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Abstract. Information and communication technology (ICT) is impact-
ing our daily lives more than ever before. Many existing applications
guide users in their daily activities (e.g., navigation through traffic, health
monitoring, managing home comfort, socializing with others). Although
these applications are different in terms of purpose and application do-
main, they all detect events and propose actions and decision making
aid to users. However, there is no usage of a common backbone for event
detection that can be instantiated, re-used, and reconfigured in different
use cases. In this paper, we propose eVM, a generic event Virtual Ma-
chine able to detect events in different contexts while allowing domain
experts to model and define the targeted events prior to detection. eVM
simultaneously considers the various features of the defined events (e.g.,
temporal, geographical), and uses the latter to detect different feature-
centric events (e.g., time-centric, location-centric). eVM is based on dif-
ferent components (an event query language, a query compiler, an event
detection core, etc.), but mainly the event detection modules are detailed
here. We show that eVM is re-usable in different contexts and that the
performance of our prototype is quasi-linear in most cases. Our exper-
imental results showed that the detection accuracy is improved when,
besides spatio-temporal information, other features are considered.

Keywords: Event Detection, Semantic Clustering, Formal Concept Anal-
ysis.

1 Introduction

During the last decades, the world has witnessed important changes. Most no-
tably, information and communication technology (ICT) has become a major
part of our lives. Recent research efforts have brought forward massive advances
in the field of data management, thus easing the way for ICT to be tightly
integrated in various application domains (e.g., social, medical, home/building
management, energy management, navigation systems, industry and manufac-
turing). As a result, we now have numerous applications that help users in their
everyday tasks. To give a few examples, consider social applications that allow
users to socialize, comment on social issues and gatherings, and share multimedia
data (e.g., photos, videos) taken by different users, during life events [27] through
a simple interface. Social media have evolved greatly over the past decade. As a
result, more users are now connected to collaborative and information sharing



platforms (e.g., Facebook, Google+) and other social sharing applications (e.g.,
Iphotos1). The medical domain is also witnessing the evolution of ICT. Nowa-
days, patients use personal sensors to monitor their health. Several studies [17,
20, 41] detail the usage of wearable sensors and data mining techniques in order
to monitor a patient's heart condition, or gait analysis (i.e., a person's man-
ner of walking). Buildings and homes are also evolving. With the integration of
sensor networks and advanced data processing techniques, we are currently in
the era of automated homes and smart buildings [6, 43]. In contrast with tradi-
tional buildings/homes, these dynamic systems provide a more comfortable [22],
sophisticated [40], and healthy [46] environment for occupants. Other works [1]
focus more on energy management in these infrastructures. In this regard, the
integration of data mining and sensor networks reduced energy costs for build-
ing/home owners, and more importantly diminished the environmental impact
of the aforementioned infrastructures. ICT is also impacting the way we travel,
drive, and move around in our cities. Navigation and driving guidance systems
[44] help users on the roads everyday. Using geo-localization, sensor networks,
and modern telecommunication, drivers can now avoid traffic jams/congestion,
and report occurring incidents. This is making roads safer and more accessible
for everyone. The integration of ICT even reached the industrial domain [23].
Currently, factory managers are using machine monitoring applications that al-
low them to better schedule machine maintenance, thus preventing faults and
breakdowns.
All of the aforementioned works are different (in terms of application domains,
purposes, and objectives). However, they share the need to detect important
events. To achieve this, many works [8, 9, 32, 36, 37] have evolved around the orga-
nization of shared data on platforms and applications using clustering techniques.
Some social-based studies [8, 32, 35, 37] are based on metadata (e.g., Facebook or-
ganizes multimedia content based on publishing timestamps, Iphotos combines
photo creation timestamps and locations to organize a user's photo library).
Others [26, 28, 31] use the visual attributes of shared objects (e.g., textures, col-
ors) coupled with metadata in order to detect several events. Medical/health
monitoring applications [17, 20, 41] detect health-related events for a specific pa-
tient. In the case of urgent/life threatening events, event detection allows an
efficient and timely intervention from the patient's doctor. Otherwise, informa-
tion regarding the detected events can be used for deep analysis of the medical
issue, testing, diagnosis, and better decision making. Home/building and energy
management works [1, 22, 40, 46] also detect events. For example, detecting if a
person entered a room in order to automatically turn on the lights, or detecting
if the building is empty to turn off the heating and reduce energy consumption.
Furthermore, driving guidance systems [44] need to detect events such as acci-
dents, traffic jams, and road maintenance in order to steer drivers away from
these events'locations. Finally, machinery monitoring applications [23] automat-
ically detect events that could lead to machine breakdowns and faults in order
to optimize maintenance scheduling.

1 http://www.apple.com/ios/photos



All the aforementioned works share common principles: (i) they need to detect
a set of events; and (ii) they need to extract data and apply at least one data
mining technique (e.g., clustering, classification). The main differences are two
fold: 1) the targeted events and therefore their features, and 2) the choice of
data mining/event detection technique.
Even-though all these works detect events, there is no usage of a common back-
bone for event detection that can be instantiated in different contexts/applica-
tion domains. This is restrictive and costly since existing solutions suffer of the
following issues: (i) the absence of an evolutionary approach capable of coping
with needs that change over time; (ii) the absence of extensibility regarding the
integration of new plug ins/complementary systems to an existing event detec-
tion approach; (iii) the difficulty of integrating different event-related modifica-
tions in the development; (iv) the impossibility of reusing the same framework
to detect other events in various domains/contexts; and (v) the lack of expert
input, i.e., providing a module where one can provide his own input on how to
define the corresponding events prior to detection. In addition, sometimes data
shared/published is heterogeneous, and this generates some technical aspects
to be considered: multi-modality (the ability to consider various features and
datatypes at once in the processing), incremental processing (allowing a contin-
uous integration of new data (e.g., new sensor data, new photos shared/published
on different dates/times) in the set of already processed data), and multi-source
processing (considering various data providers at once). Thus, there is a need to
design a generic event detection approach, considering expert input, and event
features, to provide a more reusable approach.
To answer this need, we propose eVM: a re-usable architecture for automatic
and generic detection of ”feature-centric” events. Our framework is composed
of several main components: 1) An event Query Language (eQL): one can use
the eQL to create, update, delete, select, or insert datatypes and event features,
thus defining the targeted events. In addition, one can define several key event
features. Based on the latter, our approach detects the corresponding feature-
centric events. This allows the framework to be generic and re-usable in different
event detection contexts/domains while allowing domain experts to provide their
input; 2) An easy to integrate API containing an Event Query Compiler for eQL
query processing and an Event Detection core. This makes eVM evolutionary,
extensible, and easy to integrate with other modules/systems and programing
languages; and 3) a storage space where various repositories are available for
the storage of various event related data (e.g., data objects, event definitions,
detected feature-centric events).
eVM's clustering technique simultaneously considers the various features, objects
shared by different sources (several data producers) on different dates/times, as
well as data from one source (i.e., to organize a source's data library). eVM is
based on an adaptation of FCA (Formal Concept Analysis) [16, 42], a backbone
that provides a multi-modal, incremental, and multi-source clustering technique
that handles high dimensional data, and requires low human intervention.
In order to validate our approach, we implemented eVM as a cross-platform mo-



bile application in order to evaluate the approach in different real case scenarios.
Our experimental results, on ReSEED Dataset [34] and another simulated one,
show that the event detection accuracy is improved when additional features
(i.e., other than time and geo-location) are taken into consideration. In addi-
tion, our performance results show quasi-linear behavior in most cases.
The rest of the paper is organized as follows. Section 2 reviews event detection
works. Section 3 introduces FCA and defines the eVM approach. The implemen-
tation and evaluation are discussed in Section 4. Section 5 reviews clustering
techniques. Finally, Section 6 concludes and highlights future perspectives.

2 Related Work

In this section, we review event definitions, types, and features before detail-
ing event detection works in different areas (e.g., social event detection, medical
event detection, sensor event detection). Since, in most cases, events are de-
tected based on incoming raw data, without having any prior knowledge on the
occurring events, main approaches [8, 28, 31, 32, 37] use unsupervised clustering
techniques. Since there are no commonly adopted criteria, we propose the fol-
lowing set of criteria to compare the referenced works:

1. Re-Usability : This criterion examines the possibility (yes or no) of using the
same approach as an event detection backbone for different targeted events
in different contexts/domains (cf. Section 1 - limitation (iv)).

2. Domain Specific Expertise: This criterion measures the possibility (yes or
no) of taking into account input from domain experts in the event definition
process (cf. Section 1 - limitation (v)).

3. Evolution: This criterion examines (yes or no) if an event detection approach
can evolve and adapt to the changing event definition/detection needs over
time (cf. Section 1 - limitation (i)).

4. Extensibility : This criterion measures (yes or no) the capability of integrating
new plug-ins/external modules in an existent event detection approach (cf.
Section 1 - limitation (ii)).

5. Ease of Integration: This criterion denotes (yes or no) an approach's ca-
pability of integrating event-related modifications in the development (cf.
Section 1 - limitation (iii)).

In addition to the aforementioned criteria, we also consider other technical re-
quirements/criteria such as:

6. Multi-modality : This criterion states (yes or no) if multiple event features
having different datatypes are considered (e.g., social, topics (textual infor-
mation), sensor-related (scalar and multimedia information)) in addition to
time (datetime) and locations (GPS coordinates or textual location descrip-
tion) for improved event detection.

7. Multi-source: This criterion indicates (yes or no) if multiple data sources
(various publishers, data producers) are considered. This is important since
various sources can provide valuable event related data.



8. Incremental (continuous) processing : This criterion considers the possibility
(yes or no) of processing incoming data without having to repeat the en-
tire processing, because data producers could share event related data on
different dates/times.

9. Level of human intervention: This criterion measures (high, moderate, or
low) how frequently users participate in the event detection process; since
huge amounts of data are shared, it is important that user interventions be-
come less frequent; we consider low intervention if users provide data input
and initial configuration; moderate if users also intervene in result correc-
tion/optimization; and high intervention when users participate in the whole
process.

In the following, we begin by defining events, before detailing research works
from various domains in which event detection has had noticeable impact (e.g.,
social event detection, sensor event detection).

2.1 Basic Definition of an Event

In the literature, many works [2, 3] define events as a happening that takes place
at a particular time and location. Thus, emphasizing the importance of two
main event features: (i) temporal; and (ii) spatial. All events are associated with
these two features, since they answer the most common inquiries i.e., where and
when. Nonetheless, additional event features are useful to describe the context
and semantics of an event (e.g., social, political, medical). The additional features
differ from an event to another.
Events are categorized into different types, regardless of their contexts: (i) atomic
or primitive events are the simplest events that can occur in a system. They
cannot be decomposed into any smaller entity; (ii) composite or complex events
are high level derived events, and are defined by combining constituent events.
The latter can be atomic, or/and composite [2]. In our proposal, we currently
consider atomic events, nonetheless the framework is re-usable and extensible,
and can easily integrate a module for event composition that allows the detection
of composite events.

2.2 Event Detection Applications

As mentioned before, event detection covers a large spectrum of application do-
mains. From social event detection and sharing applications to environmental
monitoring (e.g., detecting fire hazards in forests, level of air pollution in a city),
energy management (e.g., detecting energy wastes in smart buildings), indus-
trial processes (e.g., detecting events that disrupt production flow in a factory,
detecting faults and machine maintenance issues), and medical event detection
(e.g., monitoring a patient's heart condition) in various sensor networks. In all
the aforementioned works, event detection requires a sensing (data collection)
phase. During this phase, data is collected either through social means (shared
images, videos, and posts on social media platforms) or physical equipments



(e.g., sensor observations produced by deployed sensors). Therefore, we discuss
event detection works by their respective categories: (i) Social-based; and (ii)
Equipment-based works.

Social-based Works: In the literature, several Social Event Detection (SED)
approaches have emerged for detecting events. SED approaches can be grouped
into two categories: approaches that rely on the metadata of shared objects (e.g.,
photos, videos, tweets) [8, 32, 35, 37], denoted metadata-based, and approaches
that rely on visual attributes (e.g., colors, shapes) and metadata [13, 14, 26, 28,
31], denoted hybrid.

– Metadata-based approaches: In [32], the authors aim to detect social events
based on image metadata, using temporal, geo-location, and photo-creator
information. They perform a multi-level clustering for these features. In [8],
the authors use time and GPS data to cluster photos into events using the
mean-shift algorithm. First, the authors find baseline clusters based on time,
then GPS location attributes are integrated. In [35], the authors use time
and location information from twitter feeds to detect various events (e.g.,
earthquakes). In [37], the authors rely on textual tags such as time, geo-
location, image title, descriptions, and user supplied tags to cluster photos
into events, thus detecting soccer matches that happened in Madrid. These
approaches need moderate human intervention. However, they are not in-
cremental nor extensible. Metadata is also used by stand-alone applications
for photo management to detect social events in a user's multimedia library.
These applications require no human intervention, they automatically clus-
ter objects found in a library. However, they do not consider other event
features (e.g., social, topic), nor other photo sources (photos taken by other
participants/collaborators). They mainly focus on time and location, photos
taken at the same day and place of an event are merged with the event.

– Hybrid approaches: Many hybrid approaches rely on both visual and meta-
data attributes. In [28] and [31], the authors combine visual object attributes
with temporal information, geo-locations, and user-supplied tags for their
clustering procedures. Visual and tag similarity graphs are combined in [28]
for the clustering. While in [31] the authors divide the geographical map
of the world into square tiles and then extract the photos of each tile us-
ing geo-location metadata. They later use other metadata combined with
visual features to detect objects and events. In [14, 26], the authors combine
temporal metadata with visual attributes for annotation and event cluster-
ing purposes. In [13], the author relies more on temporal metadata than
visual attributes for correct event detection, since he considers that pho-
tos/videos associated with one event are often not visually similar. Hybrid
approaches consider different types of object attributes (e.g., visual, tem-
poral, geo-locations). However, regrouping visually similar objects does not
imply that they belong to the same event. Therefore, metadata is required
to boost the accuracy of such approaches. Since these methods process vi-
sual attributes (e.g., through photo/video processing techniques), they end



up having a higher processing cost than the approaches that only process
metadata. Some approaches require more human intervention, because they
prompt the user to correct/optimize the results.

Equipment-based Works: With the evolution of sensor technology [11], sen-
sor networks have been highly used for various purposes (e.g., personal sensing,
social sensing, environmental monitoring), especially since the sensor data mod-
eling aspects have been widely covered recently (e.g., through ontologies such as
the Semantic Sensor Network SSN [12]). Sensors produce observations related
to certain properties (e.g., temperature, movement, humidity). Regarding event
detection in sensor networks, events are usually composed of sensor features
(e.g., temperature) alongside spatio-temporal features since every sensor obser-
vation is mapped to an instant in time and a specific location. Many works [2,
25] agree that sensor observations are considered atomic events (e.g., temper-
ature rise event), therefore works regarding sensor data fusion [4] could target
the composite events. In the following, we detail some event detection works in
sensor networks, based on the application domains.

– Medical Event Detection: In [17], the authors use lightweight, wearable, and
durable sensors to monitor patients'gait (i.e., the manner of walking). Peo-
ple who suffer from strokes or spinal cord injuries, tend to have abnormal
gaits. During medical treatment, it is beneficial to detect gait events when
they occur (e.g., initial foot contact). The authors propose two different ways
for detecting such events, one using accelerometer data, and another using
foot switch data (i.e., data from pressure/force sensor). In both cases, the
event features are spatio-temporal, and sensor-related (i.e., accelerometer,
pressure, force). The authors test both cases on normal, slow, and altered
walking subjects and achieve near real time accurate detection of abnormal
gait events. In [20], the authors declare that a variety of measurements are
required for gait analysis (e.g., stride, step lengths, cadence, gait velocity).
In order to acquire such measurements, the system needs to know when and
where each foot leaves and touches the ground again. Therefore, the authors
take interest in detecting the following events: (i) foot end contact (EC); and
(ii) initial contact (IC). Thus, the authors propose an approach for IC and
EC event detection using linear accelerometers and angular velocity trans-
ducers. They then use the event detection results to analyze gait patterns of
healthy and injured individuals. In [41], the authors propose a wireless smart
sensor for heart monitoring. The aim is to detect life threatening events such
as cardiac arrhythmia for patients with heart related issues. The sensor mon-
itors heart rate and ECG signals to detect the aforementioned events in real
time.

– Environmental Event Detection: In environmental monitoring scenarios, the
sensor network contains more nodes (compared to personal medical sensing),
and the spatio-temporal data acquisition intervals are wider. For example, to
detect high air pollution events in a city, a huge number of air quality sensors
should be deployed. In [15], the authors detect wildfire events in the wild



by collecting sensor data such as temperature, relative humidity, and baro-
metric pressure. In addition, they integrate spatial features by using a GPS
unit in order to localize the detected events. Information is communicated
using a wireless sensor network. In [45], the authors propose an approach for
real-time forest fire detection. They rely on spatio-temporal information and
fire event context features such as relative humidity, temperature, smoke,
and wind speed. They produce a report of abnormal atomic events (e.g.,
high temperature, smoke rising), and a real time forest fire danger rate from
the collected data. Then they use a neural network to detect the fire events.
In [24], the authors use crowd-sensing in order to detect and monitor air
quality related events in a city. In addition to time and geo-localization, air
quality events share features that are related to the context of air quality
(e.g., carbon monoxide (CO), air pressure, nitrogen dioxide (NO2), and tem-
perature). They also develop an android mobile phone application to display
results to end users.

Table 1: Event Detection Works Comparison

Criterion

Event Detection Category
Social-based Works Equipment-based Works

Metadata Hybrid Medical Environmental

[8, 32, 35, 37]
Stand-alone
Applications

[13, 14, 26, 28, 31] [17, 20, 41] [15, 24, 45]

Re-Usability No No No No No

Domain Specific Expertise No No No No No

Evolution No Partially2 No No No

Extensibility No Partially2 No No No

Ease of Integration No No No No No

Multi-Modality No Yes Partially2 Yes Yes

Multi-Source Partially2 Partially2 Partially2 No No

Incremental Processing No Partially2 No Yes Yes

Level of Human Intervention Low - Moderate Low Moderate - High Moderate Moderate

Discussion: Table 1 summarizes the evaluation of event detection approaches
based on the aforementioned criteria. Concerning Social-based works, metadata-
based approaches [8, 32, 37] need low to moderate human intervention and pro-
vide good event detection accuracy, since metadata describes data related to the
events (e.g., dates, locations, tags). However, these works lack the incremental
processing needed to match the flow of publishing/sharing. Recently, incremen-
tal processing was integrated in some works (e.g., iPhotos). Hybrid methods [13,
14, 26, 28, 31] are costly computation-wise and require human intervention thus
making continuous processing hard to implement [29]. In contrast, these meth-
ods offer more event features by combining visual attributes with metadata to
improve accuracy. Finally, the two categories of works are not re-usable in differ-
ent contexts nor fully consider the various features and modalities (datatypes) in
event detection. They also do not consider domain expert input when defining the
targeted events. Concerning Equipment-based works, we split these approaches
based on their application domains. Nonetheless, they share two common charac-
teristics: (i) they rely on a data acquisition networks (constituted of one or more

2 Partially states that not all approaches of a category comply with the criterion.



sensors); and (ii) although they target different events, spatio-temporal event
features are used by all methods. When considering the latter features, the cho-
sen granularity can vary based on the application (e.g., for the spatial feature:
we consider cities for environmental monitoring and the specific indoor location
of a patient in a fall detection system). What differentiates the event definition
from one approach to another are the specific (context related) features (e.g.,
temperature, movement, humidity). No current approach allows domain experts
to contribute in event definition, i.e., the same event (e.g., abnormal gait) has
variant definitions in different approaches. These works are not re-usable in dif-
ferent domains and contexts. When considering the other criteria we find that
the level of human intervention varies from an approach to another. Finally even
though these approaches are incremental, in most cases they are not extensible.

3 The event Virtual Machine (eVM) approach

In this section, we detail the eVM framework. Firstly, we provide an overview of
our proposal. Then, we focus more on the clustering technique used in our event
detection process. Finally, we detail our query language, modules and algorithm.

3.1 Approach overview

As previously discussed in section 2.1, existing approaches heavily rely on time
and location when defining the targeted events. In order to tackle specific events,
additional context related information (e.g., social, medical) are added. Nonethe-
less, existing works, such as [17, 32, 35], provide a static event definition that does
not allow modifications (adding, removing event features). Since event definition
and detection needs change over time, or from one context/domain to another,
we provide a generic and extensible event definition in eVM. We model events as
2D+ spaces (having at least two dimensions: temporal and spatial). Depending
on the targeted events, one can specify/create additional dimensions, represent-
ing the contextual event features such as topics (based on tags or annotations),
temperatures (based on sensor readings) and various levels of granularities for
each feature (e.g., year-month-week-day-hour for time, country-region-city-street
for location). Micro granularities can also be considered depending on the ap-
plication purpose (e.g., time: minutes-seconds for short events, location: human
body-part of a body for medical applications). This way of defining events is
dynamic, allows domain expert input, and is extensible. Nonetheless, it does
not consider yet digital events, where the location dimension should be handled
differently (e.g., server attacks that could happen on multiple nodes in the same
time.)
Depending on the event detection needs, domain experts can create, insert, up-
date and delete datatypes, event features, granularities, and event definitions
using our proposed event Query Language (eQL). Every time a eQL query is
submitted, a common Event Query Compiler (cf. Fig. 1) executes the submitted



query, thus creating an instance of event detection. Finally, using the defined in-
stance, a common Event Detector mechanism is triggered. This process queries
event related data, stored in specific repositories (found in the storage space),
and starts detecting events based on the provided event model (definition). The
Event Detector integrates FCA as the backbone clustering technique, to provide
a multi-modal, dynamic, and incremental approach (the API components are
later detailed in Fig.3). This makes the eVM framework re-usable in different
contexts, evolutionary, and easy to integrate with any API friendly programing
language. In this paper, we only detail the Event Detection part of this frame-
work.

Fig. 1: eVM Overview

3.2 FCA Preliminaries & Definitions

After studying various clustering techniques [5, 7, 19, 33], we chose Formal Con-
cept Analysis (FCA) [16, 42] as the backbone for the event detection process of
our approach. FCA is incremental and multi-modal (criteria 8 and 6). It exam-
ines data through object/attribute relationships, extracts formal concepts and
orders the latter hierarchically in a Concept Lattice which is generated through
a four step process [10]:

Step 1: Defining a Formal Context (Def. 1) from the input data, based
on object/attribute relations represented in a cross-table.

Definition 1 A Formal Context: is a triplet 〈X, Y, I〉 where:

– X is a non-empty set of objects



– Y is a non-empty set of attributes
– I is a binary relation between X and Y mapping objects from X to attributes from

Y, i.e., I ⊆ X × Y. �

Table 2 shows an example, where photos are objects and photo attributes
(locations, photo creator names, and dates) are attributes. The cross-joins rep-
resent the mapping of photos to their respective photo attributes, e.g., photo 1
was taken in Biarritz by John on 17/08/2016.

Table 2: Formal Context example
Names Locations Dates

John Patrick Dana Ellen Biarritz Munich Paris 17/08/2016 12/12/2012 02/02/2016

P
h
o
t
o
s 1 x x x

2 x x x
3 x x x
4 x x x
5 x x x

Step 2: Adopting Concept Forming Operators to extract Formal Con-
cepts (Def. 2). FCA has two concept forming operators:

– ↑: 2X → 2Y (Operator mapping objects to attributes)
– ↓: 2Y → 2X (Operator mapping attributes to objects).

For example, from the cross-table shown in Table 2, we have {3}↑ = {Patrick,
Munich, 12/12/2012} and {02/02/2016}↓ = {5}.

Definition 2 A Formal Concept in 〈X,Y, I〉 is a pair 〈Ai, Bi〉 of Ai ⊆ X and Bi ⊆
Y such that: A↑i = Bi ∧B↓i = Ai. �

Consider the set of photos A1={1, 2} and the set of attributes B1 = {John,

Biarritz, 17/08/2016}. A↑1 = {John, Biarritz, 17/08/2016} and B↓1 = {1, 2}.
Thus, since A↑1 = B1 and B↓1 = A1, the pair 〈A1, B1〉 is a Formal Concept.

Step 3: Extracting a Subconcept/Superconcept Ordering relation for
Formal Concept (cf. Def. 2) ordering by defining the most general concept and
the most specific concept for each pair. The ordering relation is denoted ≤.
For example, from Table 2, let A1 = {3}, B1 ={Patrick, Munich, 12/12/2012},
A2={3, 4}, and B2 ={Munich, 12/12/2012}. According to Def. 2, 〈A1, B1〉
and 〈A2, B2〉 are formal concepts. In addition, A1 ⊆ A2 therefore, 〈A1, B1〉 6
〈A2, B2〉. This means that formal concept 〈A1, B1〉 is a subconcept of formal
concept 〈A2, B2〉 (which is the superconcept).

Step 4: Generating the Concept Lattice, which represents the concepts
from the most general one (top) to the most specific (bottom). The lattice is
defined as the ordered set of all formal concepts extracted from the data (based



on ≤). A Concept Lattice denoted by β(X,Y, I)6 is the set of all formal con-
cepts of 〈X,Y, I〉 ordered by the subconcept/superconcept ordering relation 6,
i.e.,

β(X,Y, I) = {〈A,B〉 ∈ 2X × 2Y |A↑ = B,B↓ = A}

β(X,Y, I)6 associated with a subconcept/superconcept ordering relation is called
a concept (Galois) lattice. �
For the example shown in Table 2, Fig. 2 illustrates the Concept Lattice. The top
node is the concept regrouping all objects having no attributes in common. As
we go down in the hierarchy, we notice that concepts have less objects and more
shared attributes (a logic OR and AND are applied to objects and attributes
respectively when scrolling down towards the bottom node). The bottom node is
the most specific, thus regrouping all attributes having zero objects in common.
The next section formally describes our eVM framework and how these FCA
four steps are integrated and adapted for the clustering of data objects.

Fig. 2: The Concept/ Galois Lattice

3.3 The eVM Framework

In order to organize a set of event-related data objects according to feature-
centric events, the eVM's API mechanism is split into four main steps: (i) Event
definition & data pre-processing (executed by the Event Query Parser, Event
Query Executor, and Pre-Processor modules); (ii) Attribute extraction (executed
by the Attribute Extractor module); (iii) lattice construction (executed by the
Event Candidates Lattice Builder module); and (iv) event detection (carried
out by the Feature-Centric Event Detector and Rule Selector modules). In the
following, we detail each processing step and module.

Event definition & data pre-processing: Through the Event Query Com-
piler, one uses the SQL-like event Query Language (eQL) to define the targeted
events. The parser checks the syntax of the submitted queries. Then, the query
statements are executed using the Event Query Executor module. Query state-
ments are categorized into two groups: (i) Event Definition Statements (queries
used to CREATE, UPDATE, INSERT, and DELETE datatypes, features, di-
mensions, and event spaces); and (ii) Event Selection Statements (queries used
to select data or events from repositories. In this paper, we only detail main



Fig. 3: eVM API Components

query statements. Details about eQL will be provided in a dedicated study.
When defining the targeted events, several queries are to be considered such as
event feature (FEATURE), attribute datatype (ADT), dimension (DIMENSION), and
event space (eSPACE) creation. The following syntax shows how to do that:
This query creates an event feature:

CREATE FEATURE <feature_id > (

[label =] <value >,

[G= ] {<value >},

[interval =] ’1’ | ’0’,

[gran =] <function >,

);

Where feature id is the unique identifier of the feature, label is the fea-
ture's label, G is a set of granularities associated with the feature, interval is a
boolean indicating if the feature is generated as an interval (true), or not (false),
and gran is a function that converts any granularity value to another (related
to the same feature). For example, the following describes five (fire) event fea-
tures each having a label, a set of granularities, an indication about interval
construction, and a conversion function:

– Timef : 〈′Time′, {Y ear,Month,Week,Day,Hour}, 1, ConvertTime〉
– Geof : 〈′Geo′, {Country,Region,City, Street}, 0, ConvertGeo〉
– Tempf : 〈′Temp′, {value, setofvalues,mean,max,min}, 1, ConvertTemp〉
– CO2f : 〈′CO′2, {value, setofvalues,mean,max,min}, 1, ConvertCO2〉
– Smokef : 〈′Smoke′, {singlevalue, setofvalues}, 0, ConvertSmoke〉



For example, Time, Geo, Temp (temperature), CO2, and Smoke features could
be used to define a fire event that can be detected from sensor data in a sensor
network.
To create an attribute datatype, the syntax of eQL is as follows:

CREATE ADT <adt_id > (

[label =] <value >,

[t =] ’Integer ’|’Float ’|’Boolean ’|’Date ’|’Time ’|

’Date Time ’|’Character ’|’String ’,

[range =] {<value >},

[dist =] <function >,

[f =] <value >,

);

Where adt id is the unique identifier of the attribute datatype, label is the
attribute datatype's label, t denotes the primitive data type of the attribute,
range is the domain of the attribute values, dist is the function that returns
the distance between any two values of the same attribute datatype, and f is
the event feature mapped to the attribute data type. To continue with the fire
event example, the following describes five attribute data types each having a
label, a primitive datatype, a range, a distance function (e.g., time difference for
temporal attributes, spatial distance for geographical attributes, temperature,
CO2, and Smoke differences between various sensor readings for instance), and
an associated event feature:

– Timeadt : 〈′TimeAttribute′, Date,Any, T imeDifference, T imefeature〉
– Geoadt : 〈′GeoAttribute′, String,Any, SpatialDistance,Geofeature〉
– Tempadt : 〈′TempAttribute′, F loat, Any, TempDifference, Tempf 〉
– CO2adt : 〈′CO2Attribute′, F loat, Any,CO2Difference, CO2f 〉
– Smokeadt : 〈′SmokeAttribute′, Boolean,Any, SmokeDifference, Smokef 〉

An event is formally defined as a n-dimensional space, denoted event space,
where each dimension represents an event feature (e.g., time, social, topic, tem-
perature). To create a dimension, one needs to use the following syntax:

CREATE DIMENSION <dimension_id > (

[o =] <value >,

[datatype =] <value >,

);

Where dimension id is the unique identifier of the dimension, o is the origin
point of a dimension, specifying the first value on DIMENSION, and datatype

denotes the attribute datatype shared by all values on DIMENSION, datatype ∈
ADT (the set of all attribute datatypes). Since each attribute datatype is mapped



to a feature, each dimension is also mapped to/represents a specific event feature.
For example, the following describes five event space dimensions, each having an
identifier, an origin value, and an attribute data type (and therefore an associated
event feature). These event dimensions help define the event space of a fire event:

– Time : 〈1, 30/12/2017 1:30 pm, Timeadt〉
– Geo : 〈2, Paris,Geoadt〉
– Temp : 〈3, 20 (degrees Celsius), Tempadt〉
– CO2 : 〈4, 250PPM(PartsPerMillion), CO2adt〉
– Smoke : 〈5, No, Smokeadt〉

And finally, the following query creates an event space:

CREATE eSPACE <eventSpace_id > (

[D =] {<value >},

[SO =] {<value >},

);

Where eventSpace id is the unique identifier of the event space, D is a set of
dimensions that constitute the space (such as D at least contains two dimensions:
temporal and spatial), and SO is the set of data objects that belong to the event
space (the list of objects is empty at the space creation, after the detection
process all data objects are inserted into their respective spaces).
Since all events are heavily mapped to a certain time period and a geo-location,
we ensure that the event space is at least two dimensional (i.e., at least the
temporal and spatial dimensions exist). The additional dimensions that define
the event represent the features that the expert chose. This way the framework
is re-usable in different contexts (criterion 1 cf. Section 2) and the user is able to
customize the event definition in order to get more interesting results (criterion
2 cf. Section 2). In addition, he/she specifies the feature (or set of features) that
he/she would like to consider as key for the feature-centric event detection.
For example, eSpace : 〈1, (Time,Geo, Temp,CO2, Smoke), SO〉 defines a fire
event where:

– 1 is the id of eSpace

– The five dimensions that define the fire event are:

• Time : 〈1, 30/12/2017 1:30 pm, Timeadt〉
• Geo : 〈2, Paris,Geoadt〉
• Temp : 〈3, 10 (degrees Celsius), Tempadt〉
• CO2 : 〈4, 250(PPM : PartsPerMillion), CO2adt〉
• Smoke : 〈5, No, Smokeadt〉

– SO is the set of data objects sensed/shared during the fire event, forall
so ∈ SO, so has five coordinates (temporal, spatial, temperature, CO2, and
Smoke).



A domain expert can also execute delete and update related queries:

DELETE [FEATURE|ADT|DIMENSION|eSPACE] <id > (

WHERE Condition ,

);

UPDATE [FEATURE|ADT|DIMENSION|eSPACE] <id > (

SET [field_name =] <new value >,

WHERE Condition ,

);

Once the event definition is established, the Pre-processor module requests
event related data from the storage unit (i.e., from the object repository). The
purpose of this step is to analyze the attributes of each data object (Def. 3). An
attribute is defined as a value associated with an attribute data type. We define
a data type function denoted dt, that returns the attribute data type of a value
based on the data object attributes.

Definition 3 A Data Object is defined as a 2-tuple, so : 〈id, V 〉, where:

– id is the unique identifier of a data object
– V is a set of attribute values according to a given ADT, such that ∀ai ∈ ADT ∃vi ∈

V | dt(vi) = ai. �

The Pre-processor will extract objects having attributes related to the fea-
tures found in the event space. For instance, if one targets sports events having
temporal, spatial, and a (sport) topic features, the Pre-processor extracts from
the data object repository (cf. Fig.3) all objects having the following attributes:
(i) a temporal; (ii) a geo-location; and (iii) a sports-related tag/annotation. Fi-
nally, the selected data objects are sent to the Attribute Extractor module.

Attribute extraction: In this step, the event definition, provided by the incom-
ing event space (eSpace), is essential for knowing which data object attributes
should be extracted and included in the rest of the processing. The attribute
extraction objective is to examine the dimensions that constitute eSpace and
select the list of attribute data types needed for event detection. The Attribute
Extractor module (cf. Fig.4) initiates a cleaning process via the Converter sub-
module in order to have the same units for data object attributes (e.g., having
all temperature values in Celsius). The cleaned data objects are stored in the
data objects repository (cf. Fig.3). Finally, from every data object, the Extractor
sub-module extracts the needed attributes (based on the event definition). Both
data objects and their attributes will be used in the following steps for lattice
construction.

Lattice Construction: In this step, an event agent processes the previously ex-
tracted attributes, and data objects into lattice attributes and objects, in order to



Fig. 4: The Attribute Extractor module

generate one output: the lattice. The Feature-centric Event Lattice Builder is the
FCA backbone. It integrates the four step process of FCA clustering described
in Section 3.2. To do so, we define lattice attribute types in Def.4. These types
will be used when defining the lattice attributes (cf. Def.5). Lattice attributes, as
defined here, ensure that any given object/attribute can be represented in the
FCA formal context. Therefore, any object having attributes can be properly
integrated in the clustered data set. This allows the event detection process of
eVM to be generic and applicable in various contexts (e.g., social events, sensor
events). Finally, for object/lattice attribute mapping, we define a binary cross
rule denoted BXR (cf. Def.6). This process is repeated for each event detection
run.

Definition 4 lat is a lattice attribute type representing an interval [a, b[ where lat :
〈a, b, T 〉, where:

– a is the lower boundary value
– b is the upper boundary value
– T is a value representing the period having a primitive data type of either integer

or float, such that:
• dt(a) = dt(b) ∈ ADT and
• b = a + T . �

Definition 5 A lattice attribute, denoted la, is defined as a 4-tuple la : 〈f, eSpace, lat, y〉
where:

– f ∈ F is the event feature mapped to lattice attribute la
– eSpace is the event space in which the detection will take place
– lat (cf. Def. 4) is the lattice attribute type



– y is a granularity | y ∈ f.G and

lat.T =

{
y if f.interval = True

0 Otherwise

lat.a = soi.vj, where:

• soi ∈ eSpace.SO and

• (vj ∈ soi.V ) ∧ (dt(vj).f = f). �

For example, from the fire event example, we can find the following lattice
attributes:

– Time intervals

– Geo locations

– Temperature intervals

– CO2 intervals

– Smoke existence (or not)

Definition 6 A binary cross rule, denoted as BXR, is defined as a function that maps
a shared object x to its respective lattice attribute y where x.vi ∈ x.V :

BXR =


1 if (y.lat.T = 0 ∧ y.lat.a = x.vi)∨

(y.lat.T 6= 0 ∧ x.vi ∈ [y.lat.a, y.lat.b[)

0 Otherwise

�

Then the Feature-centric Event Lattice Builder constructs the FED (Feature-
centric Event Detection) formal context, denoted ffc (cf. Def. 7). Once the ffc
is created, formal concepts (cf. Fig. 6) are extracted and a lattice (cf. Fig. 7) is
generated. This process is described in steps 2-4 of Section 3.2. This lattice is
called an Event Candidate Lattice, where each node is a potential feature-centric
event. Fig. 5 illustrates the inner composition of the Event Candidates Lattice
Builder module.

Definition 7 A FED Formal Context, denoted ffc, is defined as a 6-tuple ffc :
〈eSpace, F, fLAG, X, Y, I〉, where

– eSpace is the event space in which the detection takes place

– F is the set of one event features

– fLAG is the function that generates the lattice attributes, described in Algorithm 1

– X = eSpace.SO is the set of shared objects

– Y =
⋃|X.V |−1

i=0 {lai} is the set of lattice attributes | X.V =
⋃
∀so∈X{so.V } is the

union of all attribute values from the shared objects in eSpace

– I is a BXR(x,y) where x ∈ X ∧ y ∈ Y . �



Fig. 5: The Event Candidates Lattice Builder module

To follow up with the fire event example, Table 3 illustrates how lattice
attributes (columns) are mapped to incoming sensor observations (rows) using
the binary cross rule in the FED formal context.

Table 3: Fire Event Formal Context Example
Time Geo Temp CO2 Smoke

[9 - 9:15[ [9:15 - 9:30[ Loc1 Loc2 [20 - 40[ [40 - 60[ [250 - 350[ [350 - 450[ Yes No

O1 X X X X X

O2 X X X X X

O3 X X X X X

O4 X X X X X

O5 X X X X X

O6 X X X X X

The example in Table 3 shows six sensor observations (objects), mapped to
their respective attributes. For instance, observation 1 has a timestamp value be-
tween 9 and 9:15 AM, therefore it is mapped to the lattice attribute [9− 9 : 15[.
This observation is taken from a sensor deployed in Loc1 and has a temperature
reading that is included in the [40− 60[ degrees Celsius interval. Moreover, the
other five observations are also mapped to their corresponding attributes using
the binary cross rule. This represents the (FED) formal context in this scenario.
In Algorithm 1, we detail the lattice attribute generation process. This starts
by extracting all object attribute values (lines 5-11). If the value is mapped to
a feature that is generated as an interval (e.g., time), the algorithm calls the
Create-Intervals function (lines 19-23). If not (e.g., social), the algorithm gener-
ates a lattice attribute type having a null period and creates the corresponding
lattice attribute (lines 13-18). This step allows the creation of generic lattice
attributes from various features, thus providing extensibility (criterion 2). Al-
gorithm 2 details the Create-Intervals function. This process extracts all values
related to the same feature (lines 4-9), orders them (line 10), selects a minimum
and a maximum value (lines 11-12), and creates periodic intervals starting from
the minimum to the maximum value (lines 14-22). The period is calculated based



on the chosen feature granularity (line 15). This makes the detection more user-
centric (criterion 1). Finally, the result is added the the output of Algorithm 1.

Algorithm 1: Lattice Attribute Generation (cf. Def. 7 - fLAG)

1 Input: eSpace
2 Output: RES // List of all lattice attributes
3 VAL = new List() // Shared Objects attribute values list
4 PD = new List() // Processed event features list
5 foreach so ∈ eSpace.SO do
6 foreach v ∈ so.V // This loop extracts all object attribute values

from all objects in eSpace and stores them in
the VAL list

7 do
8 if (v /∈ VAL) then
9 VAL←v

10 end

11 end
12 foreach v ∈ VAL do
13 if (not dt(v).f.Interval) // If the value is not generated as an

interval14 then
15 lat ← LAT(v, lat.a + lat.T, 0)
16 la ← LA(dt(v).f, eSpace, lat, dt(v).f.g) // Create la with lat.T=0
17

18 RES ← la

19 else
20 if (dt(v).f /∈ PD) then
21 RES ← (Create-Intervals(VAL,v,PD, eSpace)) // Call

Create-Intervals
function

22

23 end

24 end
25 return RES

Algorithm 2: Create-Intervals
1 Input: VAL, v, PD, eSpace // Input provided by Algorithm 1, line 21
2 Output: LAI // Generated lattice attributes intervals
3 int i = 0
4 TEMP = new List() // Temporary object attribute list
5 foreach val ∈ VAL do
6 if (dt(val).f == dt(v).f) // Extract all object attribute values

having the same feature as v and store
them in TEMP

7 then
8 TEMP ← val

9 end
10 Orderascending(TEMP ) // Order TEMP ascending
11 min ← TEMP.get(0) // min is the first element of TEMP
12 max ← TEMP.get(|TEMP | − 1) // max is the last element of TEMP
13 lat ← LAT()
14 while (lat.b < max) do
15 lat ← LAT(min, lat.a + (i+1) × lat.T, dt(v).f.g)
16 if (lat.b > max) // This loop creates

intervals of period
lat.T = f.g
(feature
granularity)

17 then
18 lat.b ← max
19 la ← LA(dt(v).f, eSpace, lat, dt(v).f.g)
20 LAI ← la
21 i++

22 end
23 PD ← dt(v).f // Add feature to the list of processed features
24 return LAI

Fig. 6, shows the formal concepts extracted from the fire event FED formal
context using the FCA operators. And finally, the generated lattice is shown in
Fig. 7 where nodes are potential fire events.



Fig. 6: Fire Event Formal Concepts

Fig. 7: Fire Event Lattice

Event Detection: The Feature-centric Event Detector module uses the pre-
viously generated lattice, an event detection rule (an operator that checks the
lattice nodes in order to find the targeted events), and the features in order to
detect feature-centric events (cf. Def. 8). We define a default event detection
rule, as a set of lattice attributes that comply with the two conditions men-
tioned in Def. 8. The rule is extensible, thus allowing the integration of multiple
event features (e.g., Time, Geo-location, Social, Topic), each represented by the
corresponding lattice attribute. This rule (cf. Fig.8.(a)) uses the selected key fea-
tures in order to target the related feature-centric events. For example, the rules
illustrated in Fig.8.(b), 8.(c), 8.(d), and 8.(e) detect user, geo, topic, and time-
centric events respectively (in a social event detection context). For instance,
Fig. 8.b detects social events (anytime, anywhere, and any topic) of each specific
person. Fig. 8.c is another example of a detection rule where the key feature is
the geo location, i.e., this rule detects events that happened anytime, with any
person, and concerning any topic at a specific location. These rules reflect the
targeted events'definitions and are extensible. Features can be added/removed



(e.g., temperature, CO2 levels, smoke) for specific event detection needs (e.g.,
fire events could be defined as events having high temperature, CO2 and smoke
at any time and place. Therefore, node 6 in Fig. 7 is detected as a fire event).
Finally, for testing purposes, developers can change/add detection rules using
the Rule Selector module. Since the lattice is not affected by the rule change,
only the event detection step is repeated based on the new detection rule.

Fig. 8: Default detection rule

Definition 8 A feature-centric Event, denoted fce, is a Formal Concept defined as a
4-tuple fce : 〈ffc, centralF , A,B〉, where:

– ffc is a FED Formal Context (Def. 7)
– centralF is the set of selected key features |centralF ⊆ ffc.F
– A is a set of data objects | A ⊆ ffc.X
– B is a set of lattice attributes | B ⊆ ffc.Y where ∀bi, bj ∈ B ∧ i 6= j:
• Condition 1: bi.f 6= bj .f
• Condition 2: if bi.f.label = cf .label|∀cf ∈ centralF , then

dist(bi.lat.a, soj .vk)=0 | ∀soj ∈ A ∧ ∀vk ∈ soj .V, dt(bi.lat.a) = dt(soj .vk).�

Finally, Fig. 9 details the interaction between the Rule Selector module and
the Feature-centric Event Detector module. A detection rule change can be re-
quested through the Event Query Language. One can create a new rule, select,
or update an existing one. Based on the developer's choice, the Rule Valida-
tor sub-module checks the syntax of the newly created or updated rule prior to
storage. If one decides to select an existing rule, the Rule Selector sub-module
returns the chosen rule. In both cases, the event detection is repeated using the
chosen rule and new results are generated.

Fig. 9: The Rule Selector module



The syntax to create, select, or update a detection rule (DR) is described
below:

CREATE DR <dr_id > (

[f_id =] {<feature_id >},

[key_id =] {<feature_id >},

);

SELECT DR <dr_id > FROM Detection_Rules_Repository(

WHERE Condition ,

);

UPDATE DR <dr_id > (

SET [f_id =] {<feature_id >},

WHERE Condition ,

);

Where f id is a list of features (identified by their respective ids) that are
considered by the detection rule, and key id is the set of key features considered
by the detection rule.
Finally, event spaces (eSPACE) do not initially contain any data objects (SO)
because they are created prior to the event detection process. Once the latter
occurs, an insert query adds each data object to its corresponding event space.
The following describes the syntax of an insert query:

INSERT INTO [eSPACE] <id > (

{<value >},

WHERE Condition ,

);

4 Implementation & Evaluation

We wanted to evaluate how generic and re-usable the framework is. Therefore,
we instantiated from the eVM two applications: the first, for social event detec-
tion, and the second for conflict event detection. These two contexts provide a
variety of features each (social features, conflict related features), and different
data objects (multimedia shared data in the social context, news stories in the
conflict events context). More particularly, we aimed to validate the components
related to the Event Detection part of the eVM framework (Event Detector
modules cf. Fig.3). In order to do so, we measured, for each application (social/-
conflict event detection), the event detection accuracy (with the integration and
adaptation of FCA). We also evaluated the algorithm's performance based on



execution time and memory consumption. The objectives of the experimentation
were the following: (i) show that the approach is re-usable (criterion 1) by de-
tecting feature-centric events in different contexts (e.g., social event detection,
conflict event detection); (ii) measure the impact of domain specific expertise
(criterion 2) on the detection accuracy (regarding the choice of event features
and granularities in the event definition phase) while reducing human interven-
tion (criterion 9); (iii) demonstrate that eVM is multi-modal (criterion 6) and
multi-source (criterion 7) by measuring the impact of adding various features
on the performance from various data sources; and (iv) proving that eVM is
accurate when given (by the domain experts) optimal features/ granularities,
and event definition. We do not aim at comparing accuracy results with other
works since the objective is to provide a re-usable, easy to integrate, accurate
backbone for event detection, that can be adjusted/configured by domain ex-
perts (i.e., by defining events, detection rules, features, granularities). We do
not present here the evaluation results related to (i) the incremental processing
(even though FCA is incremental [39]); (ii) evolution; (iii) extensibility; and (iv)
ease of integration. This will be presented in a separate work.
Regarding the implementation, we developed a platform that integrates a front
end mobile application and a cloud-based back end. In order to have a mobile ap-
plication for both Android and iOS users, we used Visual Studio and Xamarin3,
a mobile development platform that allows building native mobile applications
from a shared C# code. Xamarin also provides the following features: (i) com-
plete binding for the underlying SDKs for both Android and iOS; (ii) Objective-
C, Java, C, and C++ interoperability; (iii) mobile cross platform support; (iv)
advanced base class library; and (v) Xamarin.Forms maximizes code sharing for
cross-platform development, Xamarin.iOS and Xamarin.Android provide direct
access to platform-specific APIs (cf. Fig.10-11).

Fig. 10: Cross Platform Coding Fig. 11: Xamarin Forms Architecture

We detail next the implementation of the two instances of the framework.
Then, we show the evaluation of performance and accuracy by detecting feature-
centric events in different contexts:(i) Social (e.g., wedding, birthday) Event De-
tection; and (ii) Conflict (e.g., wars, protests) Event Detection. In each context,
we detail the corresponding dataset, and performance and accuracy tests/results.

3 https://developer.xamarin.com



4.1 Instantiating applications from the eVM framework

As previously mentioned, we created two instances from the eVM framework.
The first is dedicated to feature-centric social event detection. In this case, the
targeted events were defined based on various social-related features such as
participants and topics in addition to time and location. The data objects, i.e.,
the event related data that need to be clustered into feature-centric events, were
considered to be photos and videos taken/shared during the social events by
participants. The second instance is designed for feature-centric conflict event
detection. In this case, the targeted events were defined based on time, geo-
location, and a set of contextual features such as the actors (i.e., aggressor, de-
fender), the news source that covered the conflict, the conflict type (e.g., protest,
war, planned attack), and finally the number of casualties. The data objects are
considered news stories regarding the targeted conflict events.

4.2 Algorithm Evaluation

To evaluate the re-usability of our approach, we detected feature-centric events
in different contexts. First, we detail our experimentations and results for the
social event detection application (Test 1), then for the conflict event detec-
tion application (Test 2). The performance tests were conducted on a machine
equipped with an Intel i7 2.60 GHZ processor and 16 GB of RAM. The aim was
to test the performance of our eVM Event Detector algorithm.

Test 1: Application to Social Event Detection
ReSEED Dataset: To evaluate the detection results, we used the ReSEED
Dataset, generated during the Social Event Detection of MediaEval 2013 [34]. It
contains real photos crawled from Flickr, that were captured during real social
events which are heterogeneous in size (cf. Fig. 12) and in topics (e.g., birth-
days, weddings). The dataset contains 437370 photos assigned to 21169 events.
In our evaluation, we used three event features: time, location, and social, since
ReSEED photos have time, geo, and social attributes. In ReSEED, 98.3% of
photos contain capture time information, while only 45.9% of the photos have a
location. We had to select photos having these attributes from the dataset. This
left us with 60434 photos from the entire dataset. In ReSEED, the ground truth
used for result verification assigns photos to social events. Since, our approach is
focused on feature-centric events (in this experimentation, user-centric events),
we modified the ground truth to split the social events into their corresponding
user-centric events. Since the splitting is based on the event features, we need to
specify the feature granularities during the process. The latter are not specified
in ReSEED, therefore we chose the lowest granularity values: day for time, street
for geo, and photo creator name for social. The ground truth refactoring process
is described in Fig. 13. First, we extracted the photos of each event in the ground
truth. Second, we used the timestamps of photo capture to group photos by day.
Third, we split the resulting clusters into distinct groups based on street values.



Fig. 12: ReSEED Photo distribution Fig. 13: Refactoring ground truth

Finally, the result was further split based on distinct photo creators.
Performance Evaluation: We considered two criteria for this task: (i) total
execution time and (ii) memory overhead.
Use Cases: The performance is highly affected by the number of photos, gen-
erated attributes, and clusters. We noticed that granularities day for time and
street for geo generate more clusters and attributes than any other granularity
combination. Therefore, we used day and street to test the prototype's perfor-
mance in three worst case scenarios:

– Case 1: We selected the biggest event (1400 photos) as input. We varied the
number of photos progressively from 1 to 1400. Since all photos are related
to one event, the number of detected clusters should be one.

– Case 2: We extracted 400 events each having exactly one photo. We varied
the number of photos from 100, 200, 300 to 400. The number of generated
clusters for each iteration should be 100, 200, 300, and 400 respectively.

– Case 3: The goal is to test with as many photos as possible related to different
events. We varied the number of photos from 15000, 30000, 45000 to 60434.
Since thousands of events contain only one or two photos per event (worst
case scenario), this case will generate the most clusters.

Results & Discussion: In Cases 1 and 2 (Figures 14.a and 14.b), where the
number of photos does not exceed 1400 and 400 respectively, the total execution
time is quasi-linear. However, in Case 3 (Figure 14.c), we clustered the entire
dataset (60434 photos). The total execution time tends to be exponential, in ac-
cordance with the time complexity of FCA. When considering RAM usage, we
noticed a linear evolution for the three cases (Figures 14.d, 14.e, and 14.f). RAM
consumption is significantly higher in Case 2, where we generated 400 clusters,
than in Case 1, where we generated one cluster. In Case 3, RAM consumption
is the highest because both the number of photos at the input, and the num-
ber of generated clusters (detected events) were the highest. Other tests were
conducted, Fig.15 (left) shows that low granularities (e.g., day) consume more
execution time than high ones (e.g., year). This is due to the generation of more
lattice attributes and clusters. In addition, Fig.15 (right), shows that considering



more features in the processing is also more time consuming. Nonetheless, the
evolution from one to three features remains quasi-linear, making the process
extensible.
Accuracy Evaluation: We chose to consider the criteria proposed by Medi-

Fig. 14: Performance Results

Fig. 15: Granularity and Extensibility Impact

aEval for clustering quality evaluation. We calculated the F-score, based on the
Recall (R) and Precision (PR), and the Normalized Mutual Information (NMI)
using ReSEED's evaluation tool. These criteria are commonly adopted in in-
formation retrieval and social event detection. A high F-score indicates a high
quality of photo to user-centric event assignment while NMI will be used to mea-
sure the information overlap between our clustering result and the ground truth
data. Therefore, a high NMI indicates accurate clustering result.
Use Cases: Since we considered the time, geo, and social features, we identified
all possible combinations of the detection rule (see Table 4). In order to test
granularity impacts, Table 5 sums up the different granularity combinations.



When applying detection rules to granularity combinations, we get 63 use cases.
We measured for each one the NMI and F-Score.
Results & Discussion: Results shown in Table 6, highlight the following:

Table 4: Detection Rule

Combination
Number

of
Features

Features
Considered in

the Detection Rule
1 3 Time, Geo, Social
2

2
Time, Geo

3 Time, Social
4 Geo, Social
5 1 Time
6 1 Geo
7 1 Social

Table 5: Granularity Combinations
Combination Granularities: Time / Geo

1 Year / Country
2 Year / City
3 Year / Street
4 Month / Country
5 Month / City
6 Month / Street
7 Day / Country
8 Day / City
9 Day / Street

(i) Detection rule/features impact: The detection rule based on time, geo, and
social features generates the highest NMI and F-score (NMI: 0.9999 and F-Score:
0.9995). It also exceeds all other detection rules (e.g., the one including solely
time and geo features) in every granularity combination. This underlines that
eVM can cope with various features such as the social feature in the detection
task. Moreover, it highlights eVM's multi-modality, which allows the integration
of additional features (having different datatypes) and the accurate detection of
user-centric events.
(ii) Granularity impact: The results improve, when the clustering is based on
granularities closer to the ones used in the ground truth. For example, in the
case of granularities year, country, the F-Score achieved based on time and geo
features is 0.1911, but for the detection rule that considers only the social fea-
ture the F-Score is higher: 0.5376. This is because the granularities for time
and geo are the most general (year and country). Therefore, the impact factor
of granularities is more important than that of the number of features consid-
ered in the detection rule. Some rules can exceed others for specific granularity
combinations (e.g., Time Geo exceeds Time Social and Geo Social for granu-
larities Year/Month/Day-Street while Time Social exceeds the other two rules
for Year/Month/Day-Country). The best result can be achieved by consider-
ing the maximal number of features having correct granularities. This indicates
that the granularities should not be fixed for all scenarios. When given the best
granularities, our approach detects the user-centric events very accurately.

Test 2: Application to Conflict Event Detection
ACLED Dataset: The aforementioned experiments targeted feature-centric so-
cial events which have features such as time, location, social (e.g., participants),
and topics (e.g., birthday, marriage). In the following experiments, we targeted
feature-centric conflict events. The latter, have different features than social
events (e.g., time, location, aggressor, defender, press news source, conflict type,
casualties). This allowed to have a different event definition, as well as test the



Table 6: Clustering Results

Detection Rule Measure
Granularities

Year Month Day
Country City Street Country City Street Country City Street

Time Geo Social
F-Score 0.6399 0.8180 0.8662 0.7964 0.8619 0.8948 0.9535 0.9742 0.9995

NMI 0.9181 0.9602 0.9729 0.9549 0.9703 0.9789 0.9880 0.9938 0.9999

Time Geo
F-Score 0.1911 0.7678 0.8473 0.4943 0.8367 0.8821 0.8854 0.9542 0.9892

NMI 0.7113 0.9475 0.9684 0.8707 0.9637 0.9759 0.9729 0.9894 0.9977

Time Social
F-Score 0.6245 0.6245 0.6245 0.7939 0.7939 0.7939 0.9534 0.9534 0.9534

NMI 0.9143 0.9143 0.9143 0.9544 0.9544 0.9544 0.9879 0.9879 0.9879

Geo Social
F-Score 0.5085 0.7718 0.8357 0.5085 0.7718 0.8357 0.5085 0.7718 0.8357

NMI 0.8742 0.9470 0.9653 0.8742 0.9470 0.9653 0.8742 0.9470 0.9653

Time
F-Score 0.0220 0.0220 0.0220 0.1399 0.1399 0.1399 0.7278 0.7278 0.7278

NMI 0.3971 0.3971 0.3971 0.7069 0.7069 0.7069 0.9392 0.9392 0.9392

Geo
F-Score 0.0559 0.6958 0.8343 0.0559 0.6958 0.8343 0.0559 0.6958 0.8343

NMI 0.5084 0.9241 0.9646 0.5084 0.9241 0.9646 0.5084 0.9241 0.9646

Social
F-Score 0.5376 0.5376 0.5376 0.5376 0.5376 0.5376 0.5376 0.5376 0.5376

NMI 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755

accuracy of the detection process in different contexts. For this purpose, we used
the ACLED4 (Armed Conflict Location & Event Data Project) Dataset. It is a
disaggregated conflict collection, analysis and crisis mapping project. ACLED
collects the dates, actors, types of violence, locations, and fatalities of all re-
ported political violence and protest events across Africa, South Asia, South
East Asia and the Middle East. Political violence and protest include events
that occur within civil wars and periods of instability, public protest and regime
breakdown. The dataset contains event records that span over years. We selected
49000 events, from the African subset, that date from April 1998 till January
2018. For each event, we generated shared objects having twelve attributes each
(a object owner (press news source), a latitude, a longitude, a country, a region,
a city, a street, a datetime, a conflict type, two actors, and the number of casu-
alties). In total, we tested the accuracy of the detection process, the impact of
the number of included features on the performance based on an input of 50000
shared objects related to the events mentioned above.
Performance Evaluation: To give a detailed view of the algorithm's perfor-
mance, we measured the impact of: (i) the number of objects at the input; and
(ii) the number of included features on the execution time.
Use Cases: The performance is affected by the input size, i.e., the number
of objects to be processed, and the number of event features included in the
clustering. Therefore, we experimented the following cases:

– Case 1: We ran the detection module five times and measured the execution
time of each run. Every iteration has the following configuration: (i) all seven
features are considered in the clustering; and (ii) the granularity choices for
time and geo-location are day and street respectively. The only variable is
the input size. The first run processes 10000 objects, the second 20000, the
third run 30000, then we considered 40000 in the fourth run, and finally
50000 in the last run.

4 https://www.acleddata.com



– Case 2: We ran the detection module seven times and measured the execution
time of each run. Every iteration has the following configuration: (i) the
input size is the same, 50000 objects (the entire dataset); (ii) the granularity
choices for time and geo-location are day and street respectively. In the first
run, we only consider one feature (time) in the clustering. Then, for each
iteration, we include one additional feature (e.g., time and geo-location in
the second run). The last run includes all seven features (time, geo-location,
press news source, actor 1, actor 2, conflict type, and casualties).

Fig. 16: Case 1 Results Fig. 17: Case 2 Results

Results & Discussion: Fig.16 shows the impact of augmenting the size of the
input on the algorithm’s execution time (Case 1). We notice that the evolution
of execution time is quasi-linear. Fig.17 shows the impact of including more
features in the processing on the execution time (Case 2). The evolution is also
quasi-linear in a worst case scenario from a granularity and input size point of
view. We also analyzed the execution time of each step of the event detector
(i.e., attribute extraction, lattice construction, event detection cf. Section 3).
The highest cost in terms of execution time is related to the event detection step
(not FCA computation), which consists of scrolling through the nodes of the
lattice in order to select nodes that comply with the chosen feature-centric event
definition. Results can be optimized by looking into better ways of scrolling
through the lattice (graph analysis techniques). This will be conducted in a
future work.

Table 7: Detection Rule Combinations
Combination Number of features Considered features

1 3 Time, Geo, Press News Source
2

2
Time, Geo

3 Time, Press News Source
4 Geo, Press News Source
5 1 Time
6 1 Geo
7 1 Press News Source



Accuracy Evaluation: We used the same metrics (F-Score & NMI) for accu-
racy evaluation. We tested the same granularity combinations shown in Table 5
for time and geo-location features. We did not vary the granularities of the five
other features (press news source, actor 1, actor 2, conflict type, and casualties)
found in the ACLED dataset. As for the detection rule, we limited the combi-
nations to three features: (i) time; (ii) geo-location; and (iii) press news source
(chosen as central feature in this experimentation). This could be extended to
include the actors of events (e.g., to detect the group most involved in armed
conflicts), the number of casualties (e.g., to detect the deadliest conflict events),
and the conflict types (e.g., to compare occurrence of protests between coun-
tries). The detection rule combinations are detailed in Table 7. Finally, we used
the same tool (provided by the ReSEED work) for F-Score and NMI calculation.
Accuracy results are detailed in Table 8.

Table 8: ACLED Accuracy Results
Detection

Rule
Measure

Granularities
Year Month Day

Country Region City Street Country Region City Street Country Region City Street

1
F-Score 0.3194 0.6181 0.6737 0.732 0.5012 0.7598 0.7873 0.8195 0.8439 0.9454 0.9528 0.9631
NMI 0.8234 0.9287 0.9392 0.9515 0.9011 0.9604 0.9645 0.9701 0.9764 0.9923 0.9933 0.9949

2
F-Score 0.0254 0.3366 0.4385 0.5465 0.1789 0.6257 0.6771 0.7374 0.7252 0.921 0.9325 0.9477
NMI 0.6652 0.8668 0.8885 0.9144 0.8263 0.9382 0.9461 0.9567 0.9598 0.9889 0.9904 0.9928

3
F-Score 0.2564 0.2564 0.2564 0.2564 0.429 0.429 0.429 0.429 0.8269 0.8269 0.8269 0.8269
NMI 0.7892 0.7892 0.7892 0.7892 0.886 0.886 0.886 0.886 0.9742 0.9742 0.9742 0.9742

4
F-Score 0.232 0.5028 0.5751 0.6522 0.232 0.5028 0.5751 0.6522 0.232 0.5028 0.5751 0.6522
NMI 0.7509 0.897 0.9133 0.9327 0.7509 0.897 0.9133 0.9327 0.7509 0.897 0.9133 0.9327

5
F-Score 0.001 0.001 0.001 0.001 0.0116 0.0116 0.0116 0.0116 0.291 0.291 0.291 0.291
NMI 0.4261 0.4261 0.4261 0.4261 0.6671 0.6671 0.6671 0.6671 0.8941 0.8941 0.8941 0.8941

6
F-Score 0.0015 0.0865 0.1809 0.311 0.0015 0.0865 0.1809 0.311 0.0015 0.0865 0.1809 0.311
NMI 0.4209 0.7434 0.7858 0.836 0.4209 0.7434 0.7858 0.836 0.4209 0.7434 0.7858 0.836

7
F-Score 0.1938 0.1938 0.1938 0.1938 0.1938 0.1938 0.1938 0.1938 0.1938 0.1938 0.1938 0.1938
NMI 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913 0.6913

Results & Discussion: Table 8 highlights the following:
(i) Detection rule/features impact: The detection rule 1 (based on time, geo-
location, and press news source features) generates the highest NMI and F-score
(NMI: 0.9949 and F-Score: 0.9631). It also exceeds all other detection rules (e.g.,
the one including solely time and geo-location features) in every granularity com-
bination. This underlines that eVM can provide the appropriate way to conduct
the clustering and integrate various datatypes related to a multitude of features
due to its multi-modality. However, accuracy can still be improved, few objects
were assigned to the wrong clusters. These errors can be minimized by including
more features in the detection rule (i.e., the actors, conflict type, and casualties).
(ii) Granularity impact: We notice here (as we also did for the ReSEED dataset)
that when the clustering is closer in terms of granularities to the ground truth,
accuracy improves. For example, in the case of granularities year, country, the
F-Score achieved based on time and geo-location features is 0.0254, but for the
detection rule that considers only the press news source feature the F-Score is
higher: 0.1938. This is because the granularities for time and geo are the most
general (year and country). Some rules can exceed others for specific granularity
combinations. The best result can be achieved by considering the maximal num-
ber of features having correct granularities. Finally, these results prove that eVM
is re-usable since event detection accuracy was high in different event detection
contexts.



5 Clustering Techniques

5.1 Clustering Techniques

Many works in different areas (e.g., information retrieval, event detection, im-
age searching and annotation), have evolved around clustering techniques since
their introduction in 1975 when John Henry Holland wrote Adaptation in Nat-
ural and Artificial Systems, a ground breaking book on genetic algorithms [18].
Unsupervised clustering is considered since in most cases, we detect events from
raw data without prior knowledge on the occurring events. Clustering techniques
are commonly grouped into four categories [38]:

Prototype-Based Clustering A cluster is a set of objects that are closest
(most similar) to the prototype that defines the cluster than to the prototype of
any other cluster. A prototype can be the centroid or the medoid depending on
the nature of the data (continuous attributes or categorical attributes). For con-
tinuous data, a centroid represents the object with the average (mean) values of
all objects (points) in the cluster. As for categorical attributes, since a centroid
is not meaningful, the prototype is often a medoid, the most representative point
of the cluster. For many types of data, the prototype can be regarded as the most
central point. Therefore, prototype-based clustering is commonly referred to as
center-based clustering. For example, K-means [19] is a prototype-based cluster-
ing technique that groups objects based on a specified similarity measure (e.g.,
Euclidean distance, Manhattan distance, cosine similarity, Jaccard measure) and
creates a set of K clusters represented each by a centroid. K-medoids [21] is an-
other example of this clustering category. Instead of calculating means, actual
points from the data are picked as representatives (prototypes) of the clusters.
Points are associated to the clusters where they are most similar to the pro-
totype. An iterative swapping process between prototypes and non prototype
points is done as long as the quality of the clustering is improved.
These methods have low complexities for both time and space. But the algo-
rithms attempt to find a predefined number of clusters (K): the final number of
clusters should be known prior to clustering. In addition, for K-means, in order
to start the clustering, the user has to choose initial cluster centers (centroids).
This is a key step, if these centroids are chosen randomly clustering results can
be poor.

Density-Based Clustering A cluster is represented as a dense region sur-
rounded by a low density region. Objects in the low density zones are consid-
ered noise while others in high density regions belong to the group limited by
the region. For example, DB-Scan[33] produces a partitional clustering based
on density measures. This method studies the neighborhood of each point, and
partitions data into dense regions separated by not-so-dense regions. To do so,
density at a point p is estimated by counting the points within a circle of center
p and radius ε. Therefore, a dense region is a circle of radius ε containing a



minimal number of points.
On one hand, DB-Scan determines automatically the number of clusters, is rel-
atively resistant to noise, and can handle clusters of arbitrary sizes and shapes.
On the other hand, since clustering is affected by the specified radius, DB-Scan
loses accuracy when the clusters have widely varying densities. Also, with high-
dimensional data, defining the densities becomes more difficult and more expen-
sive (in term of computation time and space). Finally, points in the low-density
areas are considered noise which means that not all input data will be present
in the clusters.

Graph-Based Clustering Data is organized in graphs/hierarchies where nodes
are objects and connections among objects are represented as links connecting
the nodes. Therefore, a cluster is defined as a connected component, a group of
objects that are connected to one another but have no connections to objects
from outside the group. For example, Agglomerative Hierarchical clustering is
a graph-based clustering method [5]. First, each point is considered as a single-
ton cluster. Then repeatedly, the closest two clusters (based on similarity/dis-
similarity matrices) are merged until a single all-encompassing cluster remains.
Hierarchical clustering can also be divisive, this method is symmetrical to the
agglomerative technique. In the divisive algorithm, all points are initially as-
signed to a single cluster and then based on similarity/dissimilarity measures
the splitting into different clusters begins, until each point is assigned to a dis-
tinct cluster.
The added value of this method is that clusters are nested in a dendrogram
(hierarchical structure) which offers a first level of semantic reasoning by ex-
ploiting the hierarchy and the inter-cluster relations. In contrast, the method
has a high complexity in both time and space. All cluster merges are final, for
high dimensional data such as photos, this is considered as a limitation. Since
high dimensional data is more complicated, error correction if data is wrongly
assigned to a certain cluster is a major issue.

Conceptual Clustering (Shared-property) A cluster is a set of objects that
share some properties. For successful clustering, an algorithm would require a
very specific definition of a cluster. This means that prior to the clustering, the
shared properties that identify a cluster should be defined in order to generate a
concept describing a cluster. The process of generating such clusters is called con-
ceptual clustering. Formal Concept Analysis (FCA) is a conceptual, hierarchical
clustering method[7][30]. It analyses data based on object/attribute relation-
ships, extracts concepts, and finally orders them in a lattice. The advantage of
having a lattice of formally defined Concepts is that it assures a more advanced
level of semantic reasoning. In addition, FCA automatically generates a brief de-
scription for each cluster. Nonetheless, time and space complexities could cause
concerns in some worst case scenarios where every data object forms a formal
concept. In this case, exponential complexities become major technical difficul-
ties.



Discussion: Table 9 shows a comparative summary of clustering techniques
with respect to our defined, clustering-related, criteria (cf. Section 2). Prototype-
based methods require excessive human intervention and the number of clusters
prior to the processing. This is a major limitation in an event detection scenario
where the total number of events is unknown prior to detection. In addition,
these approaches are not multi-modal, multi-source nor incremental. Density-
based methods detect automatically the number of final clusters, thus reducing
human intervention but they are not multi-modal nor multi-source. These meth-
ods do not consider different types of data at once. In addition, clustering high
dimensional data is complicated when relying on density measures. Graph-based
(Hierarchical) clustering offers better semantic reasoning compared to the first
two techniques. It enables a first level of semantic-based processing by exploiting
the hierarchy and inter-cluster relations. In addition, Hierarchical Clustering is
accurate but remains highly expensive computation wise. Finally, Conceptual
Clustering presents two main advantages. Firstly, incremental algorithms exist
and offer lower complexities for time and space. Secondly, these techniques (e.g.,
FCA) offer two levels of semantic reasoning: (i) handling formal concepts as
nodes, and (ii) generating an ordered lattice of concepts (nodes). Finally, FCA
is multi-modal, dynamic, and multi-source.

Table 9: Clustering Technique Comparison

Criterion
Clustering Technique

Prototype-based
[19, 21]

Density-based
[33]

Graph-based
[5]

Conceptual
[7, 30]

Multi-Modality No No No Yes
Multi-Source No No No Yes

Incremental Processing No No No Yes
Level of Human Intervention High Moderate Moderate Low

Predefined Cluster Number5 Yes No No No

6 Conclusion & Future Work

Event Detection is an essential part of many applications/services from various
application domains (e.g., social, medical, home/building management, energy
management, navigation systems, industry and manufacturing). All these ap-
proaches are task-centric, and designed for a specific application domain/pur-
pose. However, these works do not share a common re-usable backbone for event
detection that can be instantiated/used in different contexts. In this paper, we
propose a generic framework, the event virtual machine (eVM), for feature-
centric event detection. Our approach allows to target events using an SQL-like
query language (eQL), thus creating a specific instance for each use case using

5 This criterion states if the final number of clusters is required prior to clustering.



the same framework. The detection part is based on Formal Concept Analy-
sis (FCA), an incremental and dynamic clustering technique. We developed a
prototype for testing purposes. The results show that our approach achieved
high accuracy in most cases, especially when additional features (in addition to
time and location) are considered. Results also proved that eVM is re-usable
and multi-modal. As future work, we are investigating the detection of optimal
granularities. We would also like to help improve the accuracy by automatically
considering spatio-temporal distances between clusters and noise handling tech-
niques. Finally, we want to extend the event language even more in order to test
the extensibility, ease of integration, and evolution of the eVM framework based
on the detection needs.
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