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ABSTRACT 18 

The widespread adoption of the sediment fingerprinting approach to guide catchment management 19 
has been limited by the cost and the difficulty to prepare and process samples for geochemical and 20 
radionuclide analyses. Spectral properties have recently been shown to provide a rapid and cost-21 
efficient alternative for this purpose. The current research objective was (i) to quantify the 22 

sediment source contributions in a 1.19-km2 rural catchment of Southern Brazil by using mid-23 
infrared (MIR) spectroscopy, and (ii) to compare these results with those obtained with 24 

geochemical approach and near-infrared (NIR) and ultraviolet-visible (UV-VIS) spectroscopy 25 

methods. The sediment sources to discriminate were cropland surface (n=20), unpaved roads 26 

(n=10) and stream channel banks (n=10). Twenty-nine suspended sediment samples were 27 
collected at the catchment outlet during nine significant flood events. The sources could be 28 

distinguished by MIR spectroscopy. Cropland and channel bank sources mainly differed in their 29 
clay mineral contents, but their similar organic matter content complicated the MIR-model 30 
predictions. Unpaved road contributions were discriminated from the other sources by their lower 31 

organic carbon content. When the results of the current research based on MIR spectroscopy are 32 
compared to those obtained using other sediment fingerprinting approaches, based on 33 

geochemistry and NIR and UV-VIS spectroscopy, an overestimation of channel banks contribution 34 
and an underestimation of cropland and unpaved road contributions is found. These results suggest 35 

that MIR spectroscopy can provide a useful tool that is non-destructive, rapid and cheap for tracing 36 
sediment sources in rural catchments and for guiding the implementation of soil and water 37 

conservation measures. 38 
 39 
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INTRODUCTION 42 

Intensification of agriculture for increasing food production has led to the degradation of 43 

soil and water resources during the last several decades (Comino et al., 2015; Erkossa et al., 2015; 44 

Seutloali and Beckedahl, 2015; Taguas et al., 2015). Modern and intensive agricultural practices 45 

expose the soil to the erosion and accelerate the transfer of sediment to the lower parts of landscape 46 

(Minella et al., 2014) and into water bodies, along with contaminants such as pesticides 47 

(Magnusson et al., 2013; Yahia and Elsharkawy, 2014) and phosphorus (Poulenard et al., 2008; 48 

Dodd et al., 2014; Dodd and Sharpley, 2015). In agricultural catchments with high runoff 49 

coefficients and sediment yields, as in Southern Brazil, erosion process needs to be controlled to 50 

prevent an irreversible degradation of soil and water quality (Didoné et al., 2015; Merten et al., 51 

2015). In order to mitigate these problems at the catchment scale, it is first required to have 52 

information on the respective contributions of the potential sources of sediment to the river. 53 

Accordingly, the sediment fingerprinting approach quantifies the contribution of non-point 54 

sediment sources through the use of a range of natural tracers combined with rigorous statistical 55 

modeling techniques. This tool is very useful to assist local managers in developing strategies for 56 

remediating river siltation and pollution in catchments (Walling and Woodward, 1995; Davis and 57 

Fox, 2009; D’Haen et al., 2012; Haddadchi et al., 2013; Koiter et al., 2013). However, the wider 58 

application of this technique by local managers is complicated by the difficulty accessing the 59 

conventional physicochemical analysis techniques, their cost, and the necessity to collect sufficient 60 

material in the rivers to conduct these (generally) destructive measurements (Cooper et al., 2014). 61 

Spectroscopic reflectance is a low-cost and non-destructive alternative methods that can be 62 

carried out very quickly on dried sieved samples to assess various physical, chemical and 63 

biological properties of soils (McBratney et al., 2006; Viscarra Rossel et al., 2006). In this sense, 64 

Poulenard et al. (2009) developed a first attempt to use Diffuse Reflectance Infrared Fourier 65 

Transform Spectroscopy (DRIFTS) to fingerprint sediment sources in catchments. The method 66 

was successfully used to discriminate and predict the contributions of topsoil and channel sources 67 

(Poulenard et al., 2009) and soils developed on different substrates  to sediment  (Poulenard et al., 68 

2012). In addition, both studies confirmed that these properties remained conservative during a 69 

time period consistent with the duration of the study (i.e., min. 1 month), and this is a prerequisite 70 

for a property to be used as a tracer.  71 

In the last years, several studies using spectroscopic method have been developed 72 

worldwide to trace sediment sources. Visible (VIS) and near-infrared (NIR) reflectance was tested 73 

in the French Alps (Legout et al., 2013), Luxemburg (Martínez-Carreras et al., 2010a, 2010b, 74 

2010c), Spain (Brosinsky et al., 2014a, 2014b), Ethiopia (Verheyen et al., 2014), the Eastern Cape 75 



of South Africa (Pulley and Rowntree, 2015), United Kingdom (Collins et al., 2014), and southern 76 

Brazil (Tiecher et al., 2015, 2016). Besides, some of these studies showed a good agreement 77 

between the results obtained with the spectroscopic method and those provided by the 78 

conventional fingerprinting approach based on geochemical properties (Martínez-Carreras et al., 79 

2010c; Legout et al., 2013; Verheyen et al., 2014; Tiecher et al., 2015, 2016). Near-infrared 80 

spectroscopy have proved to be a valuable tool to trace sediment originating from different land 81 

uses [e.g. badland, forest/grassland, others – Brosinsky et al. (2014a, 2014b); landslide, cropland, 82 

grazing land –Verheyen et al. (2014); cropland, unpaved road, stream channels – Tiecher et al. 83 

(2016)], parent material [black marls, limestones, molasses – Legout et al. (2013)]. However, some 84 

of these studies warned that these technique may not necessarily work in all catchments because 85 

of the risks of significant non-conservative tracer behaviour of organic molecular structures 86 

(Collins et al., 2014) or high-soluble minerals, such as gypsum (Legout et al., 2013).  87 

To the best of our knowledge, there are very few studies using spectroscopic measurements 88 

in the mid-infrared (MIR) region for sediment tracing (Poulenard et al., 2009, 2012; Evrard et al., 89 

2013). Nevertheless, several studies have proved that the MIR is more suitable than the VIS or 90 

NIR due to the higher incidence of spectral bands in this region as well as the higher intensity and 91 

specificity of the signal (Viscarra Rossel et al., 2006; Reeves, 2010; Xie et al., 2011; Soriano-92 

Disla et al., 2014) Although Evrard et al. (2013) found similar results with conventional and 93 

alternative tracing methods, it showed that the MIR spectroscopy, like NIR spectroscopy, is very 94 

sensitive to the organic matter content in sediment. This technique should therefore be applied in 95 

other environmental contexts in order to test the general applicability of MIR spectroscopy 96 

methods for sediment fingerprinting. Moreover, to date, there has been no attempt to compare the 97 

use of spectroscopy for tracing sediment sources in the different ranges of the electromagnetic 98 

spectrum, such as MIR, NIR, and ultraviolet-VIS (UV-VIS) infrared. 99 

To this end, the objectives of the current research were (i) to evaluate the sediment source 100 

contributions in a subtropical rural catchment of southern Brazil using this alternative MIR 101 

spectroscopy-based method, and (ii) to compare these results with those obtained by the 102 

conventional fingerprinting approach based on geochemical properties, and those obtained by 103 

NIR- and UV-VIS-spectroscopy based methods (data published in Tiecher et al. 2015, 2016). 104 

Then, the physicochemical basis of the source discrimination provided by MIR spectroscopy 105 

properties was discussed. 106 

 107 

MATERIAL AND METHODS 108 

Study catchment 109 



The Arvorezinha catchment (Fig. 1) covers a surface area of 1.19 km2 and it is located on 110 

the upper north-eastern edge of the Rio Grande plateau, in Rio Grande do Sul, the southernmost 111 

state of Brazil (Fig. 1). The Arvorezinha catchment is located in the headwaters of the Taquari 112 

River, a tributary of the Jacuí River, which is one of the major water bodies in the region. The 113 

average channel slope is 9%. The time to peak for flood hydrographs recorded at the outlet 114 

typically ranges from 20 to 50 min. The area is mainly underlain by extrusive igneous rocks 115 

(rhyodacite). The altitude ranges from 560 to 740 m. Hillslopes on top of the catchment have an 116 

undulating topography (7% slope), whereas they may be classified as rolling (>15%) and short in 117 

the middle and lower parts of the catchment (Soil Survey Division Staff, 1993). According to the 118 

Köppen classification, the climate is classified as subtropical super humid mild (Cfb type) with 119 

warm summer and the absence of dry season. Mean annual rainfall is 1605 mm. The erosivity 120 

index (EI30) calculated from 40 years of historical data is 6540 MJ mm ha−1 year−1, which can be 121 

considered as moderate to strong (Argenta et al., 2001). 122 

Soil types in the catchment according to World Reference Base for soil Resources (WRB) 123 

(IUSS Working Group WRB, 2007) and determined from a detailed soil classification survey 124 

(1:5000) are Acrisols (57%), Cambisols (33%) and Leptosols (10%). Acrisols are mainly found in 125 

upper parts of the catchment, and they are characterized by an abrupt texture change between 126 

horizons A and B, leading to a reduction of infiltration in the low permeable argic B horizon 127 

because of its higher clay content. Isolated spots of Cambisols are found in areas dominated by 128 

Acrisols and/or Leptosols. The Leptosols occur in the lower parts of the catchment, where the 129 

relief is the steepest. Land uses are not related to the soil types. Therefore, samples of potential 130 

sediment sources were collected on soils representative of all soil types found in the catchment, 131 

respecting the proportion of the surface area covered by each soil type. 132 

There is no urban area in Arvorezinha catchment. It is inhabited by a local rural community 133 

(Cândido Brum) including 16 families growing tobacco in small farms (7–10 ha). Tobacco is 134 

cultivated under minimum tillage (31.2% of the catchment surface area) or under conventional 135 

ploughing (13.5%). Other land uses in the catchment (55.3%) are native forest, fallow, areas 136 

afforested with eucalyptus and grassland (Barros et al., 2014). 137 

 138 

Source material sampling 139 

Three main sediment sources types were identified during previous research (Minella et 140 

al., 2008, 2009b), namely: (i) surface of cropland, (ii) unpaved roads and (iii) stream channel 141 

banks. Areas under pasture, fallow and forest were not included as a potential source because 142 

previous research showed their low sensitivity to erosion (Minella et al., 2009a). The samples of 143 



potential source material were collected using non-metallic trowels in the uppermost layer (0–0.05 144 

m) of the cropland surface (n=20) and unpaved roads (n=10), and on exposed sites located along 145 

the main river channel network (n=10) by scraping the surface of river banks. Care was taken to 146 

avoid sampling material recently deposited on the channel bank. Each sample was composed of 147 

10 sub-samples collected in the vicinity of the sampling point in order to obtain representative 148 

source material. Sampling points were concentrated in sites sensitive to erosion and potentially 149 

connected to the river network. Sediment source sampling was performed to cover the entire range 150 

of soil types found in the catchment. 151 

 152 

Suspended sediment sampling 153 

Twenty-nine suspended sediment samples were collected at various stages (rising, 154 

recession limbs) during nine significant floods between October 2009 and July 2011 (Maier, 155 

2013). A large volume of water (120 to 200 liters) was collected manually on a footbridge built at 156 

the outlet. Each bulk water sample was centrifuged in a continuous flow centrifuge (Alfie-500 Alfa 157 

Laval) to concentrate sediment samples for subsequent spectroscopy analysis.  158 

 159 

Source material and sediment analysis 160 

All the source material and sediment samples were oven-dried at 50oC, gently 161 

disaggregated using a pestle and mortar, and passed through a 63 µm mesh prior to laboratory 162 

analyses to compare similar particle size fractions in all the samples. Mid-infrared (MIR) diffuse 163 

reflectance spectra were recorded in the 400–4000 cm−1 region using a Nicolet 510- FTIR 164 

spectrometer (Thermo Electron Scientific, Madison, WI, USA) in reflection mode with a 2 cm−1 165 

resolution and 100 co-added scans per spectrum. The spectrometer was continuously purged with 166 

dry CO2-depleted air. Care was taken when adding the samples into the sample port to avoid 167 

differences in sample packing and surface smoothness. 168 

 169 

Sediment source discrimination based on MIR-spectroscopy 170 

 Sediment source discrimination was performed using the second-derivative of MIR spectra 171 

of the source samples. Using the second-derivative avoids differences in baseline positions and 172 

removing the small differences that may arise from uncontrolled sources of variation (e.g. sample 173 

packaging). Derivative treatment not only reduces scattering effects but also increases the 174 

resolution of spectral peaks of both mineral (Scheinost et al., 1998) and organic (Fernández-Getino 175 

et al., 2010) components.  176 



The band 2360–2325 cm–1 of MIR spectra corresponds to the CO2 molecule vibrations. 177 

Even purging the entire analysis chamber with CO2-free gas, it is possible that some CO2 has been 178 

trapped between the soil particles. For this reason, in order to avoid any CO2 (gas) interference in 179 

MIR spectra, the wavelengths from 2400–2300 cm–1 were removed, and statistical analyses were 180 

performed on wavelengths in the ranges of 3800–2400 cm–1 and 2300–650 cm–1
.
  181 

Data obtained from the MIR spectroscopy consists of a continuous spectrum with a large 182 

number of variables (intervals of 2 cm–1 = 1583 wavenumbers) for a set of 40 sediment source 183 

samples. A Principal Component Analysis (PCA) was performed to reduce the number of variables 184 

without losing significant information. PCA was performed using the R package “ade4” (R-185 

project.org). Then, a Discriminant Function Analysis (DFA) in backwards mode was conducted 186 

on the scores obtained from the PCA. At each step, the principal component (PC) which minimized 187 

the overall Wilks' Lambda was entered. Maximum significance of F to enter a principal component 188 

(PC) was 0.01. Minimum significance of F to remove a PC was 0.01. DFA was performed using 189 

STATISTICA software. 190 

 191 

Sediment source quantification using the MIR-spectroscopy approach 192 

 The individual samples representative of each sediment source (i.e. 20 samples of cropland 193 

surface, 10 samples of unpaved roads, and 10 samples of stream channel banks) were mixed in 194 

equal proportions at the laboratory to prepare a unique reference sample for each source. Then, the 195 

three reference source samples were mixed in different weight proportions to obtain 48 composites 196 

with different source material ratios as displayed in Fig. 2. MIR spectra were obtained for each 197 

mixture.  198 

Relationships between MIR spectra (x variate) and the corresponding weight contribution 199 

of each sediment source (y variate) were analyzed using partial least squares regressions (PLSR). 200 

The composites samples were randomly chosen to build the model. Thirty-six mixed samples were 201 

used to develop the calibration models and the remaining 12 mixed samples were used for model 202 

validation. The number of components providing the lowest predictive standard error was used. 203 

PLSR was performed using STATISTICA software. 204 

The predictive performance of the models was evaluated by calculating several standard 205 

indicators such as the root mean square error of calibration (RMSEC), the root mean square error 206 

of cross-validation (RMSECV), the root mean square error of prediction (RMSEP), the ratio 207 

RMSECV to standard deviation (RPD) and the coefficient of determination R2 obtained when 208 

comparing predicted values with reference data. The uncertainty associated with the prediction 209 

was estimated by the confidence interval (95%) of prediction calculated by the regression of 210 



predicted values against reference data. Three independent MIR-PLSR models were constructed 211 

to estimate the proportion of sediment supplied by the three sources. MIR spectra of suspended 212 

sediment were then introduced into these MIR-PLSR models to estimate the contribution of each 213 

sediment source and the associated uncertainty. 214 

 215 

RESULTS AND DISCUSSION 216 

Source discrimination  217 

 MIR spectra of the <63 µm fractions of suspended sediment and sediment source samples 218 

were very similar, and 16 spectral features were observed in all spectra (Fig. 3a and Table 1). In 219 

order to simplify the interpretation, the spectral features were grouped according to the main soil 220 

constituents, namely Soil Clay Minerals (SCM – kaolinite [Kt], smectite [Sm], mica [Mc], 221 

hydroxy-interlayered vermiculite [HIV], gibbsite [Gb]), quartz (Qz), and organic compounds (OC) 222 

(Viscarra Rossel and Behrens, 2010; Madejová et al., 2011; Terra, 2011; Yang and Mouazen, 223 

2012). Spectral feature 1 at 3695 cm–1corresponds to OH stretching (ν1a) of Kt. Spectral features 224 

2, 12, 13, 14 and 16 at 3620, 1115, 1020, 915 and 698 cm–1 correspond to SCM (Table 1). Spectral 225 

features 3 and 4, measured at 2930 and 2850 cm–1, correspond to C–H stretching of aromatic and 226 

aliphatic organic compounds, respectively. Spectral features 5, 6, and 7 at 1990, 1870 and 1785 227 

cm–1 correspond to Si–O stretching bands of Qz. Spectral features 8 and 15 at 1630 and 808 cm–1 228 

correspond to both SCM and Qz; features 9 and 10 at 1530 and 1340 cm–1 correspond to both OC 229 

and Qz; feature 11 at 1160 correspond to both OC and SCM (Table 1). 230 

The potential of the spectroscopy method to discriminate sediment sources was analyzed 231 

based on the scores obtained from the PCA. The scores of 39 principal components (PC) obtained 232 

in the PCA were then entered in the DFA (PC-DFA model) where six PCs were selected. These 233 

six PCs together explained 70.8% of the total variation obtained from the 39 PCs. In the DFA, the 234 

final Λ* value was 0.0342 (Table 2), meaning that 96.6% of variation included in these six PCs 235 

was due to differences between sediment sources, and only 3.4% of the variation was due to intra-236 

source differences. The PC-DFA model correctly classified 97.5% of the sediment source samples 237 

with an average uncertainty of 3.426% (Table 2). The square Mahalanobis distance between 238 

channel banks and cropland surface was smaller (18.4) than the distance between these sources 239 

and unpaved roads (channel banks vs. unpaved roads = 38.7, cropland surface vs. unpaved roads 240 

= 29.7) (Fig. 4). Nonetheless, the distances between sediment sources remained systematically 241 

significant (P<6.5E-09) (Table 2). 242 

 243 

Partial last-square models based on MIR spectroscopy 244 



 MIR-PLSR model performance is given in Table 3. Four components were used to 245 

construct MIR-PLSR models. Correlations between actual and predicted proportions were very 246 

high, with R² values close to 1 for the three independent MIR-PLSR models (Fig. 5). RPD values 247 

higher than 2 indicate robust models of high quality (Chang et al., 2001). In the current research, 248 

all the independent MIR-PLSR models showed RPD values higher than 10, indicating a good 249 

predictability. Moreover, the average difference between predicted and actual values on the 250 

calibration dataset measured by the RMSEP parameter was always lower than 4.7%.  251 

Regions of the MIR spectra providing the best discrimination between the sediment sources 252 

are shown in Fig. 3. Fig. 3b display the second-derivative of MIR spectra of all the three sediment 253 

sources. To facilitate the visualization of differences in the spectral features, the differences 254 

between the second-derivatives of each source are shown in Fig. 3c, d, e. These figures show a 255 

greater variation between the unpaved roads vs. cropland surface (Fig. 3d) and unpaved roads vs. 256 

channel banks (Fig. 3e) than between cropland surface vs. channel banks (Fig. 3c).  257 

Spectral features at 2930 and 2850 cm–1 corresponding to C–H stretching of aromatic and 258 

aliphatic functional compounds, respectively, provided a better discrimination of unpaved roads 259 

(Fig. 3d, e). In contrast, they did not vary between cropland surface and channel banks (Fig. 3c). 260 

The same interpretation can be made for the spectral features found at 1160 cm–1 (OC + SCM) and 261 

at 1530 and 1340 cm–1 (OC + Qz). This difference is likely due to the lower content of TOC in 262 

unpaved roads (12.0±5.5 g C kg–1, data not shown) compared to cropland surface and channel 263 

banks (20.5±6.6 and 21.3±3.1 g C kg–1, respectively, data not shown). Moreover, a higher 264 

abundance of 2:1 clay minerals and a lower quantity of Qz in the unpaved roads compared to the 265 

cropland and channel banks may have contributed to the better discrimination of unpaved roads 266 

with the spectral features 1, 2, 12, 13, 14 and 16 (SCM), and the spectral features 5, 6 and 7 (Qz). 267 

Thus, the combined effect of differences in mineral composition and organic matter content 268 

resulted in the lowest predictive error (±2.8%) for the MIR-PLSR models built for unpaved roads 269 

(Fig. 5b and Table 3), and in the correct classification of 100% of the road samples (Table 2). As 270 

a result of the much more similar mineral and organic compositions of cropland and channel bank 271 

sources, the predictive errors were higher (5.9 for cropland and 5.1%  and channel banks) than 272 

those obtained for unpaved roads (2.8%) (Table 3). However, errors associated with all MIR-PLSR 273 

models remained far below the 15%-threshold, which was considered as ‘acceptable’ in previous 274 

sediment fingerprinting studies (Collins and Walling, 2002). 275 

 276 

Source contribution to sediment 277 



The uncertainty of MIR-PLSR model predictions remained very low (see the 95% 278 

confidence intervals on Fig. 5, with a mean of 4.6% for the three sediment sources) (Table 3). 279 

Source contributions were very variable from one event to the next, with a dominance in similar 280 

proportions of cropland surface (mean: 42±27%; Fig. 6) and channel banks (mean: 43±19%; Fig. 281 

6), and a much lower contribution of unpaved roads (mean: 16±10%; Fig. 6). When these results 282 

are compared to those obtained by Tiecher et al. (2015) using conventional sediment fingerprinting 283 

based on geochemical properties, the cropland  contribution was clearly underestimated by the 284 

spectroscopic method, whereas channel bank contribution was overestimated (Fig. 6). In contrast, 285 

the contribution of unpaved roads calculated by both methods remained very similar (Fig. 6.).  286 

When compared to the results obtained with other sediment fingerprinting approaches, such 287 

as those based on elemental geochemistry (Tiecher et al., 2015), ultraviolet-visible (UV-VIS) 288 

(Tiecher et al., 2015), and near-infrared (NIR) properties (Tiecher et al., 2016), the results found 289 

with MIR spectroscopy showed an overestimation of channel bank contribution and an 290 

underestimation of cropland and unpaved road contributions (Fig. 6). Moreover, MIR-PLSR 291 

model predictions showed the highest difference in source contributions compared to those 292 

obtained with geochemical properties (Fig. 7). Although NIR-PLSR predictions were the closest 293 

to those obtained with the geochemical approach, there was no significant correlation between the 294 

methods (Table 4). UV-VIS-PLSR showed an intermediate behaviour, with slight variations in 295 

source contributions compared to those obtained with the geochemical approach. In addition, UV-296 

VIS predictions were well correlated to MIR predictions for all sediment sources and showed a 297 

significant correlation with results of the geochemical approach for cropland and unpaved roads 298 

(Table 4).  299 

A strong positive correlation (p = 0.001, r = 0.57) was found between the cropland surface 300 

contributions calculated by both approaches (Table 4 and Fig. 7). The contribution of unpaved 301 

road estimated by MIR-PLSR models was poorly correlated to the contribution obtained by 302 

geochemical approach (p = 0.108, r = 0.30, Table 4). This type of relationship was not observed 303 

for channel banks. Moreover, the unpaved road contribution predicted by the spectroscopic method 304 

was found to be negatively correlated with the total organic carbon content in suspended sediment 305 

(Fig. 8). This result demonstrates that the mid-infrared signature and the results of MIR-PLSR 306 

models were impacted by the low organic carbon content found in deep soil horizons 307 

corresponding to unpaved road material, which may explain why unpaved road predictions were 308 

very similar for both methods (Fig. 6). When assuming that the sediment source contributions 309 

provided by the conventional fingerprinting method based on geochemistry are correct and 310 

reflecting the ground truth, results of the current research demonstrate that the analysis of the MIR 311 



region of the electromagnetic spectrum provided less accurate results than the NIR and UV-VIS 312 

regions. This is likely due to the higher sensitivity of MIR to organic matter, as observed in several 313 

other studies (Viscarra Rossel et al., 2006; Reeves, 2010; Xie et al., 2011; Soriano-Disla et al., 314 

2014). 315 

 316 

Physicochemical basis of the source discrimination provided by MIR spectroscopy 317 

In the Arvorezinha catchment, the discrimination between sediment sources by using MIR 318 

spectroscopy was possible due to differences in both organic carbon content and in mineralogical 319 

composition between sources. It has been demonstrated that the signatures of different organic 320 

compounds in the mid-infrared region can be very useful to discriminate topsoils (relatively rich 321 

in organic matter) and deeper horizons and gully material depleted in organic matter (Poulenard 322 

et al. 2009; Evrard et al. 2013). However, in certain conditions, the high sensitivity of mid-infrared 323 

spectra to the organic carbon content can become problematic. In one of the Mexican catchments 324 

investigated by Evrard et al. (2013), the source predictions based on the spectroscopic method 325 

greatly differed from those provided by the classical sediment fingerprinting method based on 326 

geochemical properties because one source of soluble organic matter delivered by anthropogenic 327 

activities (excess of cow dung) caused an enrichment of carbon in sediments, leading to an 328 

overestimation of the contribution of surface soil.  329 

In Arvorezinha, unpaved roads are composed of subsurface material as these areas have 330 

been severely eroded during the last several decades. This process explains the lower organic 331 

carbon content found in unpaved roads compared to that measured in cropland surface and channel 332 

bank samples, leading to a better discrimination of the former source (see Mahalanobis distances 333 

in Table 2). The higher abundance of 2:1 clay minerals in the unpaved road samples is likely due 334 

to the fact that most of the soils in Arvorezinha catchment are Acrisols (~57% of the total area). 335 

These soils are characterized by the migration of clays in depth, forming a clay-enriched textural 336 

B subsurface horizon. The higher abundance of 2:1 clay minerals in unpaved roads is due to the 337 

selective eluviation of smectite compared to other sources, which also contributed to the better 338 

discrimination of unpaved roads samples. In contrast, the discrimination between cropland surface 339 

and channel banks, was complicated by their similar contents and composition in organic carbon. 340 

They only differed by their different proportions in mineral components, such as the higher 341 

proportion of Qz and the lower content of 2:1 clay minerals in cropland compared to channel 342 

banks.   343 

It is well known that unpaved rural roads contribute significantly to soil loss in agricultural 344 

catchments despite representing a small fraction of watershed-occupied areas (Cao et al., 2015). 345 



Despite the low contribution of unpaved roads to sediment obtained in this study (16±10%), they 346 

represent perennial landscape features, and their construction should therefore be planned in the 347 

framework of integrated soil erosion control programs. The high soil erosion and sediment yield 348 

rates in unpaved roads should be take into account when designing and constructing road and 349 

railway cuts, because it is very important for infrastructure maintenance, as well as for soil 350 

formation, water protection, vegetation establishment and controlling land degradation (Seutloali 351 

and Beckedahl, 2015; Navarro-Hevia et al., 2016). Moreover, unpaved road material can also 352 

contain considerable amounts of heavy metals like Pb, Cu, Cd, and Zn, which are present in 353 

gasoline type fuels, tire and brake pad wear, oils, lubricants, and grease transport (Trujillo-354 

González et al., 2016). 355 

In catchment characterized by soils with very distinct mineralogical properties, a simple 356 

qualitative comparison of mid-infrared spectra proved to provide a fast and efficient technique to 357 

identify the main sediment sources. In Mexico, Evrard et al. (2013) showed that the mid-infrared 358 

spectrum of Acrisols was characterized by the dominance of kaolinite in the clay fraction (bands 359 

at 3600–3700 cm–1), whereas Andisol spectra were characterized by gibbsite. Similarly, in the 360 

French Alps, Poulenard et al. (2012) showed that soils developed on gypsum substrates were 361 

characterized by absorption bands at 3500 cm–1 and in the region between 2370 and 2060 cm–1, 362 

corresponding to CaSO4; whereas soils developed on molasses were characterized by absorption 363 

bands at 2430–2640 cm–1 corresponding to calcite (CaCO3) and absorption bands at 3500–3700 364 

cm–1 corresponding to aluminosilicates. However, Poulenard et al. (2012) warned against the 365 

application of MIR-PLSR models in catchments characterized by more complex sources of 366 

sediment, with variations in soil types and land uses. This may typically be the case in studies 367 

discriminating catchment compartments (surface vs. subsurface) as in the current research.  368 

As MIR is very sensitive to organic matter, the discrimination of sediment sources with 369 

similar organic carbon contents can be difficult if there are no additional differences in mineral 370 

composition. Further efforts should be made to combine the information provided by both methods 371 

in order to provide estimations of sediment source contributions with a higher precision.  372 

 373 

CONCLUSIONS 374 

This study showed the potential of using an alternative sediment fingerprinting method 375 

based on mid-infrared (MIR) spectroscopy to quantify sediment source contributions in a 376 

subtropical rural catchment of southern Brazil. MIR spectra were comparable in both suspended 377 

sediment and potential sources, and 16 spectral features could be identified in all spectra to 378 

differentiate them. Sources could be distinguished with this method, although the discrimination 379 



between these sources could not be attributed to the detection of specific minerals. The model 380 

based on MIR spectra correctly classified 97.5±2.5% of the source samples. The discrimination of 381 

cropland and channel banks was possible given their differences in clay mineral contents. In 382 

contrast, the similar organic matter content found in both sources complicated their discrimination 383 

by the spectroscopic method. 384 

When the results of the current research based on MIR spectroscopy are compared to those 385 

obtained using other approaches based on geochemistry (Tiecher et al., 2015), ultraviolet-visible 386 

(UV-VIS) (Tiecher et al., 2015), and near-infrared (NIR) spectroscopy (Tiecher et al., 2016), 387 

results of the current research focusing on MIR spectroscopy showed an overestimation of channel 388 

bank contribution and an underestimation of cropland and unpaved road contributions. Moreover, 389 

among the spectroscopic approaches, predictions based on the analysis of the MIR region showed 390 

the highest difference in source contributions compared to those obtained with the geochemical 391 

conventional approach which is considered to provide the ‘ground truth’. Mid-infrared 392 

spectroscopy signatures were clearly impacted by the low organic carbon content of deep soil 393 

horizons, as that found in unpaved road material, resulting in a better discrimination of this source 394 

and similar contributions to sediment calculated by geochemical approach. In the future, additional 395 

tracers could be used, e.g. fallout radionuclides including 137Cs, to provide further discrimination 396 

between surface and subsurface material in order to validate the relevance of the low-cost MIR 397 

spectroscopy approach for tracing sediment sources in rural catchments. 398 
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Table 1. Characteristics of the absorption features detected by MIR spectroscopy.  603 
Spectral 

feature 

Wavenumber 

(cm-1) 

Wavenumber  

according to the 

literature (cm-1) 

Soil constituent Functional 

group 

MIR 

mode 

1 3695 3695a Kt  O–H  ν1a 

2 3620 3620a Kt  O–H   ν1b 

  3620a Sm  O–H   ν1 

  3620a Mc  O–H  ν1 

3 2930 2930a OC (aromatic)  C–H  ν3 

4 2850 2850a OC (aliphatic)  C–H  ν1 

5 1990 1975b Qz Si–O ν 

6 1870 1867b Qz Si–O ν 

7 1785 1790b Qz Si–O ν 

8 1630 1628b Kt, Sm, Mc, HIV  O–H  δ 

  1628b Qz Si–O ν 

9 1530 1527b Qz Si–O ν 

  1525c OC (aromatic) C=C ν 

10 1340 1527b Qz Si–O ν 

  1350c OC (aliphatic) C–H ν 

11 1160 1157b OC (polysaccharide) C–O ν 

  1157b OC (aliphatic) C–OH ν 

  1157b Kt, Sm, Mc, HIV O–Al–OH δ 

12 1115 1111b Kt, Sm, Mc, HIV Si–O–Si ν 

  1111b Gb Al–O–OH δ 

13 1020 1018b Kt, Sm, Mc, HIV Si–O–Si ν5 

14 915 915a Kt Al–OH  δ 

  915a Sm Al–OH  δa 

15 808 814b Qz Si–O ν 

  814b Kt, HIV, Gb Al–OH  δ 

16 698 702b Kt, Sm, Mc, HIV Si–O ν 

Kt, kaolinite; Sm, smectite; Mc, micas; HIV, hydroxy-interlayered vermiculite; Gb, gibbsite; Qz, quartz; OC, organic compounds. 604 
a Viscarra Rossel and Behrens (2010) 605 
b Terra (2011) 606 
c Yang and Mouazen (2012) 607 
  608 



Table 2. Results of the discriminant function analysis and prediction error for the MIR spectroscopy 609 
approach. 610 

 611 

 612 
Table 3. Predictive performance of the MIR-PLSR models based on MIR spectroscopy. 613 
Sediment source NC Radj RMSEC  RMSEP RMSECV RPD 

Crop fields 4 0.9903 2.1 4.7 2.9 10.0 

Unpaved roads 4 0.9978 1.2 2.1 1.5 19.8 

Stream channels 4 0.9929 1.6 3.9 2.3 12.4 
NC, number of components used in the MIR-PLSR model; Radj, coefficient of determination; RMSEC, root mean square error of 614 
calibration; RMSEP, root mean square error of prediction; RMSECV, root mean square error of cross-validation; RPD, ratio 615 
between the standard deviation and RMSECV. 616 
 617 
Table 4. Linear correlation between the sediment source contributions predicted by sediment fingerprinting 618 
techniques based on MIR spectroscopy, NIR spectroscopy (Tiecher et al., 2016), UV-VIS spectroscopy 619 
and elemental geochemistry (Tiecher et al., 2015). 620 
 Sediment source/method 

  

MIR-spectroscopy Geochemistry a UV-VIS-spectroscopy a  

r p-value r p-value r p-value 

Cropland       

Geochemistry a 0.57 0.001     

UV-VIS-spectroscopy a 0.43 0.019 0.31 0.098   

NIR-spectroscopy b 0.04 0.826 0.01 0.962 0.44 0.018 

        

Channel bank       

Geochemistry a 0.01 0.939     

UV-VIS-spectroscopy a 0.31 0.098 0.22 0.253   

NIR-spectroscopy b 0.07 0.701 0.22 0.251 0.37 0.049 

        

Unpaved road       

Geochemistry a 0.30 0.108     

UV-VIS-spectroscopy a 0.61 0.001 0.59 0.001   

NIR-spectroscopy b 0.54 0.003 0.07 0.718 0.23 0.230 
Values in bold indicate significant correlation between source contributions estimated by both methods at P<0.05 621 
a Tiecher et al. (2015) 622 
b Tiecher et al. (2016) 623 
  624 

DFA parameters Source Value 

F-values (F critical = 2.4) SC vs. UR 27.9 

SC vs. CF 17.7 

UR vs. CF 28.6 

p-levels SC vs. UR 2.2E-11 

SC vs. CF 6.5E-09 

UR vs. CF 1.6E-11 

Squared Mahalanobis 

distances 

SC vs. UR 38.7 

SC vs. CF 18.4 

UR vs. CF 29.7 

Average 28.9 

Source samples correctly 

classified (%) 

SC 100 

UR 100 

CF 95 

Average 97.5 

Uncertainty associated with 

source discrimination (%) 

SC 0.311 

UR 0.751 

CF 6.322 

Average 3.426 

Prediction error (%) SC 5.1 

UR 2.8 

CF 5.9 

Average 4.6 



 625 
Fig. 1. Location of the Arvorezinha catchment in Southern Brazil, and location of the potential 626 

sediment source sampling sites. 627 
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 629 
Fig. 2. Ternary diagram showing the composition of the experimental mixtures prepared in the 630 
laboratory for the MIR-PLSR model calibration.  631 
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 633 
 634 

 635 

636 

637 

638 

639 
Fig. 3. Mean MIR spectra of the main sediment sources (unpaved road [UR], stream channel [SC], and crop field 640 
[CF]) and suspended sediment (a), second-derivative of the UR, SC, and CF (b), difference between CF and SC (c), 641 
difference between CF and UR (d), and difference between SC and UR (e). 642 
  643 
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 644 
Fig. 4. Two-dimensional scatter plot of the first and second discriminant functions derived from 645 

stepwise discriminant function analysis (DFA) applied to MIR spectroscopy. Larger symbols 646 
represent the centroids of each source.  647 
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 650 

 651 
Fig. 5. Relationship between actual proportions of sediment sources and those calculated using 652 
MIR-PLSR models in experimental mixtures for crop fields (a), unpaved roads (b), and stream 653 
channels (c). Red dashed lines provide the 95-% confidence limits (95%). 654 
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 656 
Fig. 6. Box plot of the sediment source contributions for the 29 suspended sediment samples 657 

collected at the Arvorezinha catchment outlet, estimated by MIR spectroscopy (this study), NIR-658 
spectroscopy (a – Tiecher et al., 2016), UV-VIS spectroscopy and conventional sediment 659 
fingerprinting approach based on elemental geochemistry (b – Tiecher et al., 2015). 660 
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  663 
Fig. 7. Box plot of the difference in source apportionment provided by spectroscopy approaches 664 

compared to geochemical fingerprinting (Tiecher et al., 2015) for the 29 suspended sediment 665 
samples collected at the Arvorezinha catchment.  666 
a Tiecher et al. (2016) 667 
b Tiecher et al. (2015) 668 
 669 
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671 
Fig. 8. Comparison of the crop field contributions to sediment predicted by the conventional 672 

sediment fingerprinting method based on elemental geochemistry (Tiecher et al., 2015) and those 673 
predicted by the partial least-squares regression model based on MIR spectroscopy. Error bars 674 
correspond to the estimated error of prediction for each method. The dashed line represents the 1:1 675 
line. Red dotted lines provide the 95-% confidence limits. 676 

 677 

678 
Fig. 9. Relationship between the unpaved roads contributions to sediment predicted by the partial 679 
least-squares regression model based on MIR spectroscopy and the total organic carbon content in 680 
sediment. The red dashed lines provide the 95-% confidence limits. 681 
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