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Intestinal tuft cells: epithelial sentinels linking
luminal cues to the immune system
F Gerbe1,2,3 and P Jay1,2,3

Epithelial tuft cells (also known as ‘‘brush’’ cells in the airway) were first identified morphologically, almost six decades

ago in the trachea and gastro-intestinal tract, but their function remained mysterious until three almost simultaneous

reports recently revealed their essential role in the initiation of immune type 2 responses. This is a new and exciting

example of cooperation between the epithelial and haematopoietic compartments for the management of enteric

parasite infections. Here we review tuft cell functions and markers, and anchors epithelial tuft cells within the current

paradigm of type 2 immune responses.

CELLULAR COMPOSITION OF THE INTESTINAL MUCOSA

The intestinal mucosa has two principal components: an
epithelial cell monolayer and an underlying lamina propria
(Figure 1).

The lamina propria is separated from the epithelial
monolayer by a basement membrane and it is constituted
of a very diverse populations of cells, including among others
mesenchymal cells, such as fibroblasts, myo-fibroblasts,
pericytes, endothelial and smooth muscle cells, as well as
hematopoietic immune cells such as B and T lymphocytes,
dendritic cells, and macrophages.1 The large amount of
immune cell infiltrate present in the lamina propria critically
contributes to the barrier function of the adjacent monolayer of
epithelial cells that separates our organism from its ‘‘environ-
ment’’ present in the gut lumen.2,3

THE EPITHELIAL CRYPT: A PROLIFERATION

COMPARTMENT

The intestinal epithelium, the fastest renewing structure of our
bodies, is organized as two spatially and functionally distinct
compartments, the crypt and the villus.4 The crypt compart-
ment is organized as a bottle-shaped invagination into the
underlying lamina propria. Crypts contain the stem cells,
located at their base and, above the stem cell zone, the highly
proliferating transit amplifying zone, responsible for the
generation of sufficient cells to completely renew the

epithelium within a week.5 The emerging picture is that crypt
base-located columnar stem cells expressing the leucine-rich
repeat containing G protein-coupled receptor 5 (Lgr5) can self-
renew and generate all the differentiated cell types of the
epithelium, both in vivo6 and in ex vivo organoid cultures.7 Just
above the stem cell zone, the so-called þ 4 cell position, four cell
rows above the crypt base, has long been thought to correspond
to a distinct stem cell population, with slower proliferation
rates, that may constitute a reserve stem cell pool capable
of reconstituting the Lgr5þ crypt base-located columnar
cells after injury.8,9 However, other studies based on lineage
tracing from Dll1þ progenitor cells provided evidence that
this position is occupied by early differentiating secretory
cells. Dll1þ cells and the abundant absorptive enterocyte pro-
genitors expressing the intestinal alkaline phosphatase (Alpi)
gene, both have the capacity to revert to the stem cell state upon
injury of the crypt base-located columnar stem cell compart-
ment.10,11 Thus, a picture is emerging in which cell plasticity
could have important roles in crypt homeostasis and account
for some of the heterogeneity of cells with stem cell capacity.

Crypts also contain Paneth cells, a terminally differentiated
cell type intermingled with stem cells at the crypt base.
Paneth cells are the only long-lived differentiated intestinal
epithelial cell,12 and they function as regulators of the microbial
communities present in the gut, and as a niche for the stem
cells.13
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THE EPITHELIAL VILLUS COMPARTMENT CONTAINS

SPECIALIZED CELL TYPES

The progeny of the stem cells migrates toward the upper crypt,
where they differentiate into specialized cell types before
populating the neighboring villi and eventually they undergo
anoikis and desquamate in the gut lumen when they reach the
villus tip. Until recently, three specialized cell types were usually
mentioned in the villus compartment, including nutrient-
absorbing enterocytes, mucus-secreting goblet cells and the
entero-endocrine cells that produce several hormones that
regulate gut physiology.14 In specific areas of the epithelium,
called Peyer’s patches, progenitor cells differentiate into
specialized ‘‘M cells’’ that are capable of internalizing luminal
antigens and presenting them to lymphocytes.15 In addition, it
has long been known that additional cell types are present in the
intestinal epithelium, including cup cells16 (although described
only in guinea pigs, monkeys and rabbits) and the tuft cells, also
known as brush, caveolated, multivesicular, fibrillovesicular,
agranular light, or solitary chemosensory cells.17

THE TUFT CELL TYPE: FROM A MORPHOLOGY-BASED

IDENTIFICATION TO A SPECIFIC MARKER SIGNATURE

Without extensively describing all the tuft cell markers that are
reviewed elsewhere,18 it is interesting to recall the successive
discoveries of some of these markers and their impact on the
functional understanding of intestinal tuft cells. Tuft cells were
initially identified in the trachea and gastro-intestinal tract by

electron microscopy thanks to their unique morphology, with a
unique tubulovesicular system and an apical bundle of
microfilaments connected to a tuft of long and thick microvilli
projecting into the lumen.19–21 It is therefore not surprising that
tuft cells were first characterized by the expression of structural
markers. These include proteins related to their apical brush
border such as Villin,22 expression of specific cytokeratins
including Krt18,23 and proteins of their microtubule network
such as alpha-tubulin and its acetylated form.24 However, none
of these markers has a strictly tuft cell-restricted expression and
the unambiguous identification of tuft cells remained difficult
by routine techniques. When it was discovered that tuft cells
share morphological and likely also functional features with
taste-receptor cells,25–27 the set of tuft cell markers was enriched
with new proteins related to the chemosensory attributes of tuft
cells. These latter proteins notably include a-gustducin,25 as
well as the cation channel Trpm5.26,28 Retrospectively, the
demonstration of Trpm5 expression in tuft cells could be
considered as a great breakthrough since this protein is now
known to have essential roles in the function of tuft cells.29,30

Moreover, the generation of a Trpm5-eGFP reporter allele led to
the discovery of most of the currently known tuft cell markers,27

including transcription factors, eicosanoids biosynthesis path-
way components and type 2 immune response-related genes.
Most of these markers have been validated in either the
intestinal31 or gastric mucosa24 or even in pancreatic32,33

tissues. The microtubule-linked protein kinase 1 (Dclk1),
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Figure 1 Schematic view of the intestinal epithelium and underlying immune cells. Epithelial crypts contain stem cells and their progeny that migrates
through the transit-amplifying compartment, and differentiated Paneth cells. Epithelial villi contain only non-proliferative, differentiated, cells, including
enterocytes, goblet, enteroendocrine and tuft cells. The lamina propria compartment contains different types of hematopoietic cells, depending on the
immune status.
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which was initially reported as a putative marker of gastric34

and intestinal35 epithelium stem cells, is actually predominantly
expressed in tuft cells36 and in a rare sub-population of
enteroendocrine cells expressing the insulinoma-associated 1
(Insm1) protein.37 Dclk1 is thus widely used as a tuft cell
marker24,30,31,37–39 (Figure 2). Of note, the expression of the
growth factor independent 1b (Gfi1b) transcription factor was
described as specific to the tuft cell lineage in the context of the
intestinal epithelium and is therefore also a useful marker.37

POU2F3: A MASTER GENE FOR INTESTINAL TUFT CELL

DIFFERENTIATION

Several of the key transcription factors controlling the
specification or maintenance of the different intestinal
epithelial cell types have been identified.4 The Spi-1/PU.1
related (Spib) transcription factor is required for differentiation
of M cells.40,41 The Atonal bHLH factor 1 (Atoh1), in turn, is
essential for the specification of goblet, Paneth, and enter-
oendocrine cells, which are collectively known as the secretory
or granulocytic cell types of the intestinal epithelium.42 The Sry-
box 9 (Sox9) factor, expressed in both the crypt stem and
Paneth cells,43 and the Neurogenin 3 (Ngn3), expressed in crypt
progenitor cells,44 are required for Paneth45,46 and enteroen-
docrine47 cell specification or/an differentiation, respectively.
The Kruppel-like factor 4 (Klf4) is necessary for goblet cells
differentiation.48 Other important regulators include the Ets-
domain transcription factor Spdef for Paneth and goblet
cells49,50 differentiation and the Growth factor independent-1
(Gfi1) transcription factor that controls the relative represen-
tation of enteroendocrine cells compared with that of goblet
and Paneth cells.51,52 Except for Atoh1, for which two separate
studies came to divergent conclusions with one reporting
absence of tuft cells in Atoh1-deficient mice, like goblet, Paneth,
and enteroendocrine cells,31 and the other finding expansion of
the tuft cell lineage in Atoh1-deficient mice,37 all the above-
mentioned transcription factors are dispensable for tuft cell
specification.31 The role of Spib in tuft cell differentiation was
not investigated.

More recently, the role of the Pou domain, class 2,
transcription factor 3 (Pou2f3) transcription factor was also
investigated. Pou2f3 expression is essentially restricted to
Dclk1- and Gfi1b-expressing tuft cells within the intestinal
epithelium (Figure 2).38 Pou2f3-deficient mice lack all Pou2f3-

expressing taste receptor cells including sweet, umami, and
bitter taste cells.53 Pou2f3-deficient mice also lack Trpm5-
expressing chemosensory cells in the nasal cavity54 and
olfactory epithelium.55 The analysis of the intestinal epithelium
of Pou2f3-deficient mice revealed a complete absence of tuft
cells, whereas other cell types in the intestinal epithelium were
present in normal numbers.38 This study thus identified Pou2f3
as the first transcription factor specifically required for tuft
cell presence in the intestinal epithelium (Figure 3). Pou2f3-
deficient mice are thus a useful model to investigate the
function of the tuft cell lineage.38

TUFT CELLS INITIATE TYPE 2 RESPONSES TO HELMINTH

INFECTIONS

Three independent and complementary studies30,38,39 have
recently revealed another critical function of tuft cells in the
initiation of type 2 immune responses, which are typically
involved during intestinal protozoa or helminth parasite
infections, and which are deleteriously activated in allergies.56

Type 2 responses require activation and recruitment of type 2
helper T cells (Th2 cells) and group 2 innate lymphoid cells
(ILC2s) by epithelial cell-derived cytokines, including IL25,
IL33 and thymic stromal lymphopoietin.57–59 Production of
IL13 by Th2 cells and ILC2s causes the remodeling of the
intestinal epithelium, including goblet cell hyperplasia60 and
hypercontractibility of smooth muscle cells61 that peak at the
time of worm expulsion.

In the Jay group study, it was found that the tuft cell
population dramatically expands during infections with
helminths such as Nippostrongylus brasiliensis or Heligmoso-
moides polygyrus, in an IL4/IL13 signaling-dependent way.
Furthermore, in Pou2f3-deficient mice that lack tuft cells, the
immune response was greatly altered; the mice had impaired
recruitment of Th2 and ILC2 cells, reduced levels of IL13
production, nearly abolished goblet cell hyperplasia and greatly
delayed worm expulsion. When investigating the link between
the presence of tuft cells and efficient type 2 responses during
infection, tuft cells were found to be the epithelial source of the
IL25 alarmin expression. This identified tuft cells as the trigger
to the induction of the type 2 response following parasite
infections.38

The Locksley group reached identical conclusions using an
elegant mouse model that combines an IL25 expression

Figure 2 Tuft cell detection using two molecular markers reveals strong expansion of the tuft cell lineage during enteric parasitic infection. Pictures show
tuft cells in the intestinal epithelium of naive mice, stained for detection of Dclk1 (left panel) or Dclk1 and Pou2f3 (middle panel). The latter also indicates
the basal representation of the tuft cells within the intestinal epithelium. The right panel shows the expansion of Dlk1- and Pou2f3-expressing tuft cells 7
days after infection with the Nippostrongilus brasiliensis helminth.
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reporter and inducible deletion of the Il25 gene. The deletion of
the Il25 gene led to essentially identical consequences as the
absence of the tuft cell lineage,39 suggesting that IL25
production is the essential function of tuft cells, at least in
the context of parasite infections.

The Garrett group study addressed the chemosensory
function of tuft cells in the context of protozoa or helminth
infections. Deletion of the TRPM5 cation channel, which is
involved in the transduction of signals from many taste-
chemosensory G protein-coupled receptors,62 greatly impaired
the type 2 response following infection with the Tritrichomonas
muris protozoa. Trpm5-deficient mice failed to mount an
efficient epithelial response and had impaired tuft cell
expansion and a reduced IL25 expression and a lowered
frequency of lamina propria IL17RBþ ILC2s.30 This study thus
identified TRPM5 as a critical player in the induction of type 2
responses, which likely act upstream of IL25 production.

Together, these three studies revealed an unexpected level of
functional integration and cooperation between the epithelial
and hematopoietic compartments in mounting an efficient
response against parasite infections.

TRPM5 AND TASTE RECEPTOR SIGNALING: TOWARD A

NEW PARADIGM OF PARASITE RECOGNITION?

The finding that cells with chemosensory pathways are critical
for the initiation of type 2 immune responses to parasite

infections30,38,39 raised the question of whether tuft cells are the
direct sensors of the presence of parasites in the gut lumen.
Since Trpm5 is involved in the transduction of signals from
taste-chemosensory G protein-coupled receptors,62 this finding
opens avenues toward the identification of the parasite
compounds that epithelial cells detect, as well as the receptor
involved in parasite recognition upstream of Trpm5. Notably,
Trpm5 transduces signals from taste receptors that respond to
bitter-, sweet-, and umami-tasting substances.63,64 Trpm5 also
transduces signals when tuft cells react after stimulation with
glucose or high salt solution,29 or with bitter compounds such
as cycloheximide or denatonium.65,66 Multiple members of the
T2R family of bitter taste receptors are expressed in the GI
tract67 and these proteins can respond to a wide range of
chemicals with diverse specificities.68 It is therefore tempting to
envision a parallelism between the sensing of microbes by the
TLR- and NOD-dependent pathways, and that of multicellular
parasites by Trpm5-signaling receptors such as the taste
receptors (Figure 4).

PERSPECTIVES ON TUFT CELL FUNCTION

The three recent simultaneous studies of tuft cell function
during parasite infections mentioned above30,38,39 bring us to a
new paradigm of type 2 immune responses. Not only has the
precise epithelial source of IL25 been identified, but IL25
production relies on a cell type, namely the tuft cell, that lacked
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a clear function thus far and that had been strikingly overlooked
since its discovery almost 60 years ago. Other questions remain
of course. For example, cells with a tuft cell morphology have
also been identified in the airway, where they are often called
brush cells.19,69 Recent studies revealed the cholinergic nature
of the airway tuft/brush cells i.e., their capacity to express
acetylcholine and the vesicular acetylcholine transporter
VAChT. These cells also express a bitter taste transduction
system, including T2R taste receptors, the G-protein alpha-
gustducin, PLC-b2 enzyme and the transient receptor potential
cation-channel Trpm5.28,65 Cholinergic tuft/brush cells estab-
lish contacts with peptidergic cholinoceptive vagal sensory
neurons and application of a bitter substance to tracheal
mucosa resulted in cholinergically driven aversive respiratory
reflexes, i.e., a reduction of respiratory rates.49,50 Airway tuft/
brush cells thus link the luminal chemical composition of the
lower airway to the control of breathing. However, are the tuft/
brush cells from the airway the same cell type as the intestinal
tuft cell? Is their similarity limited to a related morphology and
the expression of a couple of markers, or do they share the same
Pou2f3-dependent differentiation pathway and identical func-
tions? Since different roles have been found so far in airway tuft/
brush vs. intestinal tuft cells, answers to these questions may
reveal additional functions for these cells. Even in a single organ
such as the intestine, whether the function of proximally located
tuft cells is identical to that of more distally-, or colon-located,
tuft cells is still not certain. Finally, the discovery of the role of

intestinal tuft cells in regulating type 2 immune responses
during parasite infections means it will be important to
investigate their role in other type 2-dependent processes (such
as allergy) in both the airway and in the gastro-intestinal
epithelia. From the initial discovery of tuft cells, it took almost
60 years to identify their first functions. We anticipate rapid
development in the understanding of tuft cell functions with the
reliable molecular markers and dedicated mouse models now
available.
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