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Abstract

We give a necessary and suffi cient condition for the existence
and uniqueness up to translations of a 3-dimensional polytope P
in R3 having N facets with given unit outward normal vectors
n1, . . . , nN and corresponding facet perimeters L1, . . . , LN .

In this paper, a polytope of R3 is the convex hull of finitely many
points in R3. The classical Minkowski problem for polytopes in R3 con-
cerns the following question:

Given a collection n1, . . . , nN of N pairwise distinct unit vectors in
R3 and F1, . . . , FN a collection of N positive real numbers, is there a
polytope P in R3 having the ni as its facet unit outward normals and the
Fi as the corresponding facet areas (1 ≤ i ≤ N), and, if so, is P unique
up to translations?

H. Minkowski proved that a polytope is uniquely determined, up to
translations, by the directions and the areas of its facets (see [1, Theorem
9, p. 107]):

Theorem 1 (H. Minkowski, 1897: [5] and [6, pp. 103-121])
A polytope in R3 is uniquely determined, up to translations, by the di-
rections and the areas of its facets.

A well-known necessary condition for the existence of a polytope
having facet unit outward normals n1, . . . , nN and corresponding facet
areas F1, . . . , FN is that:
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N∑
i=1

Fini = 0.

An existence theorem of H. Minkowski ensures that this condition is
both necessary and suffi cient:

Theorem 2 (H. Minkowski,1897: [5] and [6, pp. 103-121])
Let n1, . . . , nN ∈ R3 be N pairwise distinct unit vectors linearly span-
ning R3 and let F1, . . . , FN be N positive real numbers. There exists a
polytope P in R3 having N facets with unit outward normals n1, . . . , nN
and corresponding facet areas F1, . . . , FN if, and only if, we have

N∑
i=1

Fini = 0.

Here, we have to mention that Theorem 2 is only the 3-dimensional
version of the classical Minkowski existence and uniqueness theorem [7,
p. 455], which is valid in Rd for all d ≥ 2. In our main proof, we shall
make use of the 2-dimensional version, which is almost trivial.

This paper is devoted to the analogue of the classical Minkowski
problem obtained by replacing areas by perimeters. For this analogue,
the following uniqueness result is known (see [1, p. 108]):

Theorem 3 A polytope in R3 is uniquely determined, up to translations,
by the directions and the perimeters of its facets.

Theorems 1 and 3 are similar uniqueness theorems which both follow
from a same general result by A.D. Alexandrov (see [1, Theorem 8, p.
107]). Thus, we are led to the natural question of the existence of an
analogue to Theorem 2 for the existence of a polytope with prescribed
directions and perimeters of the facets. For convenience, we will restrict
ourselves to 3-dimensional polytopes. Recall that the dimension of a
convex body of Rn is simply the dimension of its affi ne hull.
This problem has caught the attention of geometers and a paper by

V. Alexandrov has recently highlighted its diffi culty in giving a result
that is interpreted by the author as an obstacle for finding an existence
theorem for a polytope with prescribed directions and perimeters of the
facets [2]. This paper was the major source of inspiration for the author.

Let n1, . . . , nN be a collection of N pairwise distinct unit vectors
linearly spanning R3 and let L1, . . . , LN be a collection of N positive
real numbers. A series of necessary conditions for the existence of a
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3-dimensional polytope P in R3 having the ni as its facet outward unit
normals and the Li as the corresponding facet perimeters is the following:

(i) For each i ∈ {1, . . . , N}, there exists a decomposition of Li into
a sum of N non-negative real numbers,

Li =

N∑
j=1

lij,

in such a way that:

(ii) for all (i, j) ∈ ({1, . . . , N})2, lij = 0 if ni and nj are collinear;
(iii) for all (i, j) ∈ ({1, . . . , N})2, lji = lij.

Indeed, if such a polytope P exists, then denoting by f1, . . . , fN the
N facets with respective unit outward normals n1, . . . , nN , the required
relationships hold if we put:

lij :=

{
0 if i = j or if fi and fj have no common edge

the length of the common edge otherwise.

Moreover, we must also have:

(iv) For every i ∈ {1, . . . , N} ,
∑

j∈{k|lik 6=0}

lij

[
ni × nj
sin (ni, nj)

]
= 0,

where × denotes the cross product (here, we of course assume that R3
is oriented by its canonical basis), and (ni, nj) the length of the shortest
arc of great circle joining ni to nj on the unit sphere S2 of R3 (remind
that ni and nj are non collinear by condition (ii) since lij 6= 0). Indeed,
each facet fi of P is a convex polygon the boundary of which is a closed
polygonal line. Here, it is worth noting that, for all j ∈ {k |lik 6= 0},

−→ui,j = (ni × nj) / sin (ni, nj)
is a unit vector that is such that the vector −→vi,j := lij

−→ui,j is of the form−−−→
MM ′, where M and M ′ are two consecutive vertices of the oriented
boundary of the face fi (see the figure).

3



Figure. Illustration of the fact that∑
j∈{k|lik 6=0}

lij
−→uij =

∑m
l=1vl = 0

Our last necessary condition will follow from the Steinitz’s theorem
(e.g. see [4, Chapter 4, p. 103]), which characterizes in purely graph-
theoritic terms those graphs that can be represented as the 1-skeleton of
some 3-dimensional polytope:

Theorem (Steinitz’s theorem). A graph can be represented as the
1-skeleton of some 3-dimensional polytope if, and only if, it is simple,
planar, and 3-connected.

For the convenience of the reader, we summarize some basic defini-
tions and facts on graphs and 1-skeletons:

◦ The 1-skeleton of a polytope P is the graph whose vertices and edges
are just the vertices and edges of P with the same incidence relation.
◦A graph is said to be polyhedral if it can be represented as the 1-skeleton
of some 3-dimensional polytope.
◦ A graph is said to be simple if it contains neither multiple edges nor
loops.
◦ A graph is said to be planar if it can be drawn in the plane so that no
two of the edges intersect at a point other than a vertex.
◦ A graph is called 3-connected if it is connected, has at least 4 vertices,
and remains connected whenever fewer than 3 vertices are removed.
◦ The dual of a polyhedral graph is also a polyhedral graph. More
precisely, every polyhedral graph G has a well-defined dual graph G∗

(independent of the plane embedding), corresponding to the 1-skeleton
of the dual polytope.
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From Steinitz’s theorem, the following last condition is also necessary
in our case:

(v) The datum of the matrix (lij)1≤i,j≤N determines as follows a
simple 3-connected planar graph G drawn on the unit sphere S2 (so that
no two of the edges intersect at a point other than a vertex): the vertices
ofG are the unit vectors n1, . . . , nN , and any pair of non-collinear vertices
{ni, nj} of G is connected by an edge that is given by the shortest arc
of great circle joining the two vertices on S2 if, and only if, lij 6= 0.

Theorem 4 Let n1, . . . , nN ∈ R3 be N distinct unit vectors linearly
spanning R3 and let L1, . . . , LN be N positive real numbers. There exists
a 3-dimensional polytope P in R3 having facet unit outward normals
n1, . . . , nN and corresponding facet perimeters L1, . . . , LN if, and only
if, the set of conditions {(i) , (ii) , (iii) , (iv) , (v)} holds.

Proof. We have already seen that it is necessary that the set of condi-
tions {(i) , (ii) , (iii) , (iv) , (v)} holds for such a polytope P to exist in R3.
Conversely assume that the set of conditions {(i) , (ii) , (iii) , (iv) , (v)}
holds. By the Steinitz’s theorem, the simple 3-connected planar graph
G that is constructed on S2 in accordance with condition (v) and its
geometric dual graph G∗ (which is also simple, planar, and 3-connected)
are polyhedral: they can be represented in R3 as the 1-skeletons of two
dual 3-dimensional polytopes, say Q and Q∗, respectively. Moreover, by
the following refinement by Barnette and Grünbaum, we can preassign
the shape of a face of one of these two polytopes [3]:

Theorem (Barnette and Grünbaum). If one face of a 3-dimensional
Q is an n-gon, then there exists a polytope Q′ combinatorially equivalent
to Q, of which the corresponding face is any prescribed n-gon.

Recall that two polytopes P and P ′ are said to be combinatorially
equivalent if there is a bijection between their faces that preserves the
inclusion relation. It is well-known that the combinatorial structure of a
3-dimensional polytope is completely determined by its 1-skeleton [4, p.
105]. Moreover, as noticed by Barnette and Grünbaum [3, p. 305]: "By
an obvious application of duality, it follows from the theorem that the
shape of one vertex-figure may be prescribed". Our desired polytope P
will be combinatorially equivalent to Q∗.

In the sequel of the proof, the assembly of all the facets of a given
3-dimensional polytope that share a same vertex will be called a corner
of the polytope. The spherical representation of such a corner, or of a
3-dimensional polytope, is defined as follows:
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- A facet f corresponding to a unit normal n is represented on S2 by n;
- An edge is represented on S2 by the arc of great circle joining the two
points corresponding to the two adjacent facets of the edge;
- A vertex is represented on S2 by the spherical polygon that is bounded
by the spherical arcs corresponding to the edges that are adjacent at the
vertex.
Our aim is to prove the existence of a 3-dimensional polytope P that

satisfies the set of conditions {(i) , (ii) , (iii) , (iv) , (v)}, and thus, the
spherical representation of which is given by G.

Since condition (iv) is satisfied, the Minkowski existence and unique-
ness theorem for convex polygons ensures that, for any i ∈ {1, . . . , N},
there exists in n⊥i (the linear plane with unit normal ni, endowed with
the induced orientation) a positively oriented convex polygon fi whose
edges eij are directed by the unit vectors

−→ui,j = (ni × nj) / sin (ni, nj) , (j ∈ {k |lik 6= 0}) ,

and have corresponding lengths lij; and moreover, that this polygon fi,
of which the perimeter is Li by condition (i), is unique up to translations
in n⊥i . Note that in the above expression of

−→ui,j, the vectors ni and nj
are non-collinear by condition (ii) since lij 6= 0.
Thus, for any i ∈ {1, . . . , N}, the desired oriented convex polygon fi,

with unit normal ni, is well-defined and unique up to translations in R3.

Now, given any positively oriented n-gon Pn on S2 that is the oriented
boundary of the closure of a connected component of the complementary
of the graphG, which is drawn on S2 according to condition (v), (n ≥ 3),
we deduce from Girard’s theorem that

n∑
k=1

αk = (n− 2) π + Area (Pn) ,

where α1, . . . , αn denote the interior angles of Pn. Because of condition
(iv), Pn has no reflex angle so that:

n∑
k=1

βk = 2π − Area (Pn) < 2π,

where β1, . . . , βn denote the exterior angles of Pn, (that is, βk := π−αk
for all k ∈ {1, . . . , n}). Now, for any k ∈ {1, . . . , n}, βk > 0 can be
regarded as the interior angle of one of the desired convex polygon fik
(corresponding to a unit vector nik that is a vertex of Pn) at the vertex
of fik that corresponds to Pn. The above inequality, which says that
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the sum
∑n

i=1 βk of these angles, is less than 2π can be regarded as a
nonnegative curvature condition that is satisfied from our conditions.
Therefore, taking into account condition (iii), the convex polygons fik
that correspond to the unit vectors nik that are the vertices of Pn can
be assembled (by gluing together their sides that correspond to a same
edge of Pn) to form a corner (of a 3-dimensional polytope), the spherical
representation of which corresponds to Pn in S2. Here, the "convexity"
at the corner is of course due to the nonnegative curvature condition.
Thus all the corners of the desired polytope P are well-defined and

unique up to translations in R3.

Starting from any of these corners, we can construct by induction
the desired polytope P , which is combinatorially equivalent to Q∗ and
satisfies the set of conditions {(i) , (ii) , (iii) , (iv) , (v)}, by assembling
at each step, an adjacent corner to the part of P that has already been
constructed. Here, by "an adjacent corner" we mean "a corner that is
not included in the part of P already constructed but sharing two facets
with it". At each step, the spherical representation of the part of P
that is constructed is controlled by condition (v), and the construction
can continue until completion since we made sure that all the pieces had
the required shape and dimensions. Here, it is worth noting that, as
soon as the position of the first corner is fixed (with, for example, its
vertex placed at the origin O), the position of any other vertex S of P
is deduced from that of O by a succession of translations from a vertex
of P to another: consider any succession of adjacent regions of S2\G
from that corresponding to O to that corresponding to S (two regions of
S2\G are said to be adjacent if their boundaries share an edge of G) and
note that each crossing on S2 from one region Ri of S2\G to an adjacent
one Rj corresponds on P to the translation from a vertex to another by
a translation by a vector −→vij whose direction is determined by the arc
of great circle γij separating the two regions on S2 (−→vij is orthogonal to
it and oriented in the sense of the crossing) and whose norm ‖−→vij‖ is
the length lij corresponding to γij. Of course, thanks to condition (iv),
the final position of the vertex (i.e. that of S) does not depend on the
succession of adjacent regions that has been considered.
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