
HAL Id: hal-01940866
https://hal.science/hal-01940866v1

Submitted on 30 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards end-to-end privacy for publish/subscribe
architectures in the Internet of Things

Stevan Coroller, Sophie Chabridon, Maryline Laurent, Denis Conan, Jean
Leneutre

To cite this version:
Stevan Coroller, Sophie Chabridon, Maryline Laurent, Denis Conan, Jean Leneutre. Towards end-to-
end privacy for publish/subscribe architectures in the Internet of Things. M4IoT 2018: 5th Workshop
on Middleware and Applications for the Internet of Things at the 2018 ACM/IFIP International
Middleware Conference, Dec 2018, Rennes, France. pp.35 - 40, �10.1145/3286719.3286727�. �hal-
01940866�

https://hal.science/hal-01940866v1
https://hal.archives-ouvertes.fr


Towards End-to-end Privacy for Publish/Subscribe

Architectures in the Internet of Things

Stevan Coroller∗, Sophie Chabridon∗, Maryline Laurent∗, Denis Conan∗, Jean Leneutre†

∗SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, France
†LTCI, Télécom ParisTech, Université Paris-Saclay, France

Abstract—The Internet of Things paradigm lacks end-to-end
privacy solutions to consider its full adoption in real life scenarios
in the near future. The recent enactment of the EU General
Data Protection Regulation (GDPR) indeed emphasises the need
for stronger security and privacy measures for personal data
processing and free movement, including consent management
and accountability by the data controller and processor. In
this paper, we suggest an architecture to enforce end-to-end
data usage control in Distributed Event-Based Systems (DEBS),
from data producers to consumer services, taking into account
some of the GDPR requirements concerning consent management
and data processing transparency. Our architecture proposal is
based on UCONABC usage control models, which we overlap
with a distributed hash table overlay for scalability and fault-
tolerance concerns, and across and within systems data usage
control. Our proposal highlights the benefits of combining both
DEBS and end-user usage control architectures. To complete
our approach, we quickly survey existing encryption models
that ensure data confidentiality in topic-based Publish/Subscribe
systems and highlight the remaining obstacles to transpose them
to content-based DEBS with an overlay of brokers.

Index Terms—Privacy, IoT, Usage Control, Content-based
Distributed Event-Based Systems.

I. INTRODUCTION

The Internet of Things (IoT) is an ever-growing topic in

current research as it combines high stakes with unique con-

straints requiring specific solutions: how to distribute multiple

context data flows between low performance heterogeneous

devices and systems in constrained networks, with a generic,

scalable and fault-tolerant infrastructure? As stated in [2],

Distributed Event-Based Systems (DEBS), also called publish-

subscribe systems, are a suitable solution to disseminate vast

amounts of data in the IoT in a scalable way, especially when

leveraging distributed infrastructures [6]. Furthermore, with

recently increasing global expectations in terms of privacy,

there is an urgent need for confidentiality-preserving solutions

well tailored to the IoT. The survey [13] shows that confiden-

tiality concerns in Pub/Sub architectures are addressed by two,

commonly separated, lines of research: specific encryption

models and security models based on access control. More

precisely, the recent enactment of GDPR1 raises new require-

ments in terms of confidentiality and data usage control, in

particular: services must obtain the users’ consent for a well-

motivated purpose before collecting their data, allow users to

revoke this consent at anytime, minimise data collection, and

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex\
%3A32016R0679

ensure transparency at all steps of data processing. This paper

proposes a technical approach for addressing subparts of the

GDPR requirements, in the very specific DEBS environment.

Topic-based and content-based filtering are two main fil-

tering models of Pub/Sub architectures [6]. In topic-based

filtering, event data are complemented with metadata tags

called topics, and subscription filters correspond to regular

expressions of topics that consumers are interested in. As a

consequence, topics constitute a vocabulary or ontology that

is shared by producers and consumers, and event data may

remain opaque to routing. Content-based filters are conjunction

of filters that parse different parts of the event data, and pos-

sibly some metadata that are added for instance to model the

quality of event data. Consequently, the filtering is potentially

more powerful, but more expensive, and the whole content of

event data should be disclosed to routers. Since IoT systems

are open systems, we chose content-based filtering for our

study.

In this paper, we consider that access control alone is

not sufficient to protect privacy and must be associated with

usage control. We propose to integrate usage control, as

defined by the UCON model [14], in Distributed Event-

Based Systems with specific design choices for tackling the

IOT: a broker-based infrastructure, content-based routing and

Attribute-Based Access Control (ABAC) context-aware pri-

vacy policies.

The rest of this paper is organised as follows. In Sec-

tion II, we specify the context of our work and we propose

a motivating scenario that depicts what threat models are at

stake. Then, in Section III, we detail our vision of the core

part of a privacy-preserving content-based DEBS in order to

provide usage control and obligations management in a broker-

based dissemination architecture. In Section IV, we highlight

recent works on topic-based encryption models that would

complete our proposed architecture and explain the remaining

issues to be addressed to transpose them to content-based

DEBS. Finally, we discuss related works in Section V, and we

conclude our paper and identify future works in Section VI.

II. MOTIVATIONS AND OBJECTIVES

We present a motivating scenario in Section II-A with

the description of the stakeholders in Section II-B and the

corresponding threat models in Section II-C.



A. Motivating scenario

Alice is a bather on beaches watched by a lifeguard service.

Bob is a lifeguard on duty on the same beach as Alice.

The lifeguard service provides all bathers and lifeguards with

wristbands equipped with geolocation sensors (e.g. RFID

wristbands). The lifeguard service uses a data dissemination

middleware to collect geolocations, along with personnal data

like bathers age and name, for instance to increase children

surveillance. The brokers of the dissemination middleware are

deployed on all monitored beaches of the seafront. These

brokers may be owned by third party organisations: e.g., local

shops and snack bars, or public infrastructures such as bus

stops. The rationale is that brokers are shared by multiple

services as shown in Figure 1.

Bathers’ location must be sent to local lifeguards—i.e.

lifeguards on duty on the same beach. When registering to the

service, bathers send their consent. Thereafter, local lifeguards

can visualise on their smartphone bathers’ location and will

be alerted when some bathers are swimming too far from the

shore. In this application, consent revocation is needed for

several reasons: GDPR requires users to be able to revoke their

consent at anytime; bathers may loose their geolocation device

in the water, which could interfere with lifeguards’ work; or

bathers may leave the beach. Meanwhile, both bathers’ and

lifeguards’ locations must be sent to the servers runnning the

lifeguard service in order to adapt the number of lifeguards on

each beach, for instance by shifting some lifeguards from one

beach to another. This processing could take additional data

into account: e.g. proportion of children, sea and swimming

conditions, and the new assignments are broadcast to life-

guards using the same infrastructure. This scenario stresses out

the need for content-based DEBS expressiveness: lifeguards

need precise location figures to be able to quickly locate

bathers in danger, but lifeguard servers only need to know

on which beach bathers are located, and thus can accept low-

precision location data. Such quality of context filtering is

difficult to handle with topic-based filtering.

The first requirement that is demonstrated in this scenario

is end-to-end data confidentiality—i.e. from data producers

to consumer services, consent management (collection and

withdrawing), along with data processing transparency on the

consumer side, thus offering technical directions for address-

ing some of the GDPR principles. In addition, the approach

must be generic so as to handle fine-grained consents, or to

adapt to a wide range of application domains. The architecture

must also scale and be fault-tolerant.

B. Scenario stakeholders

We identify the various stakeholders of our scenario:

1) Bathers: They produce sensitive data: e.g. their position

on the beach.

2) Lifeguards: They subscribe to local bathers precise loca-

tion and also publish their own low-precision location.

3) Lifeguard service: It subscribes to both bathers’ and

lifeguards’ location data, and processes them on several

servers for allocating lifeguards to beaches.

Fig. 1. Data dissemination and lifeguard service

4) Other services: There are various services like food

services or local social networks that should be able to

use the common infrastructure to disseminate context

data. For instance, bathers may subscribe to a local

social network to receive notifications about local events.

Furthermore, bathers should be able to differentiate the

precision of the location that they publish, and without

any data leakage between the different services.

C. Threat models

In this section, we list the threats to data confidentiality,

integrity and availability that are at stake in our scenario.

First of all, we make some assumptions. We consider that

all communication channels between components (subscribers

and publishers, commonly called clients, and brokers) are

secured—i.e. authenticated and confidential. For this reason,

we will further ignore several threat models like MITM attacks

or rogue devices. We also consider that manufacturers are

responsible for the security of their devices that results from

implementation choices. Consequently, we will not consider

the case of corrupted brokers or clients. The combination of

these two assumptions ensures that all brokers and clients are

authenticated.

In addition to the requirements identified in Section II-A,

our work tackles the three following threat models that focus

on privacy issues of relevance for our scenario:

1) Honest-but-curious brokers or semi-trusted brokers. It

is a common assumption in security research. In our

case, we consider that brokers strictly follow the DEBS

routing algorithms, but may disclose any clear-text data

they are provided with. Sensitive data do not only

include publications content but also advertisement and

subscription filters. The authors of [1] highlight more

complex threat models where semi-trusted brokers can

collude together or with subscribers to obtain unautho-

rised access to publications. These threat models are

discussed in Section IV.

2) Semi-trusted subscribers. Authenticated subscribers may

use loose subscription filters to receive numerous pub-

lications, even if they do not have the consent of

data owners to receive such data. In our scenario, it



means that food service subscribers might abuse loose

subscription filters to receive bathers geolocation.

3) Data misuse within consumers infrastructure. Once pub-

lications are sent to authorised subscribers, the infras-

tructure looses control over the data. Only legal obliga-

tions remain, like data owners consent, which do not

prevent data consumers to process data as they will,

and as long as their infrastructure is not completely

inspected. For example, the lifeguard service could sell

bathers geolocation to food services that may then focus

their sellers to most busy beaches.

III. END-TO-END USAGE CONTROL ARCHITECTURE FOR

PUB/SUB NETWORKS

In this section, we detail our proposition: an end-to-end

usage control architecture for broker-based DEBS. The overall

architecture of the proposition is depicted in Figure 2. In

Sections III-A and III-B, we introduce UCONABC usage

control model, and then we detail its adaptation to broker-

based DEBS. In Section III-C, we describe the architecture

of usage control on the consumer side. Concerning the last

component, namely the usage log storage system, we do not

further detail it in this paper because it constitutes an external

and independent system.

Fig. 2. DEBS with end-to-end usage control

A. UCONABC usage control models

The UCONABC family of reference models for usage con-

trol provides three decision factors: authorizations, obligations

and conditions [14]. UCONABC authorizations work in the

same way as Attribute-Based Access Control to define users’

rights over objects: users provide ABAC information that are

matched against a policy to define their rights. Obligations

allow to check if users have performed some determined

actions before they can access objects. Conditions are external

conditions bound to the execution environment, like current

time or network load.

UCONABC also provides two essential features: continuity

of access decision and attribute mutability. Objects are pro-

tected by policies, and the previously-defined three decisions

factors can be checked at three different instants: before users

have access to the object (pre), during the access (ongoing),

and after the access (post). When a user accesses an object,

their ABAC information can be changed to modify their rights,

as a consequence of the access.

These features and decision factors cover a wide range

of use cases. In our scenario, pre-authorizations allow us to

check that data consumers own producers’ consent before

receiving their data, and consequently avoid the “semi-trusted

subscribers” threat model. Ongoing obligations and mutable

attributes allow us to continuously check if consumers have

sent back tamper-proof usage logs for previously received data,

and thus to ensure data processing transparency.

B. UCONABC adaptation to broker-based DEBS

In regular broker-based DEBS, as drawn in Figure 2, the

clients, being producers or consumers, are connected to the

system through a link to their access brokers. Internal or

inner brokers, which do not have any local client connected

to them, serve to route publications from the access broker of

the producer to consumers via their access broker. The second

role of brokers is to implement UCONABC usage control. The

usage control data are stored in a reliable and scalable manner

into a distributed hash table (DHT) organised as an additional

overlay on top of the brokers: the peers of the DHT are the

brokers. Therefore, as drawn in Figure 3, brokers comprise

three sub-components: the DEBS routing part for forwarding

publications to interested consumers, the usage control system

(UCS) that is embedded into the broker, and the DHT node

that stores UCS data.

1) Brokers role in usage control: We choose XACML 3.0,

which is a recognised OASIS standard commonly used to

enforce ABAC in production environments, as the representa-

tion for usage control policies that are to be matched against

ABAC information. The work presented in [4] and [5] provide

XACML adaptations to handle all UCONABC features. The

XACML 3.0 documentation provides a reference architecture2

to enforce access control. In Figure 3, we adapt this reference

architecture.

We embed several components of the UCS directly into

brokers. Hence, brokers play the role of Policy Enforcement

Points (PEP). The usage control policies are specific to each

producer because of being closely related to legal consents.

This explains why we do not use any Policy Administration

Point (PAP) to create generic policies, but producers send their

own policies to their access broker, which stores them. Addi-

tionally, we define three different types of Policy Information

Points (PIP), which are responsible for attribute queries: 1) the

local PIP that fetches locally stored attributes, 2) the remote

PIP that fetches attributes stored in other DHT nodes, and

3) the PIP responsible for fetching environment attributes in

order to perform condition checks. Finally, we use a standard

Policy Decision Point (PDP) that interacts with a Context

Handler (CH) to fetch missing attributes from corresponding

PIPs.

2http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html\#
Toc325047089



Fig. 3. Broker-based DEBS and usage control architecture

2) Data model for usage control: The data model of the

usage control system comprises the following tables stored in

the DHT:

T1: (advID, brokerID, policySet)

T2: (advID, subID, subAttr, valid)

T3: (advID, subID)

T4: (subID, advID)

T5: (advId, subID, interestedBrokers)

“adv”, “sub”, “ID” stand for “advertisement”, “subscription”,

and “identifier”, respectively. Underlined fields correspond

to primary keys to build indexes. As described in [11],

UCONABC can be specified in U-XACML, in the form of a

tuple of five XACML policies including notably: pre-decision

(U-PD), ongoing authorisations and conditions (U-OAC), and

ongoing obligations and attribute updates (U-OBU). This tuple

of XACML policies corresponds to the policySet field.

3) API for routing and usage control: We now detail the

five types of messages that producers and consumers can

send to their access broker, and the corresponding treatments.

Producers declare the kind of data they will publish (call

advertise). Then, they publish these data (call publish).

Consumers declare the information they want to receive (call

subscribe). As will be discussed in Section III-C, consumers’

usages of the data are logged and they inform their access

broker of new logs (call logReception). At anytime, after

considering usage logs, producers can revoke their consents

(call revoke).

a) Call advertise(advFilter, qocAttr, policySet): ad-

vId: Producers advertise before publishing so that they declare

1) which data they are willing to send (advFilter), 2) the

quality of context3 they guarantee on these data (in the form

on attributes, qocAttr), and 3) their privacy requirements, in

the form of policies (policySet). The caller receives a unique

identifier (advId) and the broker adds a new T1 entry into the

DHT.

b) Call subscribe(subFilter, qocFilter, preABAC):

subId: Consumers subscribe to receive publications by pro-

viding 1) a filter to describe the information they are interested

in (subFilter), 2) the quality of context they require on these

data (qocFilter), and 3) the ABAC information that will be

3QoC and privacy are linked [3]

matched against U-PD policies (preABAC). A unique sub-

scription identifier (subId) is returned and the system builds a

covering tree in the overlay of brokers for routing publications

to the consumer.

c) Matching advertisements and subscriptions: Anytime

an advertisement is received, the access broker matches the

new U-PD policy with the preABAC data locally stored.

Anytime a subscription is received, every broker matches the

new preABAC data with its locally stored U-PD policies.

When a broker finds a matching, it stores T2, T3 and T4

entries into the DHT. Notably, subscriber attributes subAttr

are initialised and the valid boolean is truthified into the T2

entry. This boolean value can be changed after any policy re-

evaluation: if the result becomes DENY, then the boolean is

falsified.

Since a matching can be cancelled (valid is falsified), a

T5 entry is also updated so that interested brokers register to

future notification of change to the fields subAttr or valid. In

other words, we use the DHT to build a Pub/Sub system [8].

The difference between the overlay of the DEBS for routing

and the overlay for the DHT is the following: the brokers are

physically distributed (e.g. in smart cities) for data flow control

of the routing function; the brokers form a DHT for storing

usage control in sparse accesses.

d) Call publish(advID, n): When a producer publishes

notification n, n is parsed to match advFilter (done at pro-

ducer’s access broker, namely Bprod), and next subFilter.

Then, valid is checked to be true. The latter condition may

be tested in three different ways according to message traffic

and computation costs: 1) the check is performed by Bprod

and all the brokers send n complemented by advId and the

set {subID: valid}, 2) Bprod sends n with advId and all

the brokers towards the consumer computes {subID: valid},

and 3) Bprod sends n with advId and the access broker of a

subscriber computes valid.

In any case, publications are sent to consumers along with

the related advID and subID so that usage logs created by

consumers contain both advID and subID. Data owners can

then identify the usage logs they receive from the log storage

infrastructure. In addition, the U-OBU policy from each con-

cerned policy set can be used to update subscribers’ attributes

everytime a publication is successfully routed. When attributes



are updated, the U-OAC policies must be re-evaluated by

the access broker of the publishers, and valid is potentially

updated.

e) Call logReception(advID, subID): When a producer

receives a new data usage log from the log storage infras-

tructure, this producer (or the storage infrastructure itself,

by proxy), must send a logReception message to its access

broker, which updates subAttr values in the corresponding

T2 entry of the DHT. This update can be performed thanks

to U-OBU’s attribute update feature. The node responsible for

updating policies for the (advId, subId) pair is notified of the

updates via the DHT’s internal Pub/Sub system. It then re-

evaluates the U-OAC policy and potentially updates the valid

attribute.

f) Call revoke(advID, subID): At anytime, a producer

can revoke their consent. The workflow is similar to that of

logReception. The access broker updates the revoke field

of subAttr, the U-OBU policy is re-evaluated to imperatively

decide DENY, and the valid attribute is falsified. This solution

suffices to (eventually) stop consumers from receiving addi-

tional data from producers who revoked their consent. In order

to go even further, an additional table could be created in the

DHT to keep track of consumers’ reputation that would be

updated at revocation time by post-obligations and attribute

update policies.

g) Calls unadvertise(advID) and unsubscribe(subID):

Tables T3 and T4 of the DHT are present to manage these

two calls.

h) Usage control in action: Let us return to the scenario

of Section II. Alice publishes her geolocation and wants to

receive a usage log of her sensitive data for every publica-

tion. The subAttr field contains a requiredLog field that is

incremented by the U-OBU policy everytime a publication

from Alice is published. The U-OBU policy checks whether

requiredLog is strictly smaller than 1, and deny the access if

not so. This field is decremented by the U-OBU policy at the

reception of a logReception message. This constitutes a trivial

use case. In real life scenarios, requiredLog would be replaced

by timers, or a more advanced reputation system, for instance

by using post-obligations and attribute update policies.

For now, our architecture handles usage control based on

fine-grained users consent, which counteracts the second threat

model presented in Section II-C, along with consent revoca-

tion. The use of obligations enables consumer-side processing

transparency, but does not preventively counteract the third

threat model. In addition, nothing ensures the authenticity of

data usage logs. The next section links our DEBS usage control

architecture to a consumer-side usage control solution, in order

to tackle these two issues.

C. Consumer-side within and across systems usage control

In [7], the authors propose a within and across system

usage control architecture which provides both preventive

and detective usage control. “Within system usage control”

is ensured by system calls monitoring: the usage control

application includes a PEP based on the strace tool to intercept

system calls that may affect monitored data, and a PDP that

matches intercepted calls against data usage control policies.

Unauthorised system calls can then be interrupted to perform

preventive usage control, or they can be released but logged

to enable detective usage control. This solution ensures that

any copy of monitored data remains monitored, whatever

its representation. “Across system usage control” is ensured

by intercepting socket-related system calls and sending data

usage control policies to remote machines before sending them

monitored data. This requires that all machines that want to

receive monitored data previously install the usage control

application.

The only drawbackof this implementation is the overhead

induced in computation, which makes it not suitable for

monitoring real-time consumer applications, among others.

The authors of [7] claim that ”it depends on use case scenarios

whether the imposed overheads are acceptable in practice”.

For this reason, in [16], the authors show that system calls

should not be used for monitoring purposes, and provide an

alternative low-intrusive solution, which is adapted to real-time

systems requirements in terms of latencies. This alternative

is to be used instead of [7]’s implementation in case system

call monitoring is effectively proved not to be suited for

applications which require low latencies.

The rationale for using the work of [7] in conjunction with

our DEBS usage control architecture is that it tackles the third

threat model “data misuse within consumers infrastructure”,

while ensuring that data usage logs are tamper-proof, as they

can themselves be monitored by the usage control application.

By adding consumer-side within and across systems usage

control, we obtain an end-to-end usage control architecture

that fills the requirements stated in Section II. Its complete

decentralisation using an overlay of brokers managing a DHT

additionally provides both scalability and fault tolerance. In

the first threat model (see Section II-C), third-party-owned

brokers can only be considered as semi-trusted. Yet, brokers

can realistically be considered as honest-be-curious, or able

to collude with semi-trusted consumers, as explained by [1].

This last obstacle towards end-to-end privacy in the IoT is

discussed in the next section.

IV. SEMI-TRUSTED THIRD-PARTY-OWNED BROKERS

As stated by [13], threat models related to the semi-trusted

brokers assumption in Pub/Sub is tackled by research on en-

cryption models and encrypted matching. Yet, some obstacles

remain in this field, like key management and distribution. In

addition, [1] argues that most of the recent works in this field

still tackle simple threat models, ignoring the possibility of

collusions between brokers and consumers.

The context of distributed content-based Pub/Sub implies

additional constraints in the choice of a suitable encryption

model to complete our end-to-end privacy-preserving archi-

tecture: most of the existing works rely on trusted authorities,

which would introduce a single centralised element in our



fully decentralised architecture. Additionally, works based on

Attribute-Based Encryption (ABE) rely on the fact that an

exhaustive list of topics is globally known: some secrets

are associated to each topic, and publications are encrypted

with the secret of the topic they belong to. Thus, ABE is

hardly transposable to content-based Pub/Sub where there is

an infinite number of possible subscription filters.

The solution in [17] does not rely on ABE, but it tackles

the trusted authority issue, and even addresses the key man-

agement issue by performing local key management on each

broker. However, it still fails to efficiently render content-based

high expressiveness.

V. RELATED WORKS

The authors of [10] provide a UCON implementation using

the Cassandra DHT into P2P networks in the IoT. Just like

our achitecture, they use a DHT to distribute UCON policies

and ABAC information storage. However, this solution aims

at providing smart devices collaboration and does not tackle

privacy and confidentiality issues.

In [9], UCON is implemented into MQTT, a topic-based

pub/sub protocol. This implementation being fully centralised,

it lacks both scalability and fault tolerance. Yet, this implemen-

tation consists of a single application, completely separated

from the broker one, and thus completely generic to the MQTT

implementation of brokers and clients. This is not the case

of our architecture, especially because we chose to embed

several UCS components within the broker application. On the

other hand, this implementation only handles access revocation

in case consumers do not respect their obligations. It does

not allow producers to revoke consumers’ access at anytime,

which was one of our first requirements.

The work presented in [15] aims at providing technical

solutions to handle usage control based on users’ consent,

while also taking into account consent revocation issues. The

approach is to piggyback usage control policies onto every

piece of data, so that data is always transferred along with

its usage control policy. Usage control is then enforced in

a decentralised manner, on every machine that owns a copy

of the monitored data. Yet, this solution heavily relies on

encryption techniques, and thus requires a centralised trusted

authority. This solution is closely related to [7], as it focuses

rather on digital rights management issues.

Another line of research extends Information Flow Control

(IFC) [12]. Data within messages are tagged with security la-

bels. These labels are then checked by processes to ensure that

data can only flow to processes with compatible labels. The

approach proposed in [18] revisits IFC to build a middleware-

based solution for policy-enforcement in order to enable a

legally-compliant IoT. IFC and UCON share similarities and

are promising solutions for the IoT. Although an in-depth

comparison of these two approaches is still missing in the

literature, we consider that the mutability of attributes in

UCON is well suited to the dynamicity of context data in

the IoT.

VI. CONCLUSION AND FUTURE WORK

In this paper, we identified several requirements in terms

of confidentiality and several threats to privacy that need to

be addressed to ensure data privacy in the IoT. In the more

restricted context of distributed content-based Pub/Sub, we

presented a fully decentralised usage control architecture, to be

used in conjunction with an already existing solution for within

and across systems monitoring. Our proposal enables end-to-

end data usage control, the management of the consent of the

users with potential consent revocation at anytime, and ensures

data processing transparency. It highlights the possibilities

enabled by combining middleware security models with end-

user data usage control, and the benefits of overlapping broker

and DHT overlay networks within the same architecture, to

ensure fault-tolerance and scalability.

Yet, our usage control architecture only provides complete

end-to-end data confidentiality if we make the hypothesis that

all brokers are fully trusted. In a real case scenario like the

one we described in Section II-A, this assumption is not

realistic, but no encryption model tackles the issue of semi-

trusted brokers in content-based DEBS. This remains the only

obstacle towards end-to-end privacy-preserving architectures

in our context.

As part of our future work, we want to provide an imple-

mentation of our Pub/Sub usage control architecture, carry out

performance tests to compare it with existing implementations

of UCONABC into Pub/Sub environments, and further discuss

how obligations should be used in our architecture to adapt to

the widest range of scenarios. Finally, we want to carry out

further research to determine if security models are adapted to

tackle the issue of data confidentiality under the semi-trusted

brokers assumption.

REFERENCES

[1] S. Belguith, S. Cui, M.R. Asghar, and G. Russello. Secure Publish and
Subscribe Systems with Efficient Revocation. In 33rd ACM Symposium

on Applied Computing, pages 388–394. ACM, 2018.

[2] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini. A Survey
of Context Data Distribution for Mobile Ubiquitous Systems. ACM

Computing Surveys, 44(4):24:1–24:45, August 2012.

[3] S. Chabridon, R. Laborde, T. Desprats, A. Oglaza, P. Marie, and
S. Machara Marquez. A Survey on Addressing Privacy together with
Quality of Context for Context Management in the Internet of Things.
Annals of Telecommunications, Springer, 69(1):47–62, February 2014.

[4] M. Colombo, A. Lazouski, F. Martinelli, and P. Mori. A Proposal on
Enhancing XACML with Continuous Usage Control Features. In Grids,

P2P and Services Computing, pages 133–146. Springer, 2010.

[5] E-Ghazia, U. and Masood, R. and Shibli, M. and Bilal, M. Usage
Control Model Specification in XACML Policy Language. In 11th Conf.

on Computer Information Systems and Industrial Management, volume
LNCS-7564. Springer, September 2012.

[6] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many
Faces of Publish/Subscribe. ACM Computing Surveys, 35(2), June 2003.

[7] F. Kelbert and A. Pretschner. Data Usage Control for Distributed
Systems. ACM Trans. Priv. Secur., 21(3):12:1–12:32, April 2018.

[8] A.-M. Kermarrec and P. Triantafillou. XL Peer-to-peer Pub/Sub Systems.
ACM Computing Surveys, 46(2):16:1–16:45, November 2013.

[9] A. La Marra, F. Martinelli, P. Mori, A. Rizos, and A. Saracino.
Improving MQTT by Inclusion of Usage Control. In Int. Conf. on

Security, Privacy, and Anonymity in Computation, Communication, and

Storage, pages 545–560, 2017.



[10] A. La Marra, F. Martinelli, P. Mori, and A. Saracino. Implementing
Usage Control in Internet of Things: A Smart Home Use Case. IEEE

Trustcom/BigDataSE/ICESS, pages 1056 – 1063, 2017.
[11] A. Lazouski, F. Martinelli, and P. Mori. A Prototype for Enforcing Usage

Control Policies Based on XACML. In Trust, Privacy and Security in

Digital Business, pages 79–92. Springer, 2012.
[12] A. C. Myers and B. Liskov. A Decentralized Model for Information Flow

Control. In Proc. of the Sixteenth ACM Symp. on Operating Systems

Principles, pages 129–142, 1997.
[13] E. Onica, P. Felber, H. Mercier, and E. Rivière. Confidentiality-

Preserving Publish/Subscribe: A Survey. ACM Computing Surveys,
49(2):27:1–27:43, June 2016.

[14] J. Park and R. Sandhu. The UCON ABC Usage Control Model. ACM

Trans. Inf. Syst. Secur., 7(1):128–174, February 2004.
[15] S. Pearson and M. Casassa-Mont. Sticky Policies: An Approach for

Managing Privacy across Multiple Parties. Computer, 44(9):60–68, Sept
2011.

[16] M. Pohlack, B. Döbel, and A. Lackorzyński. Towards Runtime Moni-
toring in Real-Time Systems. In Proceedings of the Eighth Real-Time

Linux Workshop, 2006.
[17] A. Shikfa, M. Önen, and R. Molva. Privacy-preserving content-based

publish/subscribe networks. In IFIP SEC 2009, 24th Int. Information

Security Conference, Pafos, CYPRUS, 05 2009.
[18] J. Singh, T. Pasquier, J. Bacon, J. Powles, R. Diaconu, and D. Eyers.

Big Ideas Paper: Policy-driven Middleware for a Legally-compliant
Internet of Things. In Proceedings of the 17th International Middleware

Conference, pages 13:1–13:15, 2016.


