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Quantum fluids of light are photonic counterpart to atomic Bose gases and are attracting increas-
ing interest for probing many-body physics quantum phenomena such as superfluidity. Two different
configurations are commonly used: the confined geometry where a nonlinear material is fixed inside
an optical cavity, and the propagating geometry where the propagation direction plays the role of an
effective time for the system. The observation of the dispersion relation for elementary excitations
in a photon fluid has proved to be a difficult task in both configurations with few experimental real-
izations. Here, we propose and implement a general method for measuring the excitations spectrum
in a fluid of light, based on a group velocity measurement. We observe a Bogoliubov-like dispersion
with a speed of sound scaling as the square root of the fluid density. This study demonstrates that a
nonlinear system based on an atomic vapor pumped near resonance is a versatile and highly tunable
platform to study quantum fluids of light.

Superfluidity is one of the most striking manifesta-
tion of quantum many-body physics. Initially observed
in liquid Helium [1, 2], the realization of atomic Bose-
Einstein condensates (BEC) has allowed detailed in-
vestigations of this macroscopic quantum phenomenon
exploiting the precise control over the system parame-
ters. Recently, another kind of quantum fluid made of
interacting photons in a nonlinear cavity has brought
new perspectives to the study of superfluidity in driven-
dissipative systems, with many fascinating develop-
ments [3] such as the observation of polariton BEC [4, 5]
and the demonstration of exciton-polariton superfluid-
ity [6, 7]. A different photon fluid configuration, ini-
tially proposed by Pomeau and Rica twenty years ago [8]
but long ignored experimentally, relies on the propaga-
tion of a intense laser beam through some nonlinear
medium. In this 2D+1 geometry (2 transverse spatial
dimensions and 1 propagation dimension analogous to
an effective time), the negative third-order Kerr non-
linearity is interpreted as a photon-photon repulsive in-
teraction. Few theoretical works addressing mostly hy-
drodynamic effects using this geometry have been re-
cently proposed [9, 10] and investigated in photorefrac-
tive crystals [11], thermo-optic media [12, 13] and hot
atomic vapors [14].

The theoretical framework used to describe quantum
fluids of light relies on the analogy with weakly inter-
acting Bose gases and has originally been derived by
Bogoliubov [15, 16]. A fundamental property of the Bo-
goliubov dispersion relation is the linear dependence in
the excitation wavevector at long wavelengths (sound-
like) and the quadratic dependence at short wavelengths
(free-particle like). Although this dispersion has been
well characterized in atomic BEC experiments [17–20],
a direct measurement of this dispersion in a fluid of
light remains elusive [12, 21]. In this letter, we pro-
pose a general method to experimentally access the dis-
persion of elementary density excitations of a photon
fluid. We show that the dynamics of these excitations
is governed by a Bogoliubov-like dispersion and that
our experimental platform, based on light propagation
in hot atomic vapor, is promisings to study hydrody-
namics effects emerging in fluid of light systems. Our
experiment settles the question originally asked by R.

Chiao two decades ago [22]: can one observe sound-like
excitations and superfluidity of light ?

Even if photons in free space are essentially non-
interacting particles, engineering an effective photon-
photon interactions is possible by exploiting an optical
nonlinear process. In our experiment, the third-order
Kerr nonlinearity is induced by the propagation of a
near-resonant laser field inside a hot Rubidium atomic
vapor. The sign and the strength of the interactions
can be finely tuned by adjusting the laser detuning with
respect to the atomic resonance. The vapor tempera-
ture, controlling the atomic density, provides an addi-
tional control over the strength of the interactions. This
system has been extensively studied in the context of
quantum and nonlinear optics [23], but the quantum
fluid of light framework gives a better and more com-
plete understanding about the physical phenomena dis-
cussed in this letter. This framework is derived from
the Nonlinear Schrödinger Equation (NLSE), describing
the propagation along the z-direction of a monochro-
matic linearly polarized laser field E(r⊥, z) in a nonlin-
ear medium, under the paraxial approximation:
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where k0 = 2π/λ0 is the laser wavevector (λ0 stands
for the laser wavelength in vacuum) and ∇⊥ the gra-
dient with respect to the transverse spatial coordi-
nate r⊥ = (x, y) . When the linear absorption coef-
ficient α is negligible and the nonlinear refractive in-
dex ∆n = n2 I (I represents the laser field intensity)
is negative, the NLSE is mathematically analogous to
the Gross-Pitaevski equation, describing the dynamics
with respect to an effective time t = zn0/c (c stands
for the speed of light in vacuum) of a 2D-fluid with re-
pulsive interactions. Using the Madelung transforma-
tion E(r⊥, z) =

√
ρ(r⊥, z) exp

[
iΦ (r⊥, z)

]
, one obtains

a coupled system of hydrodynamic equations for the
electric field density ρ and phase Φ :

∂ρ

∂t
+ ∇⊥ · (ρv) = 0, (2)
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Figure 1. Experimental setup. PBS and HWP stand for Po-
larized Beam Splitter and Half-Wave Plate respectively. θ is
the angle between the probe (orange beam) and the optical
axis defined by the pump (red beam). The probe interferes
with the pump and slightly modulates its intensity. Blue in-
set: integrated intensity profile at the input of the medium
(z = 0). The wavelength Λ of the density modulation is
given by 2π/k⊥ where k⊥ = k0 sin θ. Orange inset: inte-
grated intensity profile at the output of the medium (z = L).
The distance D between the two wavepackets gives access
to the group velocity of the elementary excitations in the
transverse plane. The output plane is imaged on a CMOS
camera. Inset on the top left: background-subtracted image
obtained for θ ≈ 0 rad and associated integrated envelope
profile (blue: original ; red dotted : high frequency filtered).

c

k0

∂Φ

∂t
+

1

2
v2 + c2

(
n2ρ−

1

2k2
0

∇2
⊥
√
ρ

√
ρ

)
= 0, (3)

where v = (c/k0)∇⊥Φ. In this formulation, the laser
beam is described as a fluid of density ρ flowing with
velocity v in the transverse plane. The dynamics of the
density fluctuations on top of the photon fluid is gov-
erned by the Bogoliubov dispersion relation. For small
amplitude modulations moving on a uniform back-
ground fluid at rest, the set of hydrodynamic equations
can be linearized assuming ρ = ρ0(z) + δρ(r⊥, z) and
v = δv(r⊥, z). For a plane-wave density fluctuation
mode δρ of wave vector k⊥, the associated response
frequency ΩB will follow the dispersion relation below :

ΩB(k⊥) = c

√√√√|∆n|k2
⊥ +

(
k2
⊥

2k0

)2

. (4)

When the wavelength Λ = 2π/|k⊥| of the modulation is
longer than the healing length ξ = λ

2

√
1
|∆n| , the disper-

sion relation becomes linear and the modulations prop-
agate as sound waves. This regime is characterized by
the sound velocity cs = c

√
|∆n|, which only depends

on the nonlinear index of refraction ∆n. Conversely,
when Λ� ξ, the dispersion relation becomes quadratic
which is similar to the free propagating particle one.

Observing the sound like-regime of the Bogoliubov
dispersion relation has been proposed in [9] and first
attempted in [12] for propagating geometries. The ap-
proach used in [12] relies on the measurement of the
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Figure 2. (a) Simulation of the propagation of a weak in-
tensity modulation through a nonlinear medium, with zero
transverse speed (θ = 0 rad). The modulation generates two
counter propagating Bogoliubov modes at the medium inter-
face which get amplified until they separate from each other.
The wavepacket is not spreading along propagation due to
the non-dispersive regime (sound-like behavior). (b) Same
as (a), for an incident probe at θ=5×10−3 rad (high trans-
verse speed). Interference fringes appear and the wavepacket
spreads. (c) simulation of the intensity profile envelope in
the output plane for different probe wavevector. Dashed
black: group velocity given by Eq. (4). (d) experimental
data. The upper wavepacket amplitude decreases with k⊥ as
the efficiency of the degenerate four-wave mixing processes
depends on the phase matching conditions; which is optimal
for k⊥ = 0. The parameters in (a), (b) and (c) are those
used experimentally for (d) : λ0 = 780 nm, ∆n = 1.310−5

and ωp
x = 180 µm (α = 0 in numerical simulations).

phase velocity difference between plane wave density
modulations propagating at a given transverse wavevec-
tor k⊥ = 2π/Λ on top of a high and a low density
photon fluid. The photon fluid is obtained by send-
ing a wide laser beam through a self-defocusing non-
linear medium; the fluid density is then given by the
light intensity. The plane wave density modulation is
produced by interfering this first beam with a wide
and weak probe field, propagating with a small angle
with respect to the optical axis. In this configuration,
however, a conjugate wave propagating in the opposite
transverse direction (−k⊥) is spontaneously generated
at the linear/nonlinear interface [24]. Probe and con-
jugate interfere, which strongly alters the phase shift
measurement used to determine the dispersion relation.
Moreover, the large nonlinearity needed to observe the
sonic dispersion makes extracting the dispersion rela-
tion from this measurement rely on a complex numeri-
cal inversion [25]. On the contrary, we present a direct
and intuitive method to extract the dispersion relation
for arbitrary modulation wavelengths. Our approach is
based on the measurement of the group velocity of a
small amplitude Gaussian wavepacket travelling on top
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of the photon fluid with the transverse wave vector k⊥.
This wavepacket is designed by interfering a wide and
intense beam forming the fluid (at k⊥ = 0) with a Gaus-
sian probe at k⊥ = k0 sin θ ex, as depicted in Fig. 1.
At the entrance of the nonlinear medium, the effective
photon-photon interaction constant undergoes a sudden
jump along the optical axis. Two counter-propagating
wavepackets are spontaneously created from the ini-
tial perturbation and evolve over the effective time t
through the nonlinear medium, with a transverse group
velocity ±vg. The separation between these two modu-
lations at a given propagation distance z (i.e. at given
time t), is a direct measurement of the group velocity.
In the output plane (z = L), this distance is given by
D(k⊥) = 2Lvg(k⊥). The dispersion relation ΩB(k⊥) is
reconstructed by scanning the modulation wavevector
(tuning the angle θ between pump and probe) and inte-
grating the group velocity vg: ΩB(k⊥) =

∫ k⊥
0

vg(q) dq.
In order to illustrate our method, we solve numer-

ically the NLSE Eq. (1) to get the evolution of the
transverse electric field (pump + probe). We use the
second-order split step Fourier method, for one trans-
verse spatial dimension (1D+1 geometry) to take ad-
vantage of symmetries in the flat fluid density situation
(infinitely wide background beam). The probe waist is
located in the entrance plane at z = 0; its width ωpx
is the same as the one used in the experiment. For all
the density plots in Fig. 2, the uniform background in-
tensity has been subtracted. The evolution of the two
counter-propagative modulations generated at the en-
trance of the nonlinear medium is shown in Fig. 2(a)
for zero initial transverse speed and presents a sound
like-behavior (no spreading of the wavepacket). The
Fig. 2(b) is obtained for on high transverse initial speed
modulation which behaves like a free-particle. Notice
that for small incident angle, corresponding to zero ini-
tial transverse speed, both modulations acquire a non-
zero opposite transverse speed. This nonlinear refrac-
tion law, counter-intuitive from the refraction perspec-
tive, comes from the linear nature of the dispersion for
k⊥ � 2π/ξ [24]. The envelope of the intensity pro-
file in the output plane is presented as a function of
the probe wavevector in Fig. 2(c), on top of the ex-
perimental results in Fig. 2(d). The black dotted line
represents the theoretical group velocity vg, obtained
by taking the derivative of Eq. (4). The distance be-
tween the two wavepackets is constant for k⊥ . 2π/ξ
(linear dispersion; constant vg) and linearly increase for
larger k⊥ (quadratic dispersion; vg ∝ k⊥). The spread-
ing of the wavepacket due to the quadratic dispersion
for k⊥ & 2π/ξ can also be clearly observed on Fig.2(c).
Conversely, all k-space components which lie on the lin-
ear part of the dispersion relation propagate at the same
transverse speed and the wavepackets do not spread for
k⊥ < 2π/ξ.

The experimental setup is shown in Fig. 1. A
continuous-wave Ti:Sapphire laser beam is split into a
low power probe and a high power pump. The pump
is focused in the center of the nonlinear medium with
two cylindrical lenses to create an elliptical beam with
a width along x of ω0

x ≈ 3.2 mm and a width along y
of ω0

y ≈ 300 µ m. The pump intensity in the central re-
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Figure 3. a) Group velocity as a function of k⊥. +
The circles represent the experimental data obtained for
P = 175 mW. The theoretical model is plotted in black
(no free parameter – see text for details). The dashed lines
figure the asymptotic behaviors: constant group velocity at
small k⊥ and linear increase at large k⊥. b) Dispersion rela-
tion obtained after integration of the group velocity. Linear
(blue) and parabolic (red) dispersion curves are plotted as
a reference.

gion can thus be considered as spatially uniform along
x. The Rayleigh length z0

R,y associated to ω0
y is 37 cm,

which is about five times the length of the nonlinear
medium. We can therefore consider the pump beam as
being collimated. The probe is directly focused with a
cylindrical lens on the entrance of the nonlinear medium
in order to get a flat initial phase profile. This beam is
elliptically elongated along the y direction. We set the
major axis width ωpy to 1700 µm and ωpx to 180±10 µm
in order to properly separate the Gaussian wavepack-
ets in the output plane and conserve the probe colli-
mation along its propagation in the nonlinear medium
(zpR,x≈ 13 cm). We fix the probe intensity at its waist
to 1% of the pump intensity. This pump/probe cross
configuration enables us to both get closer to the 1D
case and to increase the integration range along y. The
angle θ between pump and probe in the (xz) plane can
be finely tuned with a piezo-actuated mirror mount.

Both beams propagate through a L = 7.5 cm long
cell, filled with an isotopically pure 85Rb vapor. The
cell is heated up to 150◦ C. Adjusting the temperature
allows us to control the atomic density and therefore
the strength of the optical nonlinearity. In our case,
this optical nonlinearity is obtained by tuning the laser
frequency close to the 85Rb D2 resonance line, com-
posed of 2 hyperfine ground states (F = 2, 3) and 4
hyperfine excited states (F ′ = 1 to 4). Since the laser
is highly red-detuned from the F = 3 → F ′ transi-
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Figure 4. Speed of sound cs as a function of the pump
intensity. Due to the 2D+1 geometry, the speed of sound
has the dimension of an angle. Data is plotted in blue dots.
The light intensity corresponds to the fluid density, therefore
a scaling as square-root is expected as plotted in black solid.
No free parameters are needed as the nonlinearity has been
measured independently. Uncertainty area in light blue is
extracted from this independent measurement.

tions (∆ = −6 GHz), the Doppler broadening can be
neglected and the negative nonlinear susceptibility is
the one of a two-levels system with an excited state of
decay rate Γ = 6.06 MHz. At these temperature and
detuning, the transmission coefficient of the laser beams
through the cell is above 70%, which allows one to ne-
glect multiple scattering of light. In comparison to [12],
we can consider that the nonlinear interactions are lo-
cal, as long as the length scale of the ballistic transport
of excited atoms stays much shorter than the healing
length, which is the case at that temperature.

The output plane of the cell is imaged on a camera. A
microscope objective can be flipped on the beam path
to image the far-field (i.e. k-space) and measure the
probe transverse wavevector k⊥ = k0 sin θ. The rela-
tive phase between pump and probe is scanned over 2π.
40 background-subtracted images are taken during the
phase scan, integrated over one hundred pixels around
(Ox) and averaged in absolute values. Averaged images
before integration are shown in inset of Fig. 1(b). The
distance D between the counter-propagating wavepack-
ets is estimated by performing a two-Gaussian fit for
small k⊥ i.e. when the conjugate beam is visible.
For large k⊥, the conjugate is not sufficiently ampli-
fied and D is measure from the distance between the
input and output positions of the probe beam. In or-
der to fully characterize our system, the third order
Kerr susceptibility n2 is calibrated independently by
measuring the self-phase accumulated by a Gaussian
beam propagating through the cell [26, 27]. With the
detuning and temperature reported earlier, we found
n2 = 3.1± 0.2 10−11 m2/W.

The experimental group velocity and dispersion rela-
tion as a function of the probe transverse wavevector are
shown in Fig. 3. The pump power was set to 175 mW
leading to a nonlinear refractive index ∆n of 3.9 10−6.
Two different regimes can be identified on Fig. 3(a).
The group velocity clearly goes toward a non-zero value
when k⊥ → 0, breaking the linear trend characteristic

of the standard free-particle dispersion. The theoret-
ical model plotted in Fig. 3 is obtained with no free
fitting parameters. The offset at large k⊥ between the
model and the experimental data results from construc-
tive interferences between the two non-fully separated
wavepackets, as can be seen on the experimental data
of Fig. 2(d) around k⊥∼ 1.5 104 m−1 (the envelope in-
tensity significantly increases in between them leading
to a systematic under-estimation of the distance D by
the two-Gaussian fit). After propagation in the cell,
the counter-propagating wavepackets have respectively
accumulated the phase ±ΩB(k⊥)L. Constructive in-
terferences occur when ΩB(k⊥)L = nπ (n is a positive
integer) i.e. for k⊥∼1.8 104 m−1 when n=1. This value
gives the position of the end of the plateau-like regime
at low k⊥. Another constructive interference should oc-
curs for k⊥=0 (when n=0), but as both envelopes have
the same amplitude in that case, the two peaks are still
disentangle (see inset of Fig. 1).

More importantly, the dispersion relation of Fig. 3(b)
guarantees that, in our experiment, a fluid of light
can fulfill the Landau criterion for superfluidity. In-
deed, this criteria defines a critical transverse speed
vc = min

k⊥

[
ΩB

k⊥

]
for the photon fluid, below which the

emission of sound-like excitations is not possible any-
more. In our case, vc = cs > 0 and one could observe
frictionless flow of light around a defect if its transverse
velocity v (measured in the defect frame) was lower than
cs. Nevertheless, our system does not undergo a phase
transition with the sudden appearance of a long-range
order as it is initially provided by the laser spatial co-
herence. To investigate the sonic regime, we set the
probe wavevector to zero and record the sound velocity
as function of the background fluid density (the pump
intensity I). The experimental data are shown in Fig. 4
(blue circles). We observe that the speed of sound scales
with the square-root of the fluid density (black solid)
as expected. It is worth mentioning that, once again,
the Kerr susceptibility measured independently sets the
only parameter of the theoretical model.

In conclusion we have reported two important experi-
mental results: first we measured the dispersion relation
for small amplitude density fluctuations, which shows a
linear trend at low wavevector, characteristic of a su-
perfluid. We have then assessed the associated sound
velocity for different fluid of light densities and obtained
a scaling law analogous to the hydrodynamic prediction.
This settles the question initially raised by Chiao about
the possibility to observe a superfluid dispersion in a
photon fluid. These results open a wide range of pos-
sible experiments in hydrodynamics with light using a
novel versatile platform based on hot atomic vapors.
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