugate as follows:

x ∈ FC(y) ⇐⇒ x ∈ C and y ∈ NC(x) . (29)

2. Let X ⊂ C be nonempty. Let Y ⊂ RK be nonempty. Then

X ⊂
⋂
y∈Y

FC(y) ⇐⇒ Y ⊂
⋂
x∈X

NC(x) ⇐⇒ σC(y) = 〈y, x〉 , ∀x ∈ X , ∀y ∈ Y .

(30)

3. Let y ∈ RK be such that FC(y) 6= ∅. Then, we have

σC(y′)− σC(y) ≥ σFC(y)(y
′ − y) ≥ 〈y′ − y, x′〉 , ∀y′ ∈ RK , ∀x′ ∈ C . (31)

4. The function σC−C is a semi-norm with kernel [C − C]⊥.

Proof.
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1. Exposed face and normal cone are conjugate as follows (Hiriart-Ururty and Lemaréchal,
1993, p. 220):

x ∈ C and 〈y, x〉 = σC(y) ⇐⇒ x ∈ argmax
x′∈C

〈y, x′〉 (32a)

⇐⇒ x ∈ FC(y) (32b)

⇐⇒ x ∈ C and y ∈ NC(x) . (32c)

2. We have

X ⊂
⋂
y∈Y

FC(y) ⇐⇒ x ∈ FC(y) , ∀x ∈ X , ∀y ∈ Y

⇐⇒ y ∈ NC(x) , ∀x ∈ X , ∀y ∈ Y by (29) as X ⊂ C

⇐⇒ Y ⊂
⋂
x∈X

NC(x) .

3. The subdi�erential of the support function σC of the (nonempty) closed convex set C ⊂
RK at y ∈ RK is (Aubin, 1982, p. 107), (Hiriart-Ururty and Lemaréchal, 1993, p. 258)

∂σC(y) = FC(y) = argmax
x∈C

〈y, x〉 , ∀y ∈ RK . (33)

If ∂σC(y) 6= ∅, then (31) is a consequence of the de�nition of the subdi�erential.

4. The support function σC−C is homogeneous and sublinear, and it is nonnegative since
0 ∈ C − C. As a consequence, σC−C is a semi-norm. The kernel is easily calculated.

This ends the proof.

A.2 Geometric convex analysis

A nonempty, convex and compact set A ⊂ RK is called a convex body of RK (Schneider,
2014, p. 8).

Regular points and smooth bodies. We say that a point a ∈ A is smooth or regular
(Schneider, 2014, p. 83) if the normal cone NA(a) is reduced to a half-line. The set of regular
points is denoted by reg(A):

a ∈ reg(A) ⇐⇒ ∃s ∈ Σ , s 6= 0 , NA(a) = R+s . (34)

Notice that a regular point a necessarily belongs to the boundary ∂A of A: reg(A) ⊂ ∂A.
The body A is said to be smooth if all boundary points of A are regular (reg(A) = ∂A);
in that case, it can be shown that its boundary ∂A is a C1 submanifold of RK (Schneider,
2014, Theorem 2.2.4, p. 83).
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Spherical image map of A. We denote by S|K|−1 the unit sphere of the signed measures Σ
on K (identi�ed with RK with its canonical scalar product):

S|K|−1 = {s ∈ Σ , ‖s‖ = 1} . (35)

By (34), we have that

a ∈ reg(A) ⇐⇒ ∃!s ∈ S|K|−1 , NA(a) = R+s . (36)

If a point a ∈ A is regular, the unique outer normal unitary vector to A at a is denoted
by nA(a), so that NA(a) = R+nA(a). The mapping

nA : reg(A)→ S|K|−1 , where reg(A) ⊂ ∂A (37)

is called the spherical image map of A, or the Gauss map, and is continuous (Schneider,
2014, p. 88). We have

a ∈ reg(A)⇒ NA(a) = R+nA(a) where nA(a) ∈ S|K|−1 . (38)

Reverse spherical image map of A. We say that a unit signed measure s ∈ S|K|−1 is
regular (Schneider, 2014, p. 87) if the (exposed) face FA(s) of A in the direction s, as de�ned
in (47), is reduced to a singleton. The set of regular unit signed measures is denoted by
regn(A):

s ∈ regn(A) ⇐⇒ s ∈ S|K|−1 and ∃!a ∈ A , FA(s) = {a} . (39)

For a regular unit signed measure s ∈ S|K|−1, we denote by fA(s) the unique element of FA(s),
so that FA(s) = {fA(s)}. The mapping

fA : regn(A)→ ∂A , where regn(A) ⊂ S|K|−1 (40)

is called the reverse spherical image map of A, and is continuous (Schneider, 2014, p. 88).
We have

s ∈ regn(A)⇒ FA(s) = {fA(s)} . (41)

Bodies with C2 surface.

Proposition 9 (Schneider 2014, p. 113) If the body A has boundary ∂A which is a C2

submanifold of RK, then

• all points a ∈ ∂A are regular (reg(A) = ∂A),

• the spherical image map nA in (37) is de�ned over the whole boundary ∂A and is of
class C1,

• the spherical image map nA has the reverse spherical image map fA in (37) as right
inverse, that is,

nA ◦ fA = Idregn(A) . (42)
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Proof. The �rst two items can be found in (Schneider, 2014, p. 113). Now, we prove that
nA ◦ fA = Idregn(A). As fA : regn(A) → ∂A by (40), and as nA : ∂A → S|K|−1 by (37) since
reg(A) = ∂A, the mapping nA ◦ fA : regn(A) → S|K|−1 is well de�ned. Let s ∈ regn(A).
By (41), we have that FA(s) = {fA(s)} and by (38), we have thatNA

(
fA(s)

)
= R+nA

(
fA(s)

)
.

From (52) � stating that exposed face and normal cone are conjugate � we deduce that
s ∈ R+nA(fA(s)). As s ∈ S|K|−1, we conclude that s = nA

(
fA(s)

)
by (37).

Weingarten map. Let a ∈ reg(A) be a regular point such that the spherical image map nA
in (37) is di�erentiable at a, with di�erential denoted by TanA. TheWeingarten map (Schnei-
der, 2014, p. 113)

TanA : Ta∂A→ TnA(a)S
|K|−1 (43)

linearly maps the tangent space Ta∂A of the boundary ∂A at point a into the tangent
space TnA(a)S

|K|−1 of the sphere S|K|−1 at nA(a). The eigenvalues of the Weingarten map at a
are called the principal curvatures of A at a (Schneider, 2014, p. 114); they are nonnegative
(Schneider, 2014, p. 115). By de�nition, the body A has positive curvature at a if all principal
curvatures at a are positive or, equivalently, if the Weingarten map is of maximal rank at a
(Schneider, 2014, p. 115).

Reverse Weingarten map. Let s ∈ regn(A) be a regular unit signed measure such that
the reverse spherical image map fA in (40) is di�erentiable at s, with di�erential denoted
by TsfA. The reverse Weingarten map

TsfA : TsS
|K|−1 → TfA(s)∂A (44)

maps the tangent space TsS
|K|−1 of the sphere S|K|−1 at s into the tangent space TfA(s)∂A

of the boundary ∂A at point fA(s). The eigenvalues of the reverse Weingarten map at s are
called the principal radii of curvature of A at s.

B Revisiting the model of Section 2

With the convex analysis tools recalled in section A.1, we revisit the model in Section 2 to
prepare the proofs in Section C. We recall that A ⊂ RK is a nonempty, convex and compact
subset of RK , called the action set.

Support function. The support function σA of the action set A is de�ned by

σA(s) = sup
a∈A
〈s , a〉 , ∀s ∈ Σ . (45)

The value function vA : ∆ → R in (4) is the restriction of the support function σA to
probability distributions:

vA(p) = σA(p) , ∀p ∈ ∆ . (46)
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It is well known that σA is convex (as the supremum of the family of linear maps 〈· , a〉
for a ∈ A). As the action set A is compact, σA(s) takes �nite values, hence its domain is Σ,
hence σA is continuous.

(Exposed) face. For any signed measure s ∈ Σ, we let

FA(s) = arg max
a′∈A
〈s , a′〉 = {a ∈ A | ∀a′ ∈ A , 〈s , a′〉 ≤ 〈s , a〉} ⊂ A (47)

be the set of maximizers of a 7→ 〈s , a〉 over A. We call FA(s) the (exposed) face of A in
the direction s ∈ Σ. As the action set A is convex and compact, the face FA(s) of A in the
direction s is nonempty, for any s ∈ Σ, and the face is a subset of the boundary ∂A of A:

FA(s) ⊂ ∂A , ∀s ∈ Σ . (48)

The set A?(p) of optimal actions under belief p in (7) coincides with the (exposed) face FA(p)
of A in the direction p in (47):

A?(p) = FA(p) , ∀p ∈ ∆ . (49)

Normal cone. For any payo� vector a in A, we de�ne

NA(a) = {s ∈ Σ | ∀a′ ∈ A , 〈s , a′〉 ≤ 〈s , a〉} ⊂ Σ . (50)

We call NA(a) the normal cone to the closed convex set A at a ∈ A. Notice that NA(a) is
made of signed measures, that are not necessarily beliefs. The set ∆?

A(a) of beliefs compatible
with optimal action a in (8) is related to the normal cone NA(a) at a in (50) by:

∆?
A(a) = NA(a) ∩∆ , ∀a ∈ A . (51)

Conjugate subsets of actions and beliefs. Exposed face FA and normal cone NA are
conjugate as follows:

s ∈ Σ and a ∈ FA(s) ⇐⇒ a ∈ A and s ∈ NA(a) . (52)

C Proofs of the results in Section 3

Using the relations (49) and (51), we express the proofs of the results in Section 3 in terms
of the sets FA(p) and NA(a) (in the set Σ of signed measures), instead of A?(p) and ∆?

A(a)
(in the set ∆ of probability measures).
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Value of information.
We have seen in (46) that the value function vA : ∆ → R in (4) is the restriction of the

support function σA to beliefs in ∆. By de�nition (6) of the value of information, we deduce
that, for any information structure q, we have:

VoIA(q) = E [σA(q)− σA(p̄)] . (53)

Let us introduce, for all q ∈ ∆,

ϕ+
A(q) = σA(q)− σA(p̄) + σ−A?(p̄)(q − p̄) , (54a)

ϕ−A(q) = σA(q)− σA(p̄)− σA?(p̄)(q − p̄) . (54b)

Proposition 10 For any information structure q, for any a ∈ A, we have that

E
[
ϕ+
A(q)

]
= E

[
σA(q)− σA(p̄) + σ−A?(p̄)(q− p̄)

]
(55a)

≥ VoIA(q) = E [σA(q)− σA(p̄)− 〈q− p̄ , a〉] (55b)

≥ E
[
σA(q)− σA(p̄)− σA?(p̄)(q− p̄)

]
= E

[
ϕ−A(q)

]
. (55c)

Proof. By (54), we have, for all q ∈ ∆,

ϕ+
A(q) = σA(q)− σA(p̄) + σ−A?(p̄)(q − p̄) (56a)

= sup
a∈A?(p̄)

(
σA(q)− σA(p̄)− 〈q − p̄ , a〉

)
(56b)

≥ σA(q)− σA(p̄)− 〈q − p̄ , a〉 , ∀a ∈ A?(p̄) (56c)

≥ inf
a∈A?(p̄)

(
σA(q)− σA(p̄)− 〈q − p̄ , a〉

)
(56d)

= σA(q)− σA(p̄)− σA?(p̄)(q − p̄) = ϕ−A(q) . (56e)

By taking the expectation, we obtain (55), using (53) and the property that E [q− p̄] = 0.

Con�dence set and indi�erence kernel.
We start by providing characterizations of the con�dence set ∆c

A(p̄) in (9) and of the
indi�erence kernel Σi

A(p̄) in (14), in terms of the sets FA(p) in (47) and NA(a) in (50).

Proposition 11

1. The con�dence set ∆c

A(p̄) of (9) is the nonempty closed and convex set

∆c

A(p̄) =
⋂

a∈A?(p̄)

∆?
A(a) =

⋂
a∈FA(p̄)

NA(a) ∩∆ . (57)
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2. Let p ∈ ∆. We have that

p ∈ ∆c

A(p̄) ⇐⇒ FA(p̄) ⊂ FA(p) (58a)

⇐⇒ σA(p)− σA(p̄)− 〈p− p̄ , a〉 = 0 , ∀a ∈ FA(p̄) (58b)

⇐⇒ σA(p)− σA(p̄) + σ−A?(p)(p− p̄) = 0 . (58c)

3. The indi�erence kernel Σi

A(p̄) of (14) is the nonempty vector subspace

Σi

A(p̄) = [FA(p̄)− FA(p̄)]⊥ = [A?(p̄)− A?(p̄)]⊥ =
⋂

a∈FA(p̄)

NFA(p̄)(a) . (59)

Proof.

1. Express (9) using (51).

2. We prove the three equivalences in (58).

(a) Let p ∈ ∆. Using the property (52) that exposed face FA and normal cone NA

are conjugate, we obtain:

p ∈ ∆c

A(p̄) ⇐⇒ p ∈
⋂

a∈FA(p)

NA(a) by (57)

⇐⇒ a ∈ FA(p) , ∀a ∈ FA(p̄) by (52)

⇐⇒ FA(p̄) ⊂ FA(p) .

(b) Let p ∈ ∆. We have that

σA(p)− σA(p̄)− 〈p− p̄ , a〉 = 0 , ∀a ∈ FA(p̄)

⇐⇒ σA(p) = 〈p , a〉 , ∀a ∈ FA(p̄)

because σA(p̄) = 〈p̄ , a〉 for any a ∈ FA(p̄), since FA(p̄) is the set A?(p) of optimal
actions under belief p̄ by (7) and (47)

⇐⇒ p ∈
⋂

a∈FA(p)

NA(a) by (30)

⇐⇒ p ∈
⋂

a∈FA(p)

NA(a) ∩∆ = ∆c

A(p̄) by (57).

(c) For any a ∈ A, we de�ne the function

ϕa(q) = σA(q)− σA(p̄)− 〈q − p̄ , a〉 , ∀q ∈ ∆ . (60)
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By (31) and (58b), we have that

∀a ∈ FA(p̄) , ∀q ∈ ∆ , ϕa(q) ≥ 0 , (61a)

∀a ∈ FA(p̄) , ∀q ∈ ∆c

A(p̄) , ϕa(q) = 0 . (61b)

Let p ∈ ∆. Using (61a), we deduce from (58b) and from the compacity of FA(p̄)
that

p ∈ ∆c

A(p̄) ⇐⇒ inf
a∈FA(p̄)

(
σA(p)− σA(p̄)− 〈p− p̄ , a〉

)
= 0 . (62)

We conclude with (56d)�(56e).

3. Express (14) using (49). Then, use the de�nition (28) of NFA(p̄)(a).

This ends the proof.

We have the following inclusion between the con�dence set ∆c

A(p̄) in (9) and the indif-
ference kernel Σi

A(p̄):
∆c

A(p) ⊂ Σi

A(p) ∩∆ . (63)

The above inclusion is strict in general. Indeed, consider a case where FA(p) is a single-
ton {a}. Then, on the one hand, ∆c

A(p) = NA(a)∩∆. However, on the other hand, we have
by (59):

Σi

A(p) ∩∆ = NFA(p)(a) ∩∆ = N{a}(a) ∩∆ = ∆ .

As soon asNA(a)∩∆ only contains the belief p, we have that {p} = ∆c

A(p) and Σi

A(p)∩∆ = ∆.
As an example, consider the case where the set A is the unit ball:

A = B(0, 1) , σA(s) = ‖s‖ , NA(a) = R+a , FA(s) = { s

‖s‖
} , NFA(s)(a) = R2 , (64)

so that ∆c

A(p) = {p} , Σi

A(p) ∩∆ = ∆.

C.1 Valuable information

Proof of Proposition 1.
Let a ∈ FA(p̄) and q be an information structure. We have that

VoIA(q) = 0 ⇐⇒ E [σA(q)− σA(p̄)] = 0 by (53) (65a)

⇐⇒ E [σA(q)− σA(p̄)− 〈q− p̄ , a〉] = 0 , as E [q− p̄] = 0 (65b)

⇐⇒ σA(q)− σA(p̄)− 〈q− p̄ , a〉 = 0 , P− a.s. (65c)

because σA(q)− σA(p̄)− 〈q− p̄ , a〉 ≥ 0 by (31) since a ∈ FA(p̄)

⇐⇒ σA(q) = 〈q , a〉 , P− a.s. (65d)
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because σA(p̄) = 〈p̄ , a〉 since a ∈ FA(p̄)

⇐⇒ P {a ∈ FA(q)} = 1 (65e)

⇐⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A} = 1 . (65f)

Let F ⊂ FA(p̄) be a dense subset of the compact FA(p̄) of RK . We immediately get from
the last equality that

VoIA(q) = 0⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ F} = 1 . (66a)

As the set {a ∈ FA(p̄) | 〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A} is closed (for any outcome in the under-
lying sample space), we get that

{〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ F} ⊂
{
〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ F

}
. (66b)

We deduce from the last equality that

VoIA(q) = 0⇒ P
{
〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ F

}
= 1 . (66c)

Now, since F = FA(p̄), we �nally get that

VoIA(q) = 0⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ FA(p̄)} = 1 . (66d)

In other words, we have obtained that, by de�nition (50) of the normal cone NA(a):

VoIA(q) = 0⇒ q ∈
⋂

a∈FA(p̄)

NA(a) , P− a.s. . (66e)

Since q ∈ ∆, we conclude by (57) that

VoIA(q) = 0⇒ q ∈
⋂

a∈FA(p)

NA(a) ∩∆ =
⋂

a∈A?(p)

∆?
A(a) = ∆c

A(p) . (66f)

Revisiting the proof backward, or using (58b), we easily see that

q ∈ ∆c

A(p) , P− a.s.⇒ VoIA(q) = 0 . (67)

This ends the proof.

Proof of Theorem 2.
Let q be an information structure.

First, we show the upper estimate CAE d
(
q,∆c

A(p̄)
)
≥ VoIA(q) in (13). For this purpose,

we consider a ∈ A and we show that the function ϕa in (60) is such that

ϕa(q) ≤ sup
a′∈A
‖a− a′‖ inf

p∈∆c

A(p̄)
‖p− q‖ . (68)
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Indeed, we have that, for any p ∈ ∆c

A(p̄),

ϕa(q) = ϕa(q)− ϕa(p) by (61b) since p ∈ ∆c

A(p̄) (69a)

= σA(q)− σA(p)− 〈q − p , a〉 by (60) (69b)

= σA−a(q)− σA−a(p) by (26) (69c)

≤ sup
a′∈A−a

‖a′‖ × ‖p− q‖ by (26) (69d)

= sup
a′∈A
‖a− a′‖ × ‖p− q‖ . (69e)

By taking the in�mum with respect to all p ∈ ∆c

A(p̄), we obtain (68). Then, we deduce that

VoIA(q) = E [ϕa(q)] , ∀a ∈ A by (55b) (70a)

= inf
a∈A

E [ϕa(q)] (70b)

≤ inf
a∈A

sup
a′∈A
‖a− a′‖ × E

[
inf

p∈∆c

A(p̄)
‖p− q‖

]
by (68). (70c)

With CA = infa∈A supa′∈A ‖a−a′‖ and (12), this gives the upper estimate CAE d
(
q,∆c

A(p̄)
)
≥

VoIA(q) in (13).

Second, we show the lower estimate VoIA(q) ≥ cp̄,A,εP{q 6∈ ∆c

A,ε(p̄)} in (13).
We consider an open subset Q of ∆ that contains the con�dence set ∆c

A(p), that is,
∆c

A(p̄) ⊂ Q. By Lemma 12 right below, there exists an a ∈ FA(p̄) such that the continuous
function ϕa in (60) is strictly positive on ∆c

A(p̄)c. As Qc ⊂ ∆c

A(p̄)c and Qc is a closed subset
of the compact ∆, we can de�ne

cp̄,A = inf
p 6∈Q

ϕa(p) > 0 . (71)

We deduce that

VoIA(q) = E [ϕa(q)] by (55b) (72a)

= E
[
1q∈∆c

A(p̄)ϕa(q) + 1q 6∈∆c

A(p̄)ϕa(q)
]

(72b)

= E
[
1q 6∈∆c

A(p̄)ϕa(q)
]
by (61b) (72c)

≥ E [1q 6∈Qϕa(q)] (72d)

≥ E [1q 6∈Qcp̄,A] = cp̄,AP{q 6∈ Q} . (72e)

With Q = ∆c

A,ε(p̄), we put
cp̄,A,ε = inf

p 6∈∆c

A,ε(p̄)
ϕa(p) > 0 . (73)

This ends the proof.

Lemma 12 There exists at least one a ∈ FA(p̄) such that the function ϕa in (60) is strictly
positive on the complementary set ∆c

A(p̄)c.
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Proof. We consider two cases, depending whether FA(p̄) is a singleton or not.
Suppose that FA(p̄) is a singleton {a}. By (58b), we have that

q 6∈ ∆c

A(p̄) ⇐⇒ ϕa(q) > 0 . (74)

Suppose that FA(p̄) is a not singleton. Recall that the relative interior ri(C) of a
nonempty convex set C ⊂ RK is the nonempty interior of C for the topology relative to
the a�ne hull aff(C) (Hiriart-Ururty and Lemaréchal, 1993, p. 103). We prove that any
a ∈ ri

(
FA(q)

)
answers the question. Let a ∈ ri

(
FA(q)

)
be �xed. For any q 6∈ ∆c

A(p̄),
by (58a) we have that FA(p̄) 6⊂ FA(q). Therefore, there exists ā ∈ FA(p̄) such that ā 6∈ FA(q),
that is, such that σA(q) > 〈q , ā〉. As a ∈ ri

(
FA(q)

)
, there exists a′ ∈ ri

(
FA(q)

)
such that

a = λa′ + (1 − λ)ā for a certain λ ∈]0, 1[. Since σA(q) ≥ 〈q , a′〉 (by de�nition (45) of σA)
and σA(q) > 〈q , ā〉 (as ā 6∈ FA(q)), we deduce that

σA(q) = λσA(q) + (1− λ)σA(q) > λ 〈q , a′〉+ (1− λ) 〈q , ā〉 = 〈q , a〉 , (75)

where we used the property that λ ∈]0, 1[. Using the de�nition (60) of the function ϕa, we
have obtained that q 6∈ ∆c

A(p̄)⇒ ϕa(q) > 0.
This ends the proof.

C.2 Undecided

Proof of Proposition 3.
We prove that the face FA(p̄) of A in the direction p̄ ∈ ∆ is a singleton if and only if the

the value function vA in (4) is di�erentiable at p̄.

• Suppose that the face FA(p̄) of A in the direction p̄ ∈ ∆ is a singleton.

As the face FA(p̄) is the subdi�erential at p̄ of the support function σA (Hiriart-Ururty
and Lemaréchal, 1993, p. 258), we deduce that σA is di�erentiable at p̄ (Hiriart-Ururty
and Lemaréchal, 1993, p. 251). Therefore, the value function vA in (4) is di�erentiable
at p̄, since vA : ∆→ R is the restriction of σA to probability distributions ∆, as in (46).

• Suppose the value function vA in (4) is di�erentiable at p̄.

We consider the extended value function de�ned by

ṽA : R∗+∆→ R , s 7→ ‖s‖vA(
s

‖s‖
) . (76)

Since the support function σA is positively homogeneous, we have that ṽA : R∗+∆→ R
is the restriction of σA to the cone R∗+∆:

ṽA(s) = σA(s) , ∀s ∈ R∗+∆ . (77)

As the prior p̄ has full support, the extended value function ṽA in (76) is well de�ned
on a neighborhood of p̄ and is di�erentiable at p̄, since vA is also. Since ṽA : R∗+∆→ R
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is the restriction of σA to the cone R∗+∆, we deduce that the support function σA is
di�erentiable at p̄.

Since, on the one hand, a convex function with domain RK is di�erentiable at p̄ if
and only if the subdi�erential at p̄ is a singleton (Hiriart-Ururty and Lemaréchal,
1993, p. 251), and, on the other hand, the face FA(p̄) is the subdi�erential at p̄ of the
support function σA (Hiriart-Ururty and Lemaréchal, 1993, p. 258), we conclude that
the face FA(p̄) of A in the direction p̄ ∈ ∆ is a singleton.

This ends the proof.

Proof of Theorem 4.
We prove the three inequalities in (17).

A). We prove the upper inequality CAE ‖q− p̄‖ ≥ VoIA(q) in (17).
By de�nition (45) of a support function, we have that σA(·) ≤ ‖A‖ × ‖ · ‖, where ‖A‖ =

sup{‖a‖ , a ∈ A} < +∞. Thus CA = ‖A‖ in the left hand side inequality in (17).

B). We prove the middle inequality VoIA(q) ≥ VoIA?(p̄)(q) in (17).
For all s ∈ Σ, we have that

σA(s)− σA(p̄) ≥σFA(p̄)(s− p̄) by (31) since FA(p̄) 6= ∅ (78a)

= 〈s− p̄ , a〉 , ∀a ∈ FA(p̄) by de�nition of σFA(p̄) (78b)

=σFA(p̄)(s)− σFA(p̄)(p̄) by de�nition of σFA(p̄). (78c)

By taking the expectation E , we obtain that

VoIA(q) =E [σA(q)− σA(p̄)] by (6) and (46) (79a)

≥E
[
σFA(p̄)(q− p̄)

]
by (78a) (79b)

=E
[
σFA(p̄)(q)− σFA(p̄)(p̄)

]
by (78c) (79c)

=VoIFA(p̄)(q) by (6) and (46).

This ends the proof of the middle inequality.

C). We prove the right hand side inequality VoIA?(p̄)(q) ≥ E ‖q− p̄‖Σi

A(p̄) in (17).

For this purpose, we recall that the a�ne hull aff(S) of a subset S of RK is the intersection
of all a�ne manifolds containing S. Let n be the dimension of the a�ne hull aff

(
FA(p̄)

)
of FA(p̄), and let a1, . . . , an be n actions in FA(p̄) that generate aff

(
FA(p̄)

)
. We put

T = {a1, . . . , an} ⊂ FA(p̄) so that aff
(
FA(p̄)

)
= aff{a1, . . . , an} = aff(T ) . (80)

We will now show that

‖ · ‖Σi

A(p̄) =
1

n
σT−T (·) (81)
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is a semi-norm with kernel (FA(p̄) − FA(p̄))⊥ that satis�es the right hand side inequality
in (17).

First, the support function σT−T is a semi-norm with kernel (T − T )⊥ by item 4 in
Proposition 8. Now, we can easily see that, for any subset S ⊂ RK , one has

(S − S)⊥ =
(

aff(S − S)
)⊥

=
(

aff(S)− aff(S)
)⊥

. (82)

Using these equalities with S = T and S = FA(p̄), we deduce that (T − T )⊥ = (FA(p̄) −
FA(p̄))⊥, since aff(T ) = aff

(
FA(p̄)

)
by (80).

Second, we show that the right hand side inequality in (17) is satis�ed. We have that

VoIA(q) ≥ E
[
σFA(p̄)(q− p̄)

]
by (79b) (83a)

≥ E [σT (q− p̄)] (83b)

because T ⊂ FA(p̄) and support functions (26) are monotone with respect to set inclusion,

= E [σT (q− p̄)− 〈q− p̄ , a〉] , ∀a ∈ A because E [〈q− p̄ , a〉] = 0. (83c)

= E [σT−a(q− p̄)] , ∀a ∈ A because σT−a = σT+{−a} = σT + σ{−a}. (83d)

Indeed, support functions transform a Minkowski sum of sets into a sum of support functions
(Hiriart-Ururty and Lemaréchal, 1993, p. 226). Using again this property, we obtain that

VoIA(q) ≥ 1

n

n∑
i=1

E [σT−ai(q− p̄)] =
1

n
E
[
σ∑n

i=1(T−ai)(q− p̄)
]
. (84)

Now, as T = {a1, . . . , an}, it is easy to see that the sum
∑n

i=1(T − ai) contains any element
of the form ak − al:

ak−al = (a1−a1)+ · · ·+(al−1−al−1)+(ak−al)+(al+1−al+1)+ · · ·+(an−an) ∈
n∑
i=1

(T−ai) .

As support functions are monotone with respect to set inclusion, we deduce that

σ∑n
i=1(T−ai) ≥ σ{ak−al,k,l=1,...,n} = σT−T , (85)

and that

VoIA(q) ≥ 1

n
E
[
σ{ak−al,k,l=1,...,n}(q− p̄)

]
=

1

n
E [σT−T (q− p̄)] = E ‖q− p̄‖Σi

A(p̄) . (86)

This ends the proof.
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C.3 Flexible decisions

Proof of Proposition 5.
All the reminders on geometric convex analysis in Section A.2 were done with outer

normal vectors belonging to the unit sphere of signed measures. Now, as we work with
beliefs � positive measures of mass 1 � we are going to adapt these concepts.

We will consider the di�eomorphism

ν : S|K|−1 ∩ RK
+ → ∆ , s 7→ s

〈s , 1〉
, (87)

that maps unit positive measures into probability measures, with inverse

ν−1 : ∆→ S|K|−1 ∩ RK
+ , p 7→ p

‖p‖
. (88)

Since, by assumption, the action set A has boundary ∂A which is a C2 submanifold
of RK , we know by Proposition 9 that the spherical image map nA : ∂A → S|K|−1 in (37)
is well de�ned, is of class C1, and has for right inverse the reverse spherical image map fA :
regn(A)→ ∂A in (40), that is, nA ◦ fA = Idregn(A).

The set of relevant regular points is the subset of the set reg(A) of regular points de�ned
by

a ∈ reg+(A) ⇐⇒ ∃p ∈ ∆ , NA(a) = R+p . (89)

For a regular action a ∈ reg+(A), there is only one probability p ∈ ∆ such thatNA(a) = R+p,
and it is p = ν

(
nA(a)

)
. We have

a ∈ reg+(A)⇒ NA(a) = R+ν
(
nA(a)

)
where ν

(
nA(a)

)
∈ ∆ . (90)

The set of regular probabilities is

regn+(A) =
(
R∗+regn(A)

)
∩∆ . (91)

For a regular probability p ∈ regn+(A), there is only one action a ∈ ∂A such that FA(p) =
{a}, and it is a = fA

(
ν−1(p)

)
. Indeed, by de�nition (47) of the (exposed) face, we have that

FA(λs) = FA(s) , ∀λ ∈ R∗+ , ∀s ∈ Σ , s 6= 0 . (92)

Therefore, we have that

p ∈ regn+(A)⇒ FA(p) = {fA
(
ν−1(p)

)
} . (93)

The following mappings are well de�ned:

ν ◦ nA : reg+(A)→ ∆ and fA ◦ ν−1 : regn+(A)→ ∂A , (94)

and we have that
(ν ◦ nA) ◦ (fA ◦ ν−1) = Idregn+(A) . (95)
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• Item 2 ⇒ Item 1.
Suppose that the face FA(p̄) is a singleton {a]} and the curvature of the boundary ∂A
of payo�s at a] is positive.

Since, by assumption, the action set A has boundary ∂A which is a C2 submanifold
of RK , we know that the spherical image map nA in (37) is de�ned over the whole
boundary ∂A and is of class C1, and its di�erential is the Weingarten map.

As the curvature of the boundary ∂A of payo�s at a] is positive, the Weingarten
map Ta]nA is of maximal rank at a] (Schneider, 2014, p. 115). Therefore, by the
inverse function theorem, there exists an open neighborhood A of a] in A such that
nA(A) is an open neighborhood of nA

(
a]
)
in S|K|−1, and such that the restriction nA :

A → nA(A) of the spherical image map in (37) is a di�eomorphism. By (42), we have
that nA

(
a]
)

= p̄
‖p̄‖ and the local inverse coincides with the restriction fA : nA(A)→ A

of the reverse spherical image map in (40).

As nA(A) is an open neighborhood of p̄
‖p̄‖ in S

|K|−1, and as the prior p̄ has full support,

we deduce that ν
(
nA(A)

)
is an open neighborhood of p̄ in ∆, where the di�eomor-

phism ν is de�ned in (87).

We easily deduce that fA ◦ ν−1 : ν
(
nA(A)

)
→ A is a di�eomorphism. By (93), we

conclude that fA ◦ ν−1 is the restriction of the set-valued mapping FA : ∆ ⇒ A,
p 7→ FA(p) in (18).

• Item 1 ⇒ Item 3.
Suppose that the set-valued mapping FA : ∆ ⇒ A, p 7→ FA(p) in (18) is a local
di�eomorphism at p̄.

By de�nition (39) of the set of regular unit signed measures, there exists an open
neighborhood q of p̄ in ∆ such that q ⊂ regn+(A), where the set of relevant regular
points is de�ned in (89). In addition, the mapping fA ◦ ν−1 : q → fA

(
ν−1(q)

)
is a

di�eomorphism.

As FA(p) = {fA
(
ν−1(p)

)
}, for all beliefs p ∈ q, we know that the support function σA

is di�erentiable and that its derivative is ∇pσA = fA
(
ν−1(p)

)
(Hiriart-Ururty and

Lemaréchal, 1993, p. 251). As fA ◦ ν−1 is a local di�eomorphism at p̄, and as the
mapping ν in (87) is a di�eomorphism, we deduce that the support function σA is
twice di�erentiable with Hessian having full rank. As the value function vA is the
restriction of σA to ∆, we conclude that vA is twice di�erentiable at p̄ and the Hessian
is de�nite positive.

• Item 3 ⇒ Item 2.
Suppose that the value function vA is twice di�erentiable at p̄ and the Hessian is de�nite
positive.

On the one hand, as the prior p̄ has full support, there exists an open neighborhood q
of p̄ in ∆ such that vA is di�erentiable on q. On the other hand, as the support
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function σA is positively homogeneous, and by (46), we have that

σA(s) = 〈s , 1〉 vA ◦ ν(s) , ∀s ∈ S|K|−1 ∩ RK
+ . (96)

Therefore, as the mapping ν in (87) is a di�eomorphism, the support function σA is
di�erentiable on the open neighborhood ν−1(q) of ν−1(p̄) = p̄

‖p̄‖ in S
|K|−1 ∩ RK

+ .

Since, on the one hand, a convex function with domain RK is di�erentiable at s if
and only if the subdi�erential at s is a singleton (Hiriart-Ururty and Lemaréchal,
1993, p. 251), and, on the other hand, the face FA(s) is the subdi�erential at s of the
support function σA (Hiriart-Ururty and Lemaréchal, 1993, p. 258), we conclude that
the face FA(s) of A in the direction s ∈ ν−1(q) is a singleton.

Therefore, by de�nition (39) of the set of regular unit signed measures, we have that
ν−1(q) ⊂ regn(A). In addition, the restriction fA : ν−1(q) → fA

(
ν−1(q)

)
of the

reverse spherical image map in (40) is well de�ned, and we have that

∇sσA = fA(s) , ∀s ∈ ν−1(q) . (97)

Therefore, the mapping fA : ν−1(q) → fA
(
ν−1(q)

)
is di�erentiable at ν−1(p̄) = p̄

‖p̄‖ ,

and has full rank. Indeed, σA is twice di�erentiable at ν−1(p̄) = p̄
‖p̄‖ , and the Hessian

is de�nite positive. This comes from (96), where the mapping ν in (87) is a C∞

di�eomorphism and the value function vA is twice di�erentiable at p̄ with de�nite
positive Hessian.

As fA is is di�erentiable at p̄
‖p̄‖ and has full rank, the reverse Weingarten map TsfA

in (44) is well de�ned and has full rank. Therefore, the principal radii of curvature
of A at p̄

‖p̄‖ are positive. Letting a
] = fA

(
p̄
‖p̄‖

)
, we conclude that FA(p̄) = {a]} and that

the curvature of the boundary ∂A of payo�s at a] is positive.

This ends the proof.

Proof of Theorem 6.
We suppose that the value function vA is twice di�erentiable at p̄ and the Hessian is

de�nite positive. We also denote FA(p̄) = {a]}.
First, we show that the function

g(p) =
vA(p)− vA(p̄)−

〈
p− p̄ , a]

〉
‖p− p̄‖2

(98)

is continuous and positive on ∆. Indeed, g is continuous on ∆\{p̄}, and also at p̄ since the
value function vA is twice di�erentiable at p̄. In addition, g(p̄) > 0 since the Hessian of vA at p̄
is de�nite positive. We have g ≥ 0 on ∆\{p̄}, because FA(p̄) = {a]} is the subdi�erential at p̄
of the support function σA, and by (46). We now prove by contradiction that g > 0. If there
existed a belief p 6= p̄ such that g(p) = 0, we would have vA(p) − vA(p̄) −

〈
p− p̄ , a]

〉
= 0;

this equality would then hold true over the whole segment [p, p̄], and we would conclude
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that the second derivative of vA at p̄ along the direction p − p̄ would be zero; this would
contradict the assumption that the Hessian of vA at p̄ is de�nite positive. Therefore, we
conclude that g > 0.

Second, letting Cp̄,A > 0 and cp̄,A > 0 be the maximum and the minimum of the func-
tion g > 0 on the compact set ∆, we easily deduce (19) from (6).

This ends the proof.
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