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INVARIANT DENSITY AND TIME ASYMPTOTICS FOR COLLISIONLESS KINETIC
EQUATIONS WITH PARTLY DIFFUSE BOUNDARY OPERATORS

B. LODS, M. MOKHTAR-KHARROUBI, AND R. RUDNICKI

ABSTRACT. This paper deals with collisionless transport equations in bounded open domains 2 C
R? (d > 2) with C' boundary 99, orthogonally invariant velocity measure 772(dv) with support
V C R? and stochastic partly diffuse boundary operators H relating the outgoing and incoming
fluxes. Under very general conditions, such equations are governed by stochastic Cp-semigroups
(Un(t)) 5, on LY (Q x V,dz ® m(dv)). We give a general criterion of irreducibility of (Un ()0
and we show that, under very natural assumptions, if an invariant density exists then (Un(%)),-
converges strongly (not simply in Cesard means) to its ergodic projection. We show also that if no
invariant density exists then (Uk(t)),, is sweeping in the sense that, for any density ¢, the total mass
of Un(t)p concentrates near suitable sets of zero measure as t — +oo. We show also a general weak
compactness theorem which provides a basis for a general theory on existence of invariant densities.
This theorem is based on a series of results on smoothness and transversality of the dynamical flow

associated to (Un(t)),5 -

1. INTRODUCTION

Kinetic transport equations in bounded geometry is an important field of investigation which
can be traced back to the seminal work [8] where absorbing boundary conditions have been con-
sidered. For more general boundary conditions, relating the incoming and outgoing fluxes at the
boundary of the physical domain, the well-posedness of associated transport equations with general
force terms — including Vlasov-like equations — have been considered in [9, 6, 7] while a thorough
analysis of the free transport equation with abstract boundary conditions on general domains have
been performed in [34] (see also [16, Appendix of § 2, p. 249]). Notice that, for a nonlinear and
collisional kinetic equation such as Boltzmann equation, taking into account general boundary con-
ditions induces notoriously additional difficulties; we just mention here the works [20] (dealing with
close-to-equilibrium solutions) and [24] (for renormalized solutions) and the references therein.

The object of this paper is to build a general theory of time asymptotics (t — oo) for multi-
dimensional collisionless kinetic semigroups with partly diffuse boundary operators. Our construc-
tion is twofold:
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(1) On the one hand, we continue previous functional analytic works [4, 5, 25, 34] on sub-
stochastic semigroups governing collisionless transport equations with conservative bound-
ary operators in L'-spaces and combine them to recent developments on the asymptotics of
stochastic partially integral semigroups in L!-spaces motivated by piecewise deterministic
processes [31].

(2) On the other hand, we investigate the problem of the existence of invariant densities for col-
lisionless transport equations. Such existence theory depends heavily on our understanding
of compactness properties induced by the diffuse parts of the boundary operators. These
compactness properties rely on the fine knowledge of smoothness and transversality prop-
erties of the dynamical flow induced by the semigroup.

More precisely, we consider transport equations of the form
Op(z,v,t) + v - Ve(x,v,t) =0, (x,v) € QA XV, t>0 (1.1a)

with initial data

QIZ)({E,’U,O) :1/)0(:E,U), (LL’,U) €O x ‘/a (llb)
under abstract (conservative) boundary conditions
Yr_ =H®r, ), (1.1c)

where

'y ={(z,v) € 92 xV; v -n(x) > 0}
(n(x) being the outward unit normal at v € 02, see Figure 1) and H is a linear boundary operator
relating the outgoing and incoming fluxes ¢r, and ¢;p_ and is bounded on the trace spaces

Ly = LNy [v-n(z)|r(dz) @ m(dv)) = LY(Ty, dps (z,v))

where 7 denotes the Lebesgue surface measure on 9€2. We will focus our attention to the case of
nonnegative and conservative boundary conditions, i.e.

Hy >0 and [HY || = H1/1HL1+, for any nonnegative ) € L1 . (1.2)

Here
Q c R? (d > 2) is an open subset with C! boundary 9Q

and our analysis takes place in the functional space
X =L'(Q x V;dz @ m(dv))

where V' C R is the support of a nonnegative Borel measure m which is orthogonally invariant
(i.e. invariant under the action of the orthogonal group of matrices in R%). Such a measure covers
the Lebesgue measure on R?, the surface Lebesgue measure on spheres (one speed or multi-group
models) or even combinations of them.

Very precise one-dimensional results corresponding to slab geometry have been obtained in [26].
Their extension to multi-dimensional geometries (d > 2) is far from being elementary and is com-
pletely open. It is the main concern of the present work to provide such a generalization.

Let

W = {go EX;v-Vep€X, o, € L (Fi)}
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FIGURE 1. z € 09Q; I'g(z) — the tangent space to 2 at x; I'; (z) — outward
velocities; I'_ (x) — inward velocities.

where v - V¢ is meant in a distributional sense, (see Section 2 below for a reminder of the trace
theory) and let

Ty : (T X - X
be defined by
The = —v- Voo, Z(Th)={p e W or_ =H(er, )}

In contrast to the one-dimensional case [26], in general, Ty needs not be a generator. However,
there exists a unique extension

ADTH

which generates a positive contraction Cop-semigroup (Un(t)),q, see [4, 25, 34]. Notice that
(Un(t))s=p needs not be stochastic, i.e. mass-preserving on the positive cone X of X. Actu-
ally (Un(t)); is stochastic if and only if

A=Ty (1.3)

and different characterizations of this property are also available [4, 25]. A general sufficient con-
dition for (Un (%)), to be stochastic is given in Proposition 4.1 below.

Let us briefly describe the main contributions of this paper. We restrict ourselves to the stochastic
case (1.3). A very important role is played here by the irreducibility of (Un (%)), (see Definition

4.3 below). When Ty is not a generator, it is not possible to handle easily its closure A = Ty.
Despite this fact, the resolvent of A is given by an “explicit” series converging strongly, see (2.1)
below. By exploiting this series one can derive a very general sufficient criterion of irreduciblity
of (Un(t)); in terms of properties of the stochastic boundary operator H, see Proposition 4.6
below. It is well known (see [17]) that if the kernel of the generator of an irreducible stochastic
Cp-semigroup is not trivial (and consequently one-dimensional) then the semigroup is ergodic and
converges strongly in Cesaro means to its one-dimensional (positive) ergodic projection (as ¢ —
+00). Thus the existence of an invariant density of (Un(t)); is a cornerstone of this construction
and is a fundamental problem for the understanding of the long-time behaviour of (1.1).
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We mainly consider (local in space) stochastic boundary operators H : L}r — L' which are
(locally in space) convex combinations of reflection and diffuse operators of the form

Ho(z,v) = a(z)Re(z,v) + (1 — a(z))Ke(z, v)

= o)z, V() + (1 - a(z)) /F R ()

where
. s (z,v) — (z,V(z,v)) € Ty

is a general p-preserving reflection law, p,(dv) = |v - n(z)| m(dv) and
/ k(z,v,v ) pe(dv) =1, (z,v") €Ty
I'_(z)

where « : z € 99 — a(z) € [0, 1] is a measurable function.
Regarding the long-time behaviour of the solution to (1.1), when
sup a(x) < 1, (1.4)
€002
we show under quite general assumptions on the kernel k(z,v,v’) that (Un(t)),s, is partially

integral (i.e. for each ¢t > 0, Uy(¢) dominates a non trivial integral operator). It follows that if
(Un(t)) =0 has an invariant density Wy then (Un (1)), is asymptotically stable, i.e.

Jim [Uu(t)f —Wnl|=0

for any density f; see Theorem 7.5 for a precise statement. This result provides us with a much more
precise result than the mere Cesar0d convergence given by the general theory. Converse results are
also given; indeed we show that if (Un(t)), has no invariant density then (U (t)) is sweeping
with respect to suitable sets. In a more precise way, the total mass of any trajectory of (1.1)

t>0r— UH(t)wo

concentrates for large time ¢ — oo near small (or large) velocities or near the boundary 02 x V,
see Theorem 8.3 for a precise statement. Such asymptotics follow from general results on partially
integral stochastic semigroups [28, 29, 30] which we recall in Appendix B of the paper. These
general theorems on asymptotic stability or sweeping of stochastic collisionless kinetic semigroups
(Un(t))s=p (and also some related results) are the first object of this paper. Our second object is
to deal with the existence of an invariant density for stochastic collisionless kinetic semigroups
(Un(t))s=o- As far as we know, the existence of an invariant density is known only for the clas-
sical Maxwell diffuse model (see Example 6.3 below) for which it is known that (Un(?)),5 is
asymptotically stable [2].

Thus our second object is to provide a general existence theory of invariant density for such
kinetic models. We show first, for general stochastic boundary operators H, that 0 is an eigenvalue
of Ty associated to a nonnegative eigenfunction if and only if there exists a nonnegative solution
NS L}r to the eigenvalue problem

MoHe = ¢, (1.5)
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which satisfies the additional condition
[ el olel s o) < +o0 (1.6)
Iy

where
Mo : Lt — L
is the stochastic operator defined by
(Moy) (z,v) = o(x — 7_(z,v)v,0); (z,0) €Ty,  pelLb

where 7_(z, v) is the exit time function (see the definition in Section 2 below).

To study the existence of an invariant density, we introduce the sub-class of regular partly diffuse
boundary operators such that the diffuse part is “weakly compact with respect to velocities” (see
Definition 3.5 below) which enjoys nice approximation properties. The part of the paper concerned
with the existence of an invariant density is very involved and is based on a series of highly technical
results culminating in a key spectral stability result

Tess(MoH) = 7ess (Mg (aR)) (1.7)
(see Theorem 5.6) where 7 refers to the essential spectral radius. Since

Tess(Mo (aR)) < sup a(z)

€N}

then the spectral problem (1.5) has a solution under (1.4) (i.e. when the diffuse reflection is active
everywhere on 0f2). If the corresponding eigenfunction satisfies the additional condition (1.6) then
(Un (t))t>0 is asymptotically stable. If not we show a more precise sweeping behaviour: the total
mass of any trajectory t > 0 — Uy (t)1) of (1.1) concentrates near the zero velocity as ¢t — o0,
see Theorem 8.5.

The above spectral stability result is a consequence of a key weak compactness theorem namely:
for any integers k, ¢ > 1

K(MoR)*MoK(MgR)*MoK : L1 — L' is weakly compact.

The proof of this important result (Theorem 5.1), using the Dunford-Pettis criterion, is highly tech-
nical and is given in numerous steps. Roughly speaking, the main difficulty lies in the fact that K
induces compactness only in the velocity variables and several iterations and changes of variables
are necessary to produce the missing compactness in the space variable z € 9€). Such changes
of variables are non trivial and have to be carefully justified. To do this, we take advantage of the
stochastic character of the various operators involved and we show (see Lemma A.11), up to p-null
sets, smoothness and transversality properties of the p-preserving iterates

U Rt T_ 5T, (k €N)
where £ is the ballistic flow
€ : (x,v) ey — &(x,v) = (x — 7—(x,v)v,0)

and
U:(x,v) el —U(z,v) = (z—71-(2,v)v,V (£(x,v))) € T'_.
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A thorough analysis of the ballistic flow and of I/ is performed in Appendix A where several non
trivial smoothness and non degeneracy results are given culminating in Lemma A.11 and involving
intrinsic tools from differential geometry. These results are postponed in Appendix A for the sim-
plicity of reading but we wish to point out that our analysis of the flow induced by (Un(t)),- is
new (even if results similar to some of ours appear e.g. in [20], see Remark A.6) and has its own
interest independently of the main motivation of this paper.

As far as we know, most of our results are new and appear here for the first time. Finally, we
note that the assumption that 92 is of class C! plays a role only for the results on smoothness and
transversality of the flow stated in Appendix A; it is likely that the results stated there remain valid
for O which is only piecewise of class C*.

The paper is organized as follows: in Section 2, we introduce the mathematical framework and
notations used in the rest of the paper and establish several properties of the various operators
involved in our subsequent analysis. In Section 3 we introduce and analyse the general class of
boundary operators we investigate in the rest of the paper. Section 4 is devoted to general criteria
for the ergodic convergence of the semigroup (Uy(t))¢>0 (see Theorem 4.7) which is related to the
study of the eigenvalue problem (1.5) as well as the irreducibility property of (Uy(¢)):>0. In Section
5 we establish the main technical result of the paper (Theorem 5.1) as well of its consequence
on the stability of the essential radius (1.7), see Theorem 5.6. Section 6 is devoted to the main
existence result for an invariant density, Theorem 6.6. The question of the asymptotic stability
of (Un(t))¢>o is then discussed in Section 7 while the sweeping properties of (Uy(t))¢>0, when
no invariant density exists, are given in Section 8. As already mentioned, the paper ends with two
Appendices. A first one, Appendix A contains all the technical results regarding the smoothness and
transversality of the ballistic flow while Appendix B recall several important results about partially
integral semigroup and sweeping properties used in Section 7 and 8.

We end this Introduction by mentioning that a related work dealing with rates of convergence
to equilibrium is now in preparation [21] extending the results of [27] devoted to slab geometry.
Moreover, we hope also to take advantage of the tools developed here to revisit some important
works (see e.g. [15, 18] and references therein) on stochastic billiards [22].

2. MATHEMATICAL SETTING AND USEFUL FORMULAE
2.1. Functional setting. We introduce the partial Sobolev space
Wy={ypeX;v Vyp € X}.
It is known [12, 13, 16] that any ¥ € W) admits traces 1/J|Fi on I'y such that
Uiy € Lige(Ts 5 dps (2, v))
where
dps(z,v) = |v - n(z)|r(dr) @ m(dv),

denotes the “natural” measure on I'y. Notice that, since dy4 and dp— share the same expression,
we will often simply denote them by

dp(z,v) = |v - n(x)|r(dzx) @ m(dv),
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the fact that it acts on I'_ or I' . being clear from the context. Note that
0N xV:=T_uUl;UuTly,

where

Lo :={(z,v) €2 xV;v-n(zx)=0}.
We introduce the space

W={yeW;¢pr, €Li}.
One can show [12, 13] that W = {w EWis Y, € L1+} = {1/1 EWisYr_ € Ll,} . Then, the
trace operators B*:
BE: WiCX— L (Ty;dus)
{ W BEY = ypp,,

are such that B¥ (W) C LL. Let us define the maximal transport operator T,y as follows:

Tmax : Q(Tmax) cX—-X
77/) = Tmax¢(xv ’U) = —Uv- Vzw(%’v),

with domain Z(Tax) = Wi. Now, for any bounded boundary operator H € %’(L}r, L!), define
Th as

THSO = TmaXSO for any ¢ € -@(TH)a
where
P(Tn) ={Y e Wi ¢r_ =Hr )}

In particular, the transport operator with absorbing conditions (i.e. corresponding to H = 0)
will be denoted by Ty. We recall here that there exists a unigue minimal extension (A, Z(A))
of (Th, Z(Tn)) which generates a nonnegative Cp-semigroup (Un(t)):>0 in X. We note that
P(A) C Wy and Ap = —v - V0 = Trmaxyp for any ¢ € 2(A) but the traces BT need not to
belong to L' (I', dju+). The resolvent of A is given by

ROAf =Raf+ > SAH(MAH)"Gyf,  Vfe X, A>0 (2.1)
n=0

where the series is strongly converging in X. See [4, Theorem 2.8] for details. Moreover, (Uy(t)):>0
is a stochastic Cy-semigroup, i.e.

U@ fllx =flx  VfeXi;t20

if and only if
A=Ty.

Actually, under suitable assumptions on H (see Prop. 4.1), A = T} so that (Uy(t));>0 is stochastic.
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2.2. Exit time and integration formula. Let us now introduce the exit time of particles in {2 (with
the notations of [6]), defined as:

Definition 2.1. For any (z,v) € Q x V, define
ti(z,v) =inf{s > 0; z+sv ¢ Q}.
To avoid confusion, we will set 71 (x,v) := ty(x,v) if (x,v) € 02 x V.

With the notations of [20], ¢_ is the backward exit time ty,. From a heuristic viewpoint, t_(z, v)
is the time needed by a particle having the position z € €) and the velocity —v € V' to reach the
boundary Jf2. One can prove [34, Lemma 1.5] that ¢4 (-, ) is measurable on 2 x V. Moreover
74+ (z,v) = 0 for any (z,v) € 'y whereas 7(z,v) > 0 on I'y. It holds

(x,v) el <= FyeQ with ti(y,v)<oco and z=y=xtsi(y,v)v.
In that case, 7 (z, v) = t+(y,v). Notice also that,
ty(z,v)|v] =ty (z,w), V(z,0) e QA xV,v#£0, w=v]tvesit (2.2)
We have the following integration formulae from [6].

Proposition 2.2. Forany h € X, it holds

75 (2,v)
/ h(z,v)dz ® m(dv) = / dps(z, v)/ h(zF sv,v)ds, (2.3)
QxV Iy 0
and for any 1 € LY (T, du_),

Y(z,v)dp—_(z,v) = Y(x — 17— (z,v)v,v)dps(2,0). (2.4)
r_ T

Remark 2.3. Notice that with the notations introduced in [6],
i ={(z,v) €Ty ; m¢(z,v) = 00} = {(z,v) € T+ ;v =0}

so that py(T'+oo) = 0. This explains why the above integration formulae do not involve the sets
[t oo. Moreover, because pi—(T'g) = 4+ (L) = 0, we can extend the above identity (2.4) as follows:
forany € LY (T'_ UTq,du_) it holds

/ P(z,v)dp_(z,v) = / Y(x — 71— (z,v)v,v)dps (2, 0). (2.5)
I'_ulg 'y Ul

2.3. About the resolvent of T};. For any A € C such that ReA > 0, define

My: L — L%
u— Myu(z,v) = u(z — 7 (z,v)v,0)e M@0 (2 v) e Ty ;

= L — X
u— Zyu(x,v) = u(x — t_(z,v)v, v)e”‘t—(“’”)1{,5_(“))@0}, (z,v) € QA xV;
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Gy: X — 1L
T (z,v)
o — Grpla,0) = / (@ — sv,0)eds, (2,0) €Ty ;
0

and
Ry: X—X

t_(z,v)
o — Ryp(z,v) = / o(x —tv,v)e Mdt, (z,0) € AxV;
0

where 1 denotes the charateristic function of the measurable set 2. All these operators are
bounded on their respective spaces. More precisely, for any ReA > 0

IMAll < 1, IEAll < (Red) ™,

IGAll < (Red)™, IRAll < (Re) ™.

The interest of these operators is related to the resolution of the boundary value problem:
{()\ — Tmax)f = 9,

. (2.6)

where A > 0, g € X and w is a given function over I'_. Such a boundary value problem, with
u € L' can be uniquely solved (see [6])
Theorem 2.4. Given \ > 0, v € L1 and g € X, the function
f=Ryxg+=)\u
is the unique solution f € 9(Tmax) of the boundary value problem (2.6).

Remark 2.5. Notice that =, is a lifting operator which, to a given u € L', associates a function
f==xu € D(Tmax) whose trace on T'_ is exactly u. More precisely,

Tmax=at = A=\, B = u=u, B"=\u=Mu, Vue L. (2.7)

We can complement the above result with the following whose proof can be extracted from [7,
Theorem 4.2]:

Proposition 2.6. If ro(MyH) < 1 (A > 0), then A = Ty and
R(A, TH) =Ry + E)\HR(L M)\H)G)\
where the series converges in B(X).

2.4. Some auxiliary operators. For A = 0, we can extend the definition of these operators in an
obvious way but not all the resulting operators are bounded in their respective spaces. However, we
see from the above integration formula (2.4), that

Mo € B(LL,Ly)  with [Moulp =|lull,  YueLl.
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In the same way, one deduces from (2.3) that for any nonnegative ¢ € X:

7—(z,0)
Gop(z,v)dpy(x,v) :/ d,u+(x,v)/0 go(:c—sv,v)ds:/ o(z,v)de @ m(dv)

T I, OxV
(2.8)
which proves that
Goe A(X,Ly)  with [Goglps = lelx. VeoeX.
To be able to provide a rigorous definition of the operators =y and Ry we need the following
Definition 2.7. Introduce the function spaces
Vi = L' (Tx, o]~ dps)
with its associated L*-norm || - HY% and
X, = LY(Q x V,ty (z,v)dz @ m(dv))
with the associated L'-norm || - || .
The interest of the above boundary spaces lies in the following:
Lemma 2.8. For any u € Y| one has Zgu € X with
Zoullx = /F u(@, v)7e (e, 0)dps (2,0) < Dlfully—,  Vue ¥y 2.9)

where D is the diameter of Q, D = sup, ,coq |r — y|. Moreover, if u € Y then Mou € YT with
Moullys = llully- (2.10)
If f € X, then Gof € Y] and Rof € 2(To) C X and ToRof = —f.

Proof. From (2.3), for nonnegative u € L'

/ Sou(x,v)dz @ m(dv) = / Sou(x,v)dz ® m(dv)
QxV QxVv

7—(2,0)
— / dus(z,) / w(z — 50— t—(z — 50,0)9,9)L{t_(s—so) ooy ds
r, 0

= [ e = (0o, 07 (s 2 0)
ry
which, using now (2.4) yields (2.9). If now u € Y|, then

/ Mou(z,v) o] duy (z,v) = / u(z — 7_(z,v)v,v)|v|  duy (z,v)
I, r,
and we deduce from (2.4) that

/F Mool s (2,0) = / u(z, ) o] dp (2, 0)
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which is (2.10). If now f € X is nonnegative, one has directly from (2.3) that
/F [0] " Go f (2, v)dpy (z,0) = [ Jo] 71 f lx < DI f[l- < o0
+

which proves that Go f € X. Moreover, using (2.3),

7 (2,v)
| Resoem@o) = [ duseo) [ Rafl(e - so)ds
QxV I, 0

T—(2,0) t_(z—sv,v)
= / du+(z,v)/ ds/ f(z — sv—tv,v)dt
ry 0 0

and, since t_(z — sv,v) = 7_(z,v) — sforall (z,v) € 'y andall 0 < s < 7_(z,v) we get

7—(z,0) 7—(2,v)
/ Rof(z,v)dx ® m(dv) = / dp4(z,v) / ds/ f(z —to,v)dt
axVv I, 0 s

T_(2,v)
= / du+(z,v)/ t f(z—tv,v)dt
ry 0

Now, since ¢t (z — tv,v) = t for any (z,v) € 'y, the above reads

—(z0)
/ Rof(z,v)dz ® m(dv) = / dps(z,v) / ti(z —tv,v) f(z — tv,v)dt
QxV F+ 0
and, using again (2.3), one gets

/ Rof(z,v)dz @ m(dv) = / ty(z,v)f(z,v)dz ® m(dv).
QxVv QxVv

This proves that Ry f € X. Now, it is easy to see that actually g = Rq f satisfies Taxg = —f and
B~ g=0,ie. g€ 2(Tpy) with Tog = —f. O

Remark 2.9. Notice that, for any nonnegative u € L1,
/ Mou(z,v)7—(z,v)dpy(x,v) = / u(x — 17— (z,v)v,v)7—(x,v)dpy (2,0)
Iy I,
and, since T4 (x — 7_(,v)v,v) = 7_(x,v) for any (z,v) € I'_, we deduce from (2.4) that

/ Mou(x,v)T_(:c,v)du+(:U,v):/ u(z, )74 (z,v)dp—(z,v)
ry

This shows that, in (2.10), we can replace Yi with L'(T+, 7 (,v)dp+ (2, v)). In the same way,
one see that, for g € X, it holds ||Gog|l 10 7, au_) = 9ll+-

One has the following result:

Proposition 2.10. Let g € X, be given and v € L*(T_, 7 (x,v)du_). The boundary value
problem

{_Tmaxf =g 2.11)

B f=u
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admits a unique solution f € X given by f = Rog + =ou.

Proof. Letu € LY(I'_, 74 (x,v)du_) and g € X, since Zopu € Z(Tmax) With Tax=ou = 0,
BT=ou = Mou and B~ =gu = u one sees that f € Z(Tax) with
Tmaxf = TmaXROg + TmaxEOU = TOROQ =—-g

while B™ f = B"Rog + B"=pu = BT =gu = w. This shows that f = Rgg + Zou is a solution to
(2.11). To prove the uniqueness, it suffices to assume that g = « = 0 but then (2.11) reads Tof =0
which admits the unique solution f = 0. O

3. GENERAL STOCHASTIC PARTLY DIFFUSE BOUNDARY CONDITIONS

Let us explicit here the general class of boundary conditions we aim to deal with. Typical bound-
ary operators arising in the kinetic theory of gases are local with respect to x € 9€). In order to
exploit this local nature of the boundary conditions, we introduce the following notations. For any
z € 0N, we define

Ii(z) ={veV; +v-n(x)> 0}, Fo(z) ={veV; v n(x)=0}
and we define the measure p,(dv) on I'1 () given by
o (dv) = o - n(2)m(dv).

This allows to define the L!-space L'(I'+(z),du;) in an obvious way. We shall denote the
LY(T+(x), pz) norm by || - | 21(r 4 («))- Since, for any ¢ € LY(T4, j1+) one has

loley = | [ / . \so(m,vmmv)] w(de) = [ et ye(d)

we can identify isometrically any ¢ € L. to the field
x €00 — o(z,-) € LN(Tx(z)). (3.1)

3.1. Reflection boundary operators. We begin with the following definition of pure reflection
boundary conditions (see [34, Definition 6.1, p.104]):

Definition 3.1. One says that R € # (L—lkv L') is a pure reflection boundary operator if
R(p)(z,v) = ¢(z,V(z,v)) V(z,v) €T, p e L}
where V : x € 00— V(x,-) is a field of bijective bi-measurable and p,.-preserving mappings
V(z,) : T_(z)UTo(x) = Ty (x) UTo(z)

such that

i) |[V(z,v)| = |v| for any (z,v) € T'_.

ii) If (x,v) € g then (z,V(x,v)) € Ly, i.e. V(x,-) maps T'o(x) in To(x).
iii) The mapping

(x,v) €+ (z,V(z,v)) e Ty

is a C* diffeomorphism.
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Remark 3.2. This last regularity property on V may require additional regularity of 9S) as seen in
Example 3.3.

Note that

[Re)(a,v) = [R(x)p(x,)](v),  VpeLi, (r,0) €l

where we identify (isometrically) ¢ € L}|r to the integrable field (3.1) and
z €00 R(z) € B(L' (T (z),T_(z))

is the field of operators defined by

R(@)y(v) = ¢p(V(z,0)), ¢ e L' (Ty(x), vel_(z)
It holds

IR@Yl i @) = Wl @), Vo €0, ¢ e L' (Ty(z)),

therefore, R € (L} , L!) is stochastic since

Rl = | IR@ Mose oy 7a) = [l e, ye(da) = el
Notice that this last identity is equivalent to the property that the mapping
(x,v) eI +— (z,V(z,v)) € T4
is p-preserving.

Example 3.3. In practical situations, the most frequently used pure reflection conditions are

(a) the specular reflection boundary conditions which corresponds to the case in which V and m
are invariant under the orthogonal group and

V(z,v) =v—2(v-n(x))n(x) (x,v) e_.

Notice that, for V to be a C' diffeormorphism, we need 0% to be of class C2.
(b) The bounce-back reflection conditions for which V(z,v) = —v, (z,v) € I'_.

3.2. Diffuse boundary operators. We introduce the following definition

Definition 3.4. One says that K € % (L}r7 L') is a stochastic diffuse boundary operator if
Ky(z,v) = / k(x,v,0" ) (2, v" ) pg (dv'), (z,v)eT_, pell (3.2)
Iy (z)

where the kernel k(x,v,v") induces a field of nonnegative measurable functions
x € 00— k(z,-,-)
where
k(z,-,-) : T_(z) x Ty (x) = R
is such that
/ ( )k(az,v,v’)ux(dv) =1, V(z,v') € Ty.
r_(z
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FIGURE 2. Regular and diffuse reflection: v — an outward vector, V(x, v) — the
specular reflection, thin vectors — diffuse reflection.

As we did for reflection operators, we identity K € £ (L}r, L) to a field of integral operators
z € 00— K(z) € B(L'(T 4 (x),T_(z))
by the formula
(K9] (2, v) = [K(z)dp(z, )] (v)

where, for any = € 0f)
K(z) « v € LY(T4(x)) — [K(2)¥] (v) :/r ( )k(w,v,v')w(v')ux(dv') € L'(I-(x)).
+(z
Note that K(z) : L'(T'y(z)) — L'(T'_(x)) is stochastic for any x € 9 and therefore so is
KeB(LL,LL),ie.
Kl =19l Yo e LY.

We introduce now a useful class of diffuse boundary operators. Before giving the formal definition,
let us recall that, if K € 2(L%, L' ) given by (3.2) is such that

K(z) € B(LN(T'y (x)), LY (T_(x))) is weakly compact for any 2 € 9 (3.3)
then, according to the Dunford-Pettis criterion (see [10, Theorem 4.30, p. 115 & Exercise 4.36, p.
129]), for any = € 0f2 and any € > 0, there is § > 0 such that

sup / k(z,v,0" )z (dv) < e VA C I'_(z) such that g (A) < ¢
v'ely (z) J A

and

lim  sup / k(z,v,v" ), (dv) =0
T (2)\Am

m— 00 U’EF+(Z‘)
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for any sequence (A;,), C I'—(z) with A,, C Apt1, pa(Am) < o0 and Uy, A,y = T'_(2). In
particular, for any z € 02,

k(z,v,v") py(dv) = 0.

lim sup

M=200 yrely () /[UEF_(m) ; lv|=m}
Moreover, since
1= [ keomla) > | (e, 0,0 ()
I () {vel'_ () ; k(z,v,v")>m}
>mpy ({vel_(z); k(z,v,0) >m}), VmeN, (x,0v)€ely,
we have
lim  sup p, ({v€l_(z); k(z,v,0") = m}) =0.

M=00 /el ()
In other words, for any x € 012, the following holds
lim sup / k(z,v,v") pe(dv) =0 (3.4)
M0 1 el () J Sy (2,07)
where, for any m € N and any (z,v") € I'y
Sm(z, ) ={vel_(z); |v| >m}U{vel_(x); k(x,v,0") = m}.
We introduce then the following class of diffuse boundary operators:

Definition 3.5. We say that a diffuse boundary operator K € 5 (L1+, LY) is regular if the family of
operators

K(z) € B(L'(T'y (x)), LT _(x))), x € 00
is collectively weakly compact in the sense that (3.3) holds true for any x € OS2 and the convergence
in (3.4) is uniform with respect to x € Of0.

Remark 3.6. A diffuse boundary operator K is regular for instance whenever there exists h : V —
R* such that [, h(v) |v|m(dv) < 400 and
k(z,v,v") < h(v) Vo € 00, v e T (x), v e T_(x).
In particular, the classical Maxwell boundary operator (see Example 6.3 below) is a regular diffuse
boundary operator.
We have then the following approximation result.

Lemma 3.7. Assume that K € # (Li_, LY) is a regular diffuse boundary operator in the sense of
the above definition. Then, there exists a sequence (K, ) C B(LY, LY) such that

(1) 0 < Ky, < Kforanym € N;
(2) limy, o0 [[K — KmH(@(L}F,Ll_) =0;
(3) For any m € N and any nonnegative f € L}|r it holds
K f (z,v) < ¢m(v)/ [z, ') [0 - n(x)| m(dv'), (x,v) eT_ (3.5)
Iy (z)
with V¥, = m1p, where B, = {v € R%; |u| < m}.
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Proof. Let k(x,v,v") be the kernel associated to K through (3.2). Introduce then ky,(z,v,v") =
inf{k(x,v,v') ; mlg, (v)} for any m € N, where B,, is the ball of R? centered in 0 and with
radius m, and set

Knp(e.0) = [ el ) 0 nla)|m@), eIl (@) el
Ly (w)

Clearly, K,,, € %’(Li, L') is a diffuse boundary operator with 0 < K,,, < K and (3.5) holds.
Moreover, for any x € O and any ¢ € L*(T';(x)), it is easy to check that

K@) — K (z)ellrr_ @)y < lellnrry @)

X sup (a,v,0 ) (o),

v'ely (z) /{UEF_ (z) ; k(z,w,0)2mlp,, (v)}

ie.

IK(@) = K (@)l gL (0 @)).L1 (- @) € U k(,v,0") po (dv)

v el (z) /{UGF (z) ; k(z,v,0")>2mlp,, (v)}

< s [ k(o).
v €l (z) J Sm(z,0")

One sees then that

K=Kl ) = sup [[K(@) = Kn (@)l mL1 (0 @)),00 (0 (@)))
€0
goes to zero as m — oo since the convergence in (3.4) is uniform with respect to z € 9f2. g

We complement the above result with a different kind of approximation which will turn useful in
Section 8:

Lemma 3.8. Let K be a regular stochastic diffuse boundary operator with kernel k(x,v,v"). Let
putet) = [ Ko pa(de), (2,0 €T,
I—(2)n{lvl> 1}

and
k /
kn(x,v,0") = m1{|v|>;}, redNv el (x), vel_(x)

Then, denoting by K,, the regular stochastic diffuse boundary operator with kernel k., it holds

(i) limy,— 4 oo Brn(z,v") = 1 uniformly in (z,v') € T
(ii) limy o0 |[Kn — K

by = 0.
Proof. (i) For any z € 0€), set A, (z) = {v € I_(z); [v| < 1} . One has
m(Bi)

e (An(z)) = /F(z)ﬂ{|v|<n1} e nelimide) <

where Bj is the unit ball of R%. Thus,
lim sup p, (An(z)) =0. (3.6)

n—=00 2N
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Now, since K is regular, (3.4) holds uniformly with respect to z € 01, i.e. for any € > 0, there is
m € N large enough so that

sup / k(z,v,0" )z (dv) < e.
S (z,0")

(z,0")ely

Then, for any n € N and any (z,v) € Ty,

/An(x) b pslae) = | B, 0,0 e ()

An(2)NSpm (z,0")

+f 0,0 o) < & m g (An(2)
An()\Sm (z,v')
since k(z,v,v") < monT_(z)\ Sp(z,v"). Using then (3.6) we get

lim  sup / k(z,v,v")pz(dv) =0 (3.7)
I'_(z)n{|v|<n—1}

=00 (g v/)el_

which shows (i) since fr,(:c) k(xz,v,v")pg(dv) = 1 for any z € 0.
(ii) Set Rn the boundary operator with kernel 1 {|v|>n_1}l<:(:z:, v,v"). One checks easily that

< sup / k(x,v,v") pg(dv
BLLLL)  (zwer_ JT_(z)n{jv]<n—1} ( e ()

= 0 from (3.7). Since moreover
PB(LL,LL)

HK—Rn

so that lim,, ||K — Rn

Kn =K < sup |1 =B, )] K] g 1
‘ " " BLYLL)  (go)ery ‘ nl )’ | |’$(L+,L_)
which goes to zero from point (i), we get the desired result. 0

3.3. Stochastic partly diffuse boundary operators. We introduce now the general class of bound-
ary operator we aim at investigating.

Definition 3.9. We shall say that a boundary operator H € % (L}r, L1) is stochastic partly diffuse
if it writes

Hy(z,v) = a(z) RY(z,v) + (1 — a(x)) Kz, v), (z,v) eT_,p € LL (3.8)

where a(-) : 00 — [0,1] is measurable, R is a reflection operator;, and K € B(LL,L') is a
stochastic diffuse boundary operator given by (3.2).

If the diffuse part K is regular we say that H is a regular stochastic partly diffuse boundary
operator.

Remark 3.10. Notice that, being a convex combination of stochastic operators, a stochastic partly
diffuse operator H is stochastic.
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4. GENERAL RESULTS FOR ABSTRACT STOCHASTIC BOUNDARY OPERATORS
We begin with the following which is a direct consequence of [25, Theorem 21]:

Proposition 4.1. Let H € %(L}H LY) be a stochastic boundary operator. Let there exist ¢ € L}F
such that ¢ > 0 p-a.e. and ¢ > MoHp. Then, A = Ty and (Uy(t))i>0 is a stochastic Cy-
semigroup, where we recall that (A, Z(A)) is the generator of (Uy(t))=o0.

We give a general result about the spectrum of Ty:

Proposition 4.2. LetH € %(L}r, L) be a stochastic boundary operator. Then, there is a nonnega-
tive U € P(Ty) with Ty = 0 if and only if 1 is an eigenvalue of MgH associated to a nonnegative
eigenfunction ¢ € Yf such that Hp € Y7 .

Proof. Assume first that there exists ¢ € Yf such that
MoHp = @, and HpeY;.

Then, as already seen (see (2.9)), =gHp € X. Let ¥ = =gHyp. One has T;,,,x¥ = 0, B¢ =
B~=¢gHy = Hy, i.e. B~ = HB™W. This means that ¥ € 2(Ty) with TV = 0.

Assume now that 0 € &,(Ty) is associated to a nonnegative eigenfunction ¥ € Z(Ty). Let
¢ = BT™W and u = B~ U. It holds u = Hy and, solving the boundary value problem (2.11) (see
Proposition 2.10) yields ¥ = =qu. It is easy to check then that ¢ = MgHy. Since u # 0 =
@ #0,we get 1 € S,(MgH). O

We recall the definition of irreducible operators or semigroups in L!-spaces and refer to [1] for
more details.

Definition 4.3. Let (E, X, m) be a given o-finite measure space. Let B € B(L'(E,%, m)) be
given. Then, we say that
i) B is positive and write B > 0, if B leaves invariant the cone of nonnegative functions of
LYE,%,m) ie. forany h € LY(E, %, m),
h(s) >0 form-a.e. s € E = Bh(s) >0 form-a. e. s € E.
i) B is positivity improving if for any h € L'(E, X, m) non identically zero
h(s) >0 form-a.e.s € E = Bh(s) >0 form-a. e. s € E.

iii) B is irreducible if for any non trivial and nonnegative h € L'(E,%, m) and any non trivial
nonnegative g € L>(E, X, m), there exists n € N such that

<Bnh, g>17oo >0
where (-, )1 o0 is the duality bracket between L*(E, X, m) and L= (E, X, m).

iv) A positive Cy-semigroup (S(t))i=0 on L' (E, X, m) with generator (G, 2(Q)) is irreducible
if. for any non trivial nonnegative h € L'(E, %, m) and any non trivial nonnegative g €
L>*(E, X, m), there exists t > 0 such that (S(t)h, g)1,00 > 0. This property is equivalent to
the fact that R(\, G) is positivity improving for X > 0 large enough.

We introduce the following:
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Assumption 4.4. H € B(L , L!) is a stochastic operator such that MoH € 2B(LY) is irreducible
and there exists 1y € L}r such that Hipg > 0 p-a.e. on T 4.

Remark 4.5. If H is stochastic partly diffuse operator of the form (3.8) and if My(1 — ) K is
irreducible then so is MoH. This is the case for instance if |a||co < 1 and if, for m-a.e. x € 09
k(z,v,v") >0 for pg-a.e. v €T _(x), v € Ty (x). 4.1)

In addition, if a(x) > 0 m-a.e. © € 0N, the second condition Hiy > 0 p-a.e. is satisfied
by any 1y > 0 u-a.e. Otherwise, we assume that, for any x € 02 such that a(x) = 0 there
is a subset v4(x) C Ty (x) of positive p,-measure and such that k(x,v,v") > 0 for pg-a.e.
v € T'y(x),v" € Ty (x). Then, again the second condition is satisfied by any g > 0 u-a.e. In
particular, the second assumption in Assumptions 4.4 is always satisfied under (4.1).

One has the following (see also [25, Remark 20]):

Proposition 4.6. LetH € % (L}H L1) be a stochastic operator and let Assumptions 4.4 be satisfied.
Then, the Cy-semigroup (Uy(t))>o is irreducible.

Proof. Leth € X and g € L*™(Q2 x V,dz ® m(dv)) be nonnegative and non trivial. Denoting the
duality parity between X and its dual simply by (-, -), we have for any A > 0

[e.e] o0
(RN, A, g) = (Rah, g)+Y (ZxH (MAH)* Grg, g) = (Rah, g)+> _((MaH)* Gyh, H*=5g)
k=0 k=0
where H* and =} denote the dual operator of H and =) respectively. Notice that g, = =g is
nonnegative and nontrivial and the same holds for H*=} = H*g, since, under Assumption 4.4

(tho, H*gx) = (Hebo, g«) > 0.

Now, since the irreducibility of MgH is equivalent to that of MyH for any A > 0, we deduce that
(R(A, A)h, g) > 0 for any nonnegative and nontrivial g € L>° (2 x V,dz ® m(dv)) which proves
that R(\, A)h is positive a. e. on 2 x V and R(A, A) is positivity improving. O

The main result of this section is then the following:

Theorem 4.7. Let H € % (L1+, L1) be a stochastic boundary operator and let Assumptions 4.4 be
satisfied. Assume there exists Vy € 2(Ty) (with unit norm) such that

THYH =0 and Yy =0 ae on€QlxV.

Then, Ty generates a irreducible and stochastic Cy-semigroup (Uy(t))i=0 on X and Wy is the
unique invariant density of (Un(t))t=0. Moreover, (Un(t))¢>0 is ergodic with ergodic projection

Pf = o5y, where  of = / f(z,v)dz ® m(dv), feX,
QxR4
ie.

=0, VfieX 4.2)

t—o0 X

1 t
lim Ht/ Un(s)fds — oy Wh
0

and X = Ker(Ty) @ Range(Th).



20 B. LODS, M. MOKHTAR-KHARROUBI, AND R. RUDNICKI

Proof. According to Proposition 4.1, there exists ¢ € L}F such that ¢ > 0 p-a.e. and = MoHep.

Since MgH is irreducible, ¢ > 0 p-a.e. and we deduce from Proposition 4.1 that A = Th. More-
over, Lemma 4.6 ensures that (Uy(t))¢>0 is irreducible. Since Ker(Ty) # 0, the ergodicity of
(Un(t))t=0 follows from [17, Theorem 7.3, p. 174 and Theorem 5.1 p. 123]. O

5. MAIN COMPACTNESS RESULT AND EXISTENCE OF AN INVARIANT DENSITY

5.1. Weak compactness result. We prove here the main compactness result of the paper. The
proof of the result is based on a series of important geometrical results regarding regularity and
transversality of the ballistic flow

£ (z,v)ely = &(x,v) = (x —7—(x,v)v,v) € IN X V.
Such highly technical results have been postponed to Appendix A for the clarity of the reading and
will be used repeatedly in the proof of the following.

Theorem 5.1. Let K € (LY, L) be regular diffuse boundary operator and let R € #(L%, L")
be a pure reflection operator. Then, for any integers k,? > 1, one has

K(MoR)*MoK(MoR)*MoK € B(LL, LL)
is weakly compact.
Proof. Letk, { > 1be fixed. Let (Ky, ) C (L%, L1) be the sequence of approximation obtained
from Lemma 3.7, which is such that lim,, ||K — Km”%(Lﬂr,Ll_) = 0. It is then enough to prove the

weak-compactness of K,,(MoR)*MK,,(MoR)*MoK,, for any n, m, p € N. Still using the notations
of Lemma 3.7, introduce

Kof@0) =) [ f@uld),  feLl,  (@o)el, meN
v'-n(x)>0

where ¢, (v) = mlg,, (v). Given n,m,p € N, using (3.5) and a domination argument, the weak-

compactness of K,,(MgR)*MgK,,(MoR) Mg K, would imply the result. To avoid too heavy nota-

tions, and setting for instance F'(v) = max(¢n, ¢¥m, ¥p), it suffices to prove that

K(MoR)*MoK(MgR)*MoK
is weakly-compact for
Ko(z,v) = F(v) / o(z,v" ) g (dv). (5.1)
Iy (z)
Since F'is compactly supported and bounded we can assume without loss of generality that
F=1p, (5.2)

which amounts to consider only velocities |v| < 1. Write Rp(z,v) = p(z, V(x,v)), (z,v) € T_,
@ € L., where V satisfies Definition 3.1. Recalling the transformation (see Appendix A)

u : (.%‘,U) ely — L{(x,v) = (Es(x,v);]}(ﬁ(l‘,v))) el'y

which preserves the measure 1, where here, as well as in Appendix A, £ is the ballistic flow and we
adopt the following notations: for any element z = (z,v) € Q x V, we write z = 2, and v = z,,.
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Consequently, for any j € N, the iterated I/ is also u-preserving. Notice that, for any ¢ € L}r
and any j € N, (MoR) p(x,v) = o(U?(x,v)), and
(MoR)? Moo (z,v) = @(€& o U (z,v)), (x,v) e T'y. (5.3)

For simplicity, we write Z; = (MoR)’Mg € (L., LL). Itis clear that Z; is stochastic for any
j € Nand
K(MoR)*MoK(MgR)*MoK = KZ,,KZK.

Using the notations introduced in the proof of Proposition A.10,
Ulot™ T \y—-T{"cr,

is a C! diffeomorphism from I \ 4, onto its image where Fgﬂ) =T\ Uﬁ; A; and -y are of
zero pg-measure. Denote here for simplicity

r'9 =r_\ .
We may make the identification

=@ ap), Lt =Y, dp) (5.4)

so that we only have to prove the weak-compactness of
KZyKZK = LHTEY dp) — 21T dp).

Notice that, by (5.1) and (5.2), the range of KZ;KZ/K can be rather considered as LI(F(_L]), dp)
where

di(z,v) = F(v)du(xz,v) = 1p,(v)|v - n(z)|r(dz) @ m(dv) (5.5)
is nothing but the restriction of x_ to 92 x Bj. In particular, /i is a finite measure. From a simple

consequence of the Dunford-Pettis criterion (see [11, Corollary 4.7.21, p. 288]), we need to prove
that, for any nonincreasing sequence of measurable subsets (A;); C ' with ; A;j = @, it holds

lim  sup /|KZkKZgKg0(x,v)]d,u(w,v):0. (5.6)
A4

I gl 1 <1
+

Since K and Z; are nonnegative operators, it suffices of course to consider nonnegative ¢ € L}r in
(5.6). Let us fix a sequence (A;); C T'Y with ;A;j = @ and consider a nonnegative ¢ € LY.
From now on, the identification (5.4) will be assumed and — for notation simplicity — we shall

()
+

always omit the superscript £ in Iy, which means that, in the all the sequel, '+ = T'},’ and also

Iy(z) = Fgf) () ={veR?; (x,v) € Fgf)} for any = € 0S). We set

Ii(p) = / KZiKZKo(z,v)dp(z, v).
A
Introduce then, for n € N, the u-preserving change of variables

(z,v) € Tir—(y,w) = EoU™(x,0") = (Vo(z,0), Vp(z,0") € T,
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where Y,, and V}, are respectively the “position” and “velocity” components, i.e. Y, (x,v) € 09
with V,,(x, v)-n(Y,(z,v)) < 0. We denote then the position and velocity components of the inverse
(EoU™)™t : T_ =T, byY,, V,ie. given (y,w) € T'_,

Uo7 (yw) = (EoU")  (y.w) = (Yaly,w), Valy,w)) €T
Defining, for any z,y € 99,

Bjr(y) = /F ( )Gj(Yk(%w))F(w)uy(dw% Gj(z) :/r ( )1Aj (2, v) F(v) pa(dv),
—(y (=
one can show (see the Lemma 5.5 hereafter) that

L) = [ 7(@s) [ F@Bu Y [ pumude).
o0 Iy (2) Iy (2)
It is clear then that (5.6) will hold true if
lim sup / F(u)Bjr(Ye(z,u))p.(du) = 0. (5.7)
I 200 JT4 (2)

The proof of this property is given in the next Lemma yielding the desired weak-compactness. [J
Lemma 5.2. With the notations of the proof of Theorem 5.1, given z € 0%), introduce
P = [ Pl w)us(dw).
Iy (2)
Then, lim sup Pj(z) = 0.
J 0200

The proof of the above will use the the following polar decomposition theorem (see [34, Lemma
6.13, p.113]):

Lemma 5.3. If m is a orthogonally invariant Borel measure with support V. C R% introduce my
as the image of the measure m under the transformation v € R? — |v| € [0,00), i.e. mo(I) =
m ({v e R?; |v| € I}) for any Borel subset I C RT. Then, for any ¢ € L'(R?, m) it holds

1 [e.9]
vlom(de) = g [ mo(de) [ dewlotd)
Rd IS o sd-1
where do denotes the Lebesgue measure on S with total mass |S*1|.

Remark 5.4. We shall use in the proof of Lemma 5.2 that, with the notations of Proposition A.8,
for any y € 0Q we can construct an orthonormal basis {e1(y), ..., eq(y)} of R¢ depending con-
tinuously on y € 0S) with

ed(y) = —n(y)
and such that, in this basis, any w € S can be written as

d
@ =) wiei(y)
i=1
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where w = w(0) = (w1, . ..,wq) is given by (A.14) in terms of the polar coordinates

0= (01,...,04_1) €U=10,2n] x [0,7]3 x [O,g].

In this case, w is independent of y € 0S). We also recall that, according to Remark A.9, for any
e > 0, one can define S-(y) as those w € ST for which

0cU. .= {(91, cey04-1) €U sin? 20,1 sin® 30,5 ...sinfy < 6} .
and prove that lim,_,o+ Sup,cgn 0(S:(y)) = 0. See Remark A.9 for more details.

Proof of Lemma 5.2. Recall that (5.4) is in force and (A;); C I'_ = T'“ is non-increasing with
; Aj = 2. Recall also that

Pi(z) = /F Pl /F iy GOV Yoo ) P 0

= /F " F(u)p(du) / F(w)py, (2 u) (dw) X

L (Ye(zu))

<[ L, (Yi(Yi(z, 1), ), 0) F(0) oy (v, oy ()
F*(Yk (YZ(Z"U‘)’ ))
where I’ = 1p,. Therefore,

Pi(z) = /  Fas () / oy PG YY), 00 ).

Introducing the polar coordinates w = pw, u = v with r,0 > 0 and w,v € S ! and using
Lemma 5.3 (recall that g, (dv) = |v - n(x)|m(dv)) we get

1
Py(z) = 812 / rmo(dr) / v - n(2)lo(dv)

0 ' (2)
1
« / omo(do) / G (Yu(Yo(2 ), 0@)) | - n(Y oz 1)) o (dew).
0 IF_(Y¢(z,rv))

Since {0} is not an atom for the measure p 1m((dp), according to the dominated convergence theo-
rem, it is enough to prove that, for any given o, r € (0,1) and v € S*1,

lim sup / Gi(Yr(Yy(2,1mv), 0w))|w - n(Ye(z,rv))|o(dw) = 0.
I 200 JT_(Yo(2,rv))

It suffices then to prove that

lim sup /F ( )Gj(Yk(y, ow))|w - n(y)|o(dw) =0 (5.8)
~(y

J—00 4eH0)
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and, since g > 0, there is no loss of generality in proving the result only for o = 1. Notice that, for
any ¢ > 0 and y € 09,

/ Gi(Yi(y, @)@ - n(y)|o(dw) = / Gj(Yi(y, @))|w - n(y)|o(dw)
I'—(y) P (y)NSe(y)

+ / G5 (Yily, @)@ - n(y)|o(dw)
T'— (y)\Se(y)

where S (y) has been introduced in the above Remark 5.4. Clearly, since |G} [|co < [pa F'(u)|u|m(du),
there is C' > 0 independent of j such that

sup [ G, (Yi(y. @)l - n(y)|o(de) < C sup o (S (y))
yedQ JT_(y)NS:(y) yeon

which goes to 0 as ¢ — 0 according to Remark A.9. Therefore, to show (5.8), we only have to
prove that, for any € > 0,

lim sup / Gj(Yi(y,w))o(dw) = 0.
T (y)\Se ()

J—00 4edN

Recall that, with the notations of Section A.2,
UFog : T® =1\ 4, — T¢H,
Yi(y,w) = L{S_k OE_I(y,w) Yy € 092, w e T'_(y),

andT'_(y) = {w € S¥!; (y,w) € F(f)}. Thus, we have to show that, for any ¢ > 0,
lim sup / G, (u;k o g—l(y,w)) o(dw) = 0. (5.9)
T yedQ JT— (y)\S: (v)
It follows from Lemma A.11 that, for any y € 0f2, the mapping
w el (y) — U o€ (y,w) € 9Q isof class C* with differential of rank d — 1. (5.10)

On the other hand, with the notations and parametrization used in Proposition A.8 and recalled in
Remark 5.4, the mapping (6,y) € U x 9Q —— w = w(0,y) is continuous while

0clUvr— w=w(8,y)

is of class C! with a continuous derivative (8,y) € A x 9Q — O9pw(8,y). Since the mapping
0 c U. — w(0,y) is a C' parametrization of S.(y), by virtue of (5.10) we have that, for any
y € 01,

0 cU\U.— U ot (y,m(0,y)) € 00

is a regular parametrization of

&= {UF o6 (g, m); @ eT (1) S:y) } < 9.

Then, according to [32, Lemma 5.2.11 & Theorem 5.2.16, pp. 128-131], the Lebesgue surface
measure 7g, (dY') on &, is given by

JYk (y, w)d91 e -ded—l = Jyk (y, w)do
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where
1/2
v (y,) = [det (00, Yu(y, ) s 00, Y50, 1cipca )| >0
on U \ U.. Since the mapping
(0,y) € U x 00— 99, Y1 (y,@(0,y)) = de Y (y, @(0,y))0,=(0,y))
is continuous for any ¢ = 1,...,d — 1, then so is the mapping
(0,y) € U x0Q+— Jy, (y,w(0,y))

and there exists C. > 0 such that

Jv, (y,@(0,y)) > C. >0, V(0,y) € (U\ U:) x 00.

Hence, for any y € 02

[ Gt e molis)
I—(y)\S=(y)

1 —_ —
< a /U\UE Gj (US k o0& 1(3/,@(9,3,/))) Jyk(y,W(O,y))de
1
= a ‘. Gj(Y)Trgy (dY).

Clearly, recalling the definition of G; — and because the measures 7 and 7¢, coincide on &, — we
get

/{S y G;(Y)me, (dY) = /g : ( /F o F(v)14,(Y, v)uy(dv)> me, (dY)

< / ( / F<v>1Aj<Y,v>uy<dv>) n(dY) = A(A4)),
o0 \Jr_(v)
where [i is given by (5.5). Thus,

sup / G U 0 £y, ))o(dw) <
y€O JT _(y)\Se(v)

fi(A;))
Ce

Vj e N.
Since (A;); is non-increasing with (); .A; = & and /i is a finite measure, we have lim; ji(A;) = 0
which implies (5.9) and proves the Lemma. O

Lemma 5.5. With the notations of the proof of Theorem 5.1, it holds, for any j € N,

Iip) = /8 () / L FB Y ) s() / w6

where, for any x,y € 0f)

B;ay) = / Gl ) Pl (@), Gi(a) = / @ OF ().
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Proof. We use the notations of the above proof and recall that (5.4) is in force. In particular, we
assume K to be given by (5.1). Notice that, for any nonnegative ¢ € L',

/A' KZp(x,v)dp—_(z,v) = /Aj F(v) </F+(ac) ka(x,v’)ux(dv’)> dp—(z,v)

J
=: / F(v)Ug(x)dp—(z,v)
Aj

where, using (5.3), one has

N = [ Zae ) = [ wgoUi e ), xeon

Iy (z) Iy (z)
Simple use of Fubini’s theorem yields
/ F(0)¥g(z)dp—(z,v) = Gj(x)V(z)n(dx) = G()(€ o UF (2, 0"))dpuy (2, 0).
A; 0N Iy
Introduce then the p-preserving change of variables
(1"7 Ul) € F+'_>(y7 w) = 5 © uk($7 U/) = (Yk(a;? Ul)? Vk(xv UI)) el'- (512)
and noticing that
T = Yk (y7 w)

we have,

[, Kt (o) = [ 60w ()

Applying this with 1) = Kg for some nonnegative g € L' , we get

/A'KZng(x,v)d,u(ac,v): g Gj(Yi(y,w))Kg(y, w)dp—(y, w)

/ G (Yi(y, w)) F(w)dp—(y, w) / 9(y; w1) py(dwy)
r- 'y (y)
and, with g = Z,K¢ for some nonnegative ¢ € L', noticing that

g(yawl) = F(W(val))/ SO(YZ(.%wl)aWZ)H}Q(y,wl)(dw2)
F+(Y£(y,w1))

where we used the notations introduced in (5.12), we get

Li(p) == /A' KZKZKp(z,v)dp—(z,v) :/4KZng(x,v)du_(:c,v)

J J

— [ GVt ) Fw)du (v w)x

< / ( / We(y,wn,wg)umy,wl)(dwzo F(Viy, w1))pay (duoy ).
Ty (y) Ty (Ye(y,wi))
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Thanks to Fubini’s Theorem, this reads

I; () :/ F(VE(%wl))Bj,k(y>dM+(y7w1)/ o(Ye(y, w1), wa) ty, (y,w;) (dw2)
Iy Iy (Ye(y,wi))

Bjuly) = /F Gl w) Flwpm(dw), <00
Yy

We use the u-preserving change of variables in (5.12), namely
(y7w1) € F+ — (Z7U) = (Yé(y,wl)’ W(ya wl)) - gOuz(val) S r_
sothaty = Yy(z,u), w; = Vy(z,u) and we obtain

Iip) = / F(u)Bj (Y oz, w)du (2, u) / (2 w2 s (duwy)

'y (2)
which is exactly (5.11). U

5.2. About the essential spectral radius of MyH. A consequence of the above is the following
stability result for the essential spectral radius of MgH:

Theorem 5.6. Let H € % (L}r, L) be a stochastic regular partly diffuse boundary operator given
by (3.8). Then,
Tess(MoH) = 7ess(Moa(+)R).
In particular, ress(MoH) < sup,con o).
Proof. For notation simplicity, we simply denote by aR the operator «(-)R and by 3 K the operator

(1—-a(-)K Ge. B(-) =1—a(-)). Let A € C with |A] > 1. Define £ = (MyS K)R(X, MpaR).
One has

K =213 MoBK (A MoaR)’
7=0
and  K2(MoBK) =A72 > AFIMoBK (MgaR)" MoB K (MgaR)* MoB K.
k>0
Notice that, for any k, ¢ > 0, the operator

Mo K (MoaR)* Mo K (MgaR)¢ Mo K

is dominated by MoK (MoR)® MoK (MoR)* MoK and, from Theorem 5.1, this last operator is weakly-
compact. This shows that

K*(MoBK) : LY — L}
is a weakly-compact operator. This results in the weak-compactness of the operator X3 and, as
well-known, (Mg KR(A, MoaR))6 is compact. Using the terminology of [33], we have M3 K
is (MgaR)-power compact and this is enough to ensure that 7ess(MoH) = 7ress(Moa(-)R) (see
[33, Corollary 1.4]). The last estimate is obvious since R is stochastic and ress(Moa(-)R) <

IMoa(- )Rz - O
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Remark 5.7. For regular diffuse boundary operator (i.e. H = K or, equivalently, « = 0), we have
Tess(MoH) = 0 and MoH is power-compact.
6. KINETIC SEMIGROUP FOR REGULAR PARTLY DIFFUSE BOUNDARY OPERATORS
We introduce the following set of Assumptions:

Assumption 6.1. The regular stochastic partly diffuse boundary operator
H=a( )R+ (1—-a(-)K
is such that
Al) Range(K) C Y;;
A2) R(Y{) C Yy;
A3) sup,cpn alx) < 1.
Remark 6.2. In the above set of Assumptions, it is possible to replace Yli with L' (T4, Trdps).

However, in this case, Assumption A2) is not necessarily satisfied for practical examples of bound-
ary conditions (see Example 6.4).

Example 6.3. Consider the classical Maxwell diffuse boundary condition for which

_M(U) .’Il"U/ ’U/'n.’lj U/ xr,v
@) =208 [ Sk m@ia, Ve T
with
__ 1 [of? _
M(v)—Wexp (—29), and ~(z) = /u .n(x)<0./\/l(u)\u-n(:c)]du, Yz € 00

for some 6 > 0. Notice that, actually, 7y is independent of x and
Y(x) =74 := Cy / [v|M(v)dv, Y € 0N
]Rd

d—3
2

B 1
for some universal constant Cyq = il t(1 —t?) 2 dt. One has then H(LY) C Y. Indeed,

St

for f € L}F nonnegative, one has

1
Ml = [ x| g P M@I @y
vn(x)<

X / flz, o' n(z)|dv
v'-n(x)>0

1 1
< [ wtan) [ gl @i = o= [

Vd Joa v n(z)>0 274 Jr,
where we used that fRd M(v)dv = 1 for the first inequality. This shows that RangeH C Y7 . This
result extends easily to the case in which the temperature 6 depends on x € 0X), i.e. § = 0(x) with
0(x) = 0y > 0 for any x € 0.
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Example 6.4. Recalling that both V' and the measure m are invariant under the orthogonal group
let us consider the pure reflection boundary operator

Ro(z,v) = p(z,v —2(v - n(x))n(zx)), (z,v) €T, pelLl.

and let ¢ € Y{. Then, with the change of variables w = v — 2(v - n(z))n(z) such that |w| = |v|
and v = w — 2(w - n(x))n(x) (which preserves the measure djp1) we get

IR@ll - :/r p(a,v = 2(v - n(z))n(@)) [v| o - n(z)|m(dv)r(dz)

= [ e wlul o nfe)n(@nm(d),

ie. R(Y]) C Yy,
Notice that, in this example, in full generality, we can not replace Yi with L*(T_, 7y du_).
Actually, requiring that
R(Ll (F-H T—dlu—l-)) - Ll (F—v T—i-dlu—)
amounts to assume that there exists ¢ > 0 such that T (x,V(z,v)) < c7_(z,v) forany (z,v) € T'y
which is a geometrical condition not satisfied if ) is not strictly convex.

A key point is that, under Assumptions 6.1, the following holds:
Lemma 6.5. Assume H € & (L}i-v LY) satisfies Assumptions 6.1. Then, for any ¢ € LL
¥ = R(1,Mo(aR)Mo((1 - a)K)p € YT
so that Hy € Y7 .

Proof. Notice that, since sup,cgn @(z) = a9 < 1, one has HMU(O‘R)||<@(L}~_) < ap < 1 and

R(1,Mp(aR)) is well-defined. From Assumption 6.1 A1), (1—a(-))K¢ € Y; . Then, from (2.10),
g=Mpy(l—a)Kyp € Yf. From Assumption 6.1 A2), aRg € Y| and, from (2.10), MgaRg € Yf.
More precisely, ||[Mo« RH@(Y{) < ap < 1so that

= (Mg(aR))"g € Y.

n=0
Now, it is clear that Hy € Y{ since H(Y{) C Y (notice that K maps any function in Y; while
Jr —
R(Y]) C Y7)). g
We can now state our main existence and uniqueness result about invariant density:

Theorem 6.6. Let H € &£ (L}|r7 L) be a regular stochastic partly diffuse boundary operator and
let Assumptions 6.1 and 4.4 be satisfied. Then, (Tu, 2(Tn)) is the generator of a stochastic Cp-

semigroup (Un(t))i=0. Moreover, (Un(t))i>0 is irreducible and has a unique invariant density
Uy € 2(Ty) with

Uy (z,v) >0 fora. e (z,v) € QxRY, |Thllx =1

and Ker(Ty) = Span(Vy). Moreover, (Un(t)):=0 is ergodic, Eq. (4.2) holds and X = Ker(Ty)®
Range(Th).
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Proof. We begin with proving that, under Assumptions 6.1, 1 € &,(MgH). Indeed, being both M
and H stochastic, the spectral radius of MgH is 7, (MgH) = 1 € &(MyH). According to Theorem
5.6, one also has 7ess(MoH) = ress(Mo(aR)) < sup,cpn a(z) < 1, ie.

TeSS(MQH) <1= TU(MOH).

As well-known (see [23, Theorem 2.1]), this implies that 1 is an isolated eigenvalue of MyH. More-
over, being MgH irreducible, we deduce from [23, Theorem 2.2] the uniqueness and the strict
positivity (almost everywhere) of a nonnegative eigenfunction ¢.

Let us consider now A € C with ReX > 0. Considering the modulus operator [MH| (see [14]
for a precise definition) one has

IMAH| < MgH — and [MyH| # MgH.

In particular, from [23, Theorem 4.3], r, (|M)H|) < 7+ (MgH) = 1. Since moreover, r,(M\H) <
r+(|MxH]) according to [14, Theorem 1], this proves that r,(M)\H) < 1,ie. 1 ¢ &(MyH). We
conclude that A = Ty thanks to [4, Theorem 4.5]. Let us now show that the eigenfunction ¢ lies
in Y{". Being MoHp = ¢, we have ¢ = Mg(aR)p + Mg(1 — a)Kp so that, since 1 — Mg(aR) is
invertible,

v =R(1,My(aR))Mo((1 — a)K)e.

From Lemma 6.5, we get that ¢ € Y. We deduce then from Proposition 4.2 that there exists
Uy € 2(Ty) nonnegative and such that Ty Wy = 0. We conclude with Theorem 4.7. O

Remark 6.7. The fact that Ty is the generator of (Un(t)):>0 does not depend on A1) and A2) in
Assumptions 6.1.

7. ASYMPTOTIC STABILITY OF COLLISIONLESS KINETIC SEMIGROUPS

The object of this section is to complement Theorem 4.7 and Theorem 6.6 where a convergence
in Cesaro means of (Uy (t))t>0 to its ergodic projection is given. Indeed, under a quite weak
additional assumption on the kernel of K we will show that (Un (%)), is asymptotically stable, i.e.
Un(t) f converges in norm as t — +oc. In particular

lim [Un(8)f = Wnllx =0 (7.1)

for any density f € X, i.e. any nonnegative f with || f||x = 1. For the sake of simplicity, we
restrict ourselves to the case in which m(dv) = dw is the Lebesgue measure over

V:{veRd;m<|v|<M}

where 0 < m < M < oo, although the surface Lebesgue measure on the unit sphere can also be
dealt with, see Remark 8.2 below.

In order to prove asymptotic stability of (Un(t)):>0 we first describe the movement of parti-
cles as a piecewise deterministic Markov process. Then we explain how the stochastic semigroup
(Un(t))t=0 can be defined by this process and finally we prove the asymptotic stability of this
semigroup.
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7.1. Piecewise deterministic Markov process. Consider the following stochastic process which
describes the movement of particles. A particle is moving in the space {2 with a constant velocity
and when it strikes the boundary 02 a new direction is chosen randomly from the directions that
point back into the interior of { and the motion continues. We recall that if z € 9Q and v’ €
['; () then the distribution of velocity v after reflection is given by a probability measure P(z, v, -)
defined on Borel subsets B of I'_ (z) by

P(a,v/, B) = a(2)8y(s.0(B) + (1 — a(x) / h(@, v, ') m(dv).
B
where V(x,v) is the regular reflection law. From the Assumptions 6.1 A3) it follows that there
exists e9 = 1 — sup,egn @(z) > 0 such that 1 — a(x) > ¢ for all z € 9. This implies that
P(z,v',dv) > eoh(z, v, v) m(dv). (7.2)

Let a particle starts at time ¢ = 0 from some point z € € with some initial velocity v € V' \ {0}
or from z € 9 with velocity v € I'_(x). Let z(¢) be the position and v(t) be the velocity of the
particle at time ¢ and let ¢; = ¢4 (x,v). Then 2(t) = x + vt and v(t) = v for t € [0,¢1). Let
0 < t; <tz < ... beasequence of times when a particle hits the boundary 0€2. Then

Prob(v(t,) € Blx(t,) =z, v(t,) =) = P(z,v', B)
for every Borel subset B of 'y (z), where x(¢,,) and v(t,, ) are the left-hand side limits of z(t) and
v(t), respectively, at the point ¢,,. Moreover
z(t) = x(tn) + v(tn)(t — tn), v(t) =v(ty) fort € [tn,tnt1),
1.

x(tn) = x(t,;) and ty1 =ty + t4(x(ty), v(ty)) forn >
It is easy to observe that
£(t) = (z(t),0(t), =0,

defines a piecewise deterministic Markov process [31] with values in the space
E=QxV)ur._.

The process {§(?) };- has cadlag sample paths, i.e., they are right-continuous with left limits. Let
P(t,x,v, B) be the transition probability function for this process, i.e.

P(t,x,v, B) = Prob(&(t) € B|€(0) = (z,v)),

where B are Borel subsets of £. The semigroup (Uy(t)):>0 can be uniquely determined by the
transition probability function P(t, z, v, B) because the following relation holds

/ Un(®)f(y,w)dy @ m(dw) = | P(t, 2,0, B)f(z,v)dz @ m(dv)
B QxV

for all f € X, Borel subsets B of {2 x V and ¢t > 0.

Remark 7.1. It should be noted that we do not assume here that ) is a strictly convex set and it can
happen that at some boundary points x some outward or inward vectors belong to the tangent space
Lo(x). In such cases trajectories can be tangent to the boundary 05, especially in the case when
we consider the specular reflection (see Fig. 3). But there is no need to consider such pathological
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FIGURE 3. Examples of pathological trajectories in the case of the specular reflec-
tion v’ — outward vector, v — inward vector.

trajectories because the set Iy has zero measure for i and does not play any role in the definition
of the boundary operator H .

7.2. Asymptotic stability. Now we check that the semigroup (Un(t)):>0 is partially integral (see
Appendix B.1 for precise definition), i.e. that for some ¢ > 0 there there exists an integrable
function g: @ x V x Q x V — [0,00), ¢ # 0, such that

P(t,z,v,B) > / q(z,v,y,w) dy @ m(dw). (7.3)
B

In order to prove this property we need a rather weak assumption concerning function h(z, v, v").

Definition 7.2. Let H € % (L}r, L) be a stochastic partly diffuse boundary operator of the form

(3.8). We say that the boundary operator H is weakly locally diffuse (WLD) if for each point x € OS2
and v, € T (x) there exists a vy € I'_(x) and 6 > 0 such that

k(z,v,v") >0 for pz-a. e. v € T_(z) N B(vg,d), v €Ty(x)N B(wg,0d). (7.4)
If we replace condition (7.4) by a stronger one:
k(z,v,v") > & forallv € T_(z) N B(vg,d), v €Ty(x)N B(vg,d). (7.5)
then the boundary operator H will be called strongly locally diffuse (SLD).

Lemma 7.3. Assume that the operator H is weakly locally diffuse and satisfies Assumptions 4.4
and 6.1. Then the semigroup (Uy(t))=0 is partially integral.

Proof. Let (z,v) € & = Q x (V' \ {0}) be the initial position and velocity of a particle. At time
t1 = t4(x,v) it hits the point 21 = = + ¢4 (z, v)v on the boundary 2. Then we choose a new
velocity v; € I'_(z;) and at time ¢; + ¢t (1, v1) the particle hits the boundary for the second time
at the point o = x1 + t4(x1,01)v1. We choose a new velocity v2 € I'_(z3). Let ¢ > 0 satisfies
inequalities

t1+t+($1,171) <t <t +t+($1,@1)+t+($2,@2) (7.6)
and let 7 = t — ¢1. We will find an neighborhood U of (v1,03) € V such that for (vi,vs) € U we
have v; € I'_(x1), vo € T'_(z1 + t4+(x1,v1)v1) and (7.6) is satisfied for (vq,v2) € U. Then

x(t) = zo + (1 — ty(x1,v1))v2

=z +ty(xr,v1)0 + (7' —ty(z, Ul))UQ
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L1

FIGURE 4. Position x(t) of the particle after two collisions with the boundary.

and v(t) = wvq is the position at time ¢ of the particle if it starts from x with velocity v, and after
hitting the boundary we choose velocities v; and vy (see Fig. 4). We define the function F': U — V'
by

F(vy,v2) = (21 + t4 (21, v1)v1 + (7 — t4(21,v1))v2,v2) = (Fi(v1,02), Fa(vi,v2)).
Now we check that if

V@1t+($1, 171) ) 75 t+(l’1, 171) —+ V@1t+($1, 171) -1 (7.7)
then the function F is a local diffeomorphism in some neighborhood of (v1,v2). Indeed, let us
denote the Jacobian matrix of F' by Jr = ( 37}1 , g—i). One checks easily that

det Jp(v1,v2) = det ( E;Fl

U1> = det (887)1 <t+(x1,v1)(v1 - v2)> =:det M
where the matrix M is given by
M =cld+ A, A=a®u=du,
where a is the vector a = Oy, t4+(x1,v1), u = v1 — vy and ¢ = t4 (21, v1). We check then that *
det M = L(ct+a-u)= ti(ml,vl) + tiﬁl(zl,vl)vvlur(azl,vl) - (v1 — v2).
Consequently, if (7.7) holds then the Jacobian matrix J#(v1,02) is non singular and F is a dif-
feomorphism in some neighborhood of (71, 72). Observe that condition (7.7) does not hold only

*Indeed, let p(z) be the characteristic polynomial of A, p(z) = det(A — zId). Since the rank of A is less or equal to
1, z = 0 is a root of p with multiplicity at least d — 1 while the trace tr(A) = u - a should also be a root of p. Therefore,
p(z) = (-1 2} (z — u- a)

and, taking z = —c gives the result.
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on a (2d — 1)-dimensional differentiable manifold in R>¢ and we can change equality in (7.7) to
inequality after a small perturbation of the vector v3. We have

P(t,x,v, B) = Prob((x(t),v(t)) € B)
> Prob((vi,v2) € U: F(v1,v2) € B)

> / 2k (1, vy, v)k(z1 + vty (z1,v1), vo, v1) m(dvy) m(dws).
F=1(B)

Since x; = = + vty (x,v) we can define
Ky (V1,v2) 1= e0k(x1, v1,0)k(z1 + vity (21, 01), v2, 01).

Since k satisfies WLD, for each (xg,vg) € & there exist & > 0 and o3 € T'_(x1), 2 €
[ (z1+ty (x1,01)01) such that £, ) (v1,v2) > 0 a. e. for (x,v) € B((20,v0),d) and (v1,v2) €
B((v1,02),¢"). Without lost of generality we can assume that condition (7.7) holds and F is a
diffeomorphism from Uy = B((v1, 2), ") onto F(Uy). Then

P(t,z,v,B) > / K (z,0)(v1,v2) m(dvy) m(dvz)
F=4(B)

_ / () (F~1 (4, w0)) |det T (3, w)] dy ® m(dw)
BNF(Uy)

where Jp-1(y, w) = (ag; , ag—;l) is the Jacobian matrix of F~!. From the last inequality it

follows that (7.3) holds for

Q(x7 v,Y, w) = 1F(U0) (yv w)k"’(:c,v) (F_l (yv ’U))) |det T (yv w)|
and the semigroup (Un(t))s>0 is partially integral. O

Remark 7.4. It is very likely that an analytical proof based upon the Dyson-Phillips-like represen-
tation of the semigroup (Uy(t))i>0 obtained in [3, 5] may replace the adopted probabilistic proof.
Such a proof seems more involved than the probabilistic one given here and we did not investigate
further on this point.

Combining Theorem 4.7, Theorem B.2 and Lemma 7.3 we obtain:

Theorem 7.5. Let the assumptions of Theorem 4.7 be satisfied. Assume moreover that H is weakly
locally diffuse, then the semigroup (Uy(t))i>0 is asymptotically stable.

Remark 7.6. In particular, under the conditions of Theorem 6.6, the semigroup (Un(t))i>0 is
asymptotically stable.
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8. SWEEPING PROPERTIES OF COLLISIONLESS KINETIC SEMIGROUPS

The asymptotic stability of the semigroup (Vi(t)):>0 is strictly connected with the existence of
an invariant density which was assumed in Theorem 4.7 and proved in Theorem 6.6. We inves-
tigate here the behaviour of (U (t)):>0 when this semigroup has no invariant density. A crucial
role is played by sweeping property (see Appendix B.2). We first establish the following which
complements Lemma 7.3:

Lemma 8.1. If H is strongly locally diffuse (in the sense of Definition 7.2), then, defining & =
Q x (V\{0}), for every (xo,v0) € &y there exist € > 0, t > 0, and a measurable function
no: E — [0, 00) such that

/ n(z,v)dr @ m(dv) >0
&o
and

q(z,v,y,w) = n(y, w)lpgye)(z,v) for (y,w) € AxV, (8.1
where By(¢) is the open ball in & centered at (x,vo) with radius ¢.

Proof. The proof uses the notations introduced in the proof of Lemma 7.3. Recall that (Un(t))¢>0
is partially integral with
Q(xv VY, w) = ]-F(Uo) (ya w)H’(;E,U) (F_l (yv ’LU)) |det Tr-1 (ya ’LU)| :
If the operator H is strongly locally diffuse then there there exist &' > 0 and v; € T'_(x1), U2 €
[ (w1 + ty(21,01)01) such that K, ) (v1,v2) > ¢ forall (z,v) € B((wo,v0),0") and (v1,ve) €
B((v1,02),d"). Now setting
Ny, w) = Lpwy) (y, w) |det Tp-1(y, w)|

we check that 7 satisfies the desired properties. O
Remark 8.2. We note that Lemma 8.1 and Lemma 7.3 are also true when m(dv) is a surface
Lebesgue measure on a sphere but the proofs are slightly more technical. Indeed, instead of two

reflections at the boundary (see Figure 4) we need one more reflection to achieve the property that
the semigroup is partially integral.

According to Theorem B.4 and the previous Lemma, we have:

Theorem 8.3. Let us assume that (Un(t))=0 is stochastic and has no invariant density. If the
boundary operator H is strongly local diffuse then (Un(t))i>0 is sweeping from all compact subsets
Ofg().

Proof. Since ((2 x V) \ &) is of zero measure for the measure dx ® m(dv), we can assume that
the semigroup (Up(t))¢=0 is defined on the space L (&, B(&y), dz @ m(dv)). Then, on this space,
Lemma 8.1 exactly means that (Uy(t));>0 satisfies property (K) of Theorem B.4. O

Remark 8.4. For any € > 0 and M > < we define the set
Four ={(z,v) € @ x V:e < |v] < M, dist(z,00) > €},
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where dist(xz,0) = inf{|z — y|: y € 0Q}. Since the set F s is compact in the space &, for
every f € X we have

lim Un(t) f(z,v)dz ® m(dv) = 0. (8.2)

t—o0 FE M
This result has the following probabilistic interpretation. If the semigroup (Uy(t))i>0 has no in-
variant density, the velocity of almost all particles converges to O or to oo or particles get close to
the boundary 0S) when time goes to infinity.

We complement Theorem 8.3 by a more precise sweeping result:

Theorem 8.5. Assume that H € % (L}s_7 L) is a regular stochastic partly diffuse operator given
by (3.8) and satisfying Assumptions 4.4. Assume moreover that H is weakly locally diffuse (WLD),
SUp,ean @(z) < 1 and

Lt ({(:r,v’) ely; / k(z,v,0") 14 (2, v) pp (dv) = +oo}> > 0. (8.3)
I'_(x)
Then

lim Loz Un(t) f (2, v) dr @ m(dv) = 0, Ve > 0, Ve X. (8.4)

t—o00 QxV

Proof. Note first that Ty is the generator of (Uy(t)):>0 (see Remark 6.7). By virtue of Theorem
B.5, the proof simply consists in showing that (Uy()):>0 has no invariant density and in construct-
ing a function ¥ = ¥(z, v) such that

0<¥(x,v)<oo aeonQxV, / U(z,v)dr @ m(dv) = 400,
QxV

/M 150 ¥(z, v)dz @ m(dv) < +00 (¢ > 0) (8.5)

and
Un(t)¥ < 0, vt > 0. (8.6)

The proof will be given in several steps. First of all, according to Theorem 5.6, there exists
¢ € L} such that

MoHg = @, [lolps = 1. 8.7)

Since MoK is irreducible then this ¢ is unique.
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e First step: The function ¥ = =gH satisfies (8.5). Indeed, one first notices that

[ kel om0 (.0)

= /aﬂ dm(x) /F_(z) (/F_»,_(:r) k(z,v,v")o(z,v") pg(dv )) T4 (z,v) py(dv)
= /aﬂ dr(x) /F+(x) (/F_(x) k(z,v,v )T+(a:,v)ux(dv)> o(x,v") g (dv’)

:/ (/ k(a:,v,v')7+(x,v)uz(dv)> o(z,v")dpy (z,0).
j I'_(x)

Therefore, under assumption (8.3) and because p(z,v’) > 0 a.e. on I';, we have

/ K] (z,0) 74 (2, v)dp—(x,v) = +o0.

Using Lemma 2.8 — identity (2.9) — and with £g = 1 — sup,cgq a(z) > 0

/ U(z,v)de ® m(dv) = / Ho] (z,v) 74 (z,v)dpu—(x,v)
QxVv

> Eo/ K] (z, )74 (2, v)dp—_(x,v) = +o0.

Hence,

[ el oy bl ey = oo

since 7_(,v) < |v| 1D (where we recall that D is the diameter of 2). Thus, Hyp ¢ Y| and 0 is not
an eigenvalue of Ty (associated to a nonnegative eigenvalue) according to Proposition 4.2. Since
Ty is the generator of (Uy(t))¢>0, this means that (Uy(t)):>0 has no invariant density. Moreover,

/Q , Lz ¥ (@, v)dz @ m(dv) = /F Lijjzey [He] (@, 0) 74 (2, v)dp—(z,v)
X

D D
< — = — .
< 2 IHellze = —llelny
Using that MgHy = ¢, one has ¢(z,v) = [Hy] (z — 7—(z, v)v,v), for any (x,v) € I'; and, from
the irreducibility of MgH, we get 0 < ¢(z,v) < +o00 a.e. on 'y which in turns implies that
0 < VU(x,v) ==ZoHp(z,v) = [Hy] (z — t_(x,v)v,v) < +o0 ae.on ) x V.

This proves that U satisfies (8.5).

In order to prove that W satisfies also (8.6) we shall resort to Lemma 3.8 and for any n € N,
introduce the regular diffuse operator given by H,, = aR + (1 — a)K,, with K, is defined as in
Lemma 3.8. As before, for any n € N, there exists ¢, € Li such that

MoHnon = @n, H‘PTLHL}F =1
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e Second step: lim,, ||¢pn, — ‘P”L}r =0.
To prove this, we notice that ¢, — MgaRy,, = Mg [(1 — @)K, ¢, so that
©n = R(1,MpaR) (My(1 — a)Ky,) ¢n =: Lnen, Vn € N.
According to Theorem 5.1 (see also the proof of Theorem 5.6), for any n € N, the operator £ is

weakly compact so that £8 is compact. By virtue of Lemma 3.8, it holds that

lim <5 - L6H@(L1+) =0

where £ := R(1,MpaR) (Mo(1 — a)K) . Therefore, since o, = L5, the sequence (¢y,),, is
relatively compact in L}F and a subsequence — still denoted (), — converges in L}F to some
g € Li_ with unit norm. It is easy to check then that ¢ = £%¢g which implies that MqHg = g.
We deduce from this that g = ¢ by uniqueness. This shows finally that the whole sequence (¢,,),,
converges to ¢ in L1 .
e Third step: Introducing the semigroup (Vi (t)):>0 associated to the boundary operator H,,
n € N, it holds
liin Vi, @) f — Un(t) fll x =0, Vt>0, felX. (8.8)

Indeed, for any n € N the resolvent of the generator Ty, is given by
R\ Th,) = ZaHa (A = MyH,) 71 Gy + Ry,
and it is easy to check, using again Lemma 3.8 and Eq. (2.1) that
liTILn IR, Th,)f — RN A)fllx =0, YA>0, feX
where we recall that (A, Z(A)) is the generator of (Un(t)):+>0. We deduce the second step from the

Trotter-Kato approximation Theorem [17, Theorem 3.19, p. 83].
e Fourth step. Introduce then ¥,, = MgH,,0,,. According to Theorem 6.6,

Vi, ()T, =T,, VYneNt>0.

On the other hand, since lim,, ||[H,, — He| 1 = 0, we have, for any € > 0,

i [| o5y Hnen = LgjosepHepl[ 1 =0

and also

117?1 HEO(l{\U|>5}HnSOn) - Eo(l{‘v|>€}H@)HLi =0
or equivalently

Hn |1 jogsey W = Ljopsey ¥l 1 = 0.
Let then
\I]fz = 1{|v\>e}\1’na e = 1{|U|>€}\IJ, neN, >0,

we note that

VHn (t)‘I/fl < ‘I/n and 1{\v\>5}VHn (t)\:[/; < \I/fl
foranyn € N, e > 0,¢ > 0. Using the Third step, we can pass to the limit in norm in this inequality

as n — +oo and get
].{|v|>€}U|-|(75)\11E < we < V.
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Letting € — 0, the monotone convergence theorem yields to Uy (¢)¥ < W, i.e. U satisfies (8.6) and
the proof is concluded. U

APPENDIX A. ABOUT THE BALLISTIC FLOW
We establish in this appendix several important properties of the so-called ballistic flow
€ (zv) ey = €&(z,v) = (z — 7—(x,v)v,0) €I XV

which are fundamental for the proof of our main weak compactness result Theorem 5.1. For the
clarity of exposition, we postponed these results in an Appendix but strongly believe that the results
stated here have their own mathematical interest. In this Appendix, we will use the following
notations: for any element z = (,v) of the extended phase space Q x V, we will call  the space
component of z and v the velocity component of z, writing z = 2z, and v = z,,.

With the notations of [20], & = zy,. Notice that, as already observed in [20, 34], in non convex
domain this deterministic flow does not avoid the grazing set I'g, i.e. in full generality

&(z,v) eTT_UTy

and — as far as the regularity of £ is concerned — the set {(x,v) € '} ; &(x,v) € Ty} will be
particularly relevant. Notice though that

E el Uly—>T_UTy
is invertible with inverse
€1 (z,0) €T_UTy— & Y (z,v) = (z + 7_(z,v)v,v) € T UT,.

Moreover, according to (2.5) with ¢ = 1p, we see that

[t (e onnsdede) = p (o) =0
I'4Ul

which proves that
pt ({(z,v) eTL UTy; &(z,v) € Tp}) = 0. (A.1)

We introduce the following where we focus on velocity which are unit vectors (this is no loss of
generality by virtue of (2.2))

Definition A.1. Let
Ty = {(x,w) €I xS (z,w) €Ty and €&(z,w) € FJF}

and introduce, for any x € 0S) the section

~

fi(x) = {w e S (z,w) € Fi}.
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A.1. Regularity of the travel time. The main result of this section is the following:

Theorem A.2. The set fi are open subsets of 'y and
T (z,w) € Iy T+ (7, w) € RY
is of class C'.

We will split the proof of the above in a series of Lemma — dealing with 7_ but all the results
have their counterpart for 7 :

Lemma A.3. The set I is an open subset of 1" and 7_ is continuous on I',..

Proof. Let us fix 9 € 99 and wy € f+(:v0), ie. wo-n(xg) > 0and wy - n(&) < 0 where
&0 = xo — 7— (0, wp)wy is the space component of &(x,wy). For simplicity, set

T0 — T_((L'(),(,UO).

Let (x,,v,) C I'; be a given sequence such that limy, (x,,,v,) = (29, wp). In particular, we can
assume that |v,,| # 0 for any n € N. Set then w,, = |v,|"tv, € S¥! forany n € N and

Yn = Ty — T— (T, wp )wy, € O Vn € N.

Taking a subsequence if necessary (recall that OS2 is compact), we may assume that (yy,),, converges
to some yo € 0N Then, since 7_ (2, wy) = |yn — Tn| we get that

Hm 7 (2, vn) = WM 7 (2, wp) v ! = Hm 7 (2, wn) = |yo — 20| =: 71
n n n
and, consequently, letting n goes to infinity in the definition of y,, yields
Yo = xg — T1wg € 0L

This in particular shows that 79 < 7. To prove that 73 = 79, let us argue by contradiction and
assume that 71 > 7. Since both yg = zg — 1w and &y = x¢ — Towo belong to O and since
wp - (&) < 0, the set

{te (10, 71) ; @0 — two géQ}
is open and not empty. Therefore, there exists § > 0 such that 71 > § + 7y and
ro—twg € Q  Vte (10,8 + ). (A.2)

Notice that x,, — tw, € Q forall t € (0,7_(xy,,w,)) and any n € N. Since lim,, 7_ (2, w,) = 71,
we get that, for n € N large enough,

n — twy, € Q) Vt6(070+5).
Letting then n goes to infinity, we obtain zoy — twg € Q for any ¢ € (O 7o + 0) which contradicts
(A.2). Therefore, 71 = 7y which proves the continuity of 7_ on F+ Let us now show that F+
is open. We keep the previous notations, fixing (zo,wg) € F+ Let us assume that there exists a
sequence (2, wy,) C T'y such that lim,, (x,,w,) = (2o, wo) Where w,, € S*! for any n € N but
(n,wn) & Ty This means that

Wy, - (g, — T (Tp, wn)wy) = 0, Vn € N.
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From the previous part of the proof, we know that lim,, x,, — 7— (2, Wy )wyn = o — 7— (20, Wo)wo
and, since n(+) is continuous, we get

wo - n(zg — 7—(z0, wo)wo) = 0,

which contradicts the assumption that (zg,wp) € I'y. Therefore, no sequence with the above
properties can exist and I'; is open. U

Lemma A.4. For any x € 0X), the mapping
we Ty (z) — 7 (z,w) € RT
is differentiable and
Voro @ (z,w) € T, —s 7_(z,w) € RT (A3)

is continuous.

Proof. As before, let us fix 79 € 9Q and wy € 'y (x0). Since the normal vector n(-) is continuous
on 01, we deduce from Lemma A.3 that there exists a radius r > 0 such that

w-n(x) >0 and w-n(€s(r,w)) <0 V(z,w) € U(zg) x V(wp), (A4)
where U(zg) = B(zg,r) N O is an open neighbourhood of ¢ and V(wg) = B(wo, ) NS4 is
an open neighbourhood of wy. The continuity of 7_ implies that there exists tg > 0 such that

T_(z,w) Ztg >0  V(r,w) € U(xg) x V(wp). (A.5)

Since the mapping & : (z,w) € I'y — &(z,w) = (z — 7_(z,w)w,w) € I'_ is continuous,
invertible with inverse

~

€ (yw) el € (y,w) = (y + 7o (y,w)w,w) € Ty
and since & (f+) c I'_, one has ¢! continuous. In particular
{(&— (5, w)w,w), (@,0) € Ulzg) x V(wn)}
is an open neighbourhood of &(xg,wp) and
Wi(zp) :={z — - (z,w)w, (z,w) € U(xp) x V(wp)}

is an open neighbourhood of zy = zy — 7— (20, wo)wo = &Es(xo,wo) € IN. Since N is of class
C! then (up to choosing a smaller neighbourhood W (zg) if necessary), there exists a C! bijective
mapping

U :ye (1,141 — U(y) € W(zp)
with U(0) = 2o and such that such that the range of the differential d¥(y) has dimension d — 1 for
any y € (—1,1)%"!. We introduce open pieces of €2 indexed by x € 9

Sy ={z—7_(z,w)w, w € V(wy)} C W(zp).

Define then
O, =¥ 1S,), = € U(x),
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one sees that, for any x € 0€2, the mapping ¥ : y € O, — ¥(y) € S; is a parametrization of S;.
Namely, given (z,w) € U(zg) x V(wp), there is a unique y € O, such that z — 7 (x, w)w = Y(y).

Thus,
T_(z,w) = |z — ¥(y)| and w= é:é’gﬁ’ (A.6)
In particular g — 7— (20, wo)wo = 20 = ¥(0), and wy = ég:ggg%. Introduce the C' mapping
z—¥(y)

H : (z,y) € Ulzg) x (—1,1) = H(z,y) = € V(wp) (A.7)

[z = W(y)|
and, for any z € R?\ {0}, let IP, denote the orthogonal projection on the hyperplane orthogonal to
2,

z

P.h=ht=h—-(h, 2z  z=-_—ecS" heRL

Z|
Notice that P, = IP; for any z € R%\ {0}. Because the differential of the mapping z € R?\ {0}

é is given by

heRY— —|z|"'P,h, heR?
it follows that the differential d, H (=, y) of H is given by
P w(y) (d¥(y)h) Py (d¥(y)h)
) R 10
where w = H(z,y) = |z — ¥(y)|~! (x — ¥(y)). Note that the differential d, H (z,y) depends
continuously on (z,y) € U(zg) x (—1,1)4"1. Let us assume for a while that
Rank (dyH (20,0)) =d — 1. (A9)

Then, the dimension of the range of d, H (x, y) remains of dimension d — 1 for z close enough to 0.
Recalling that wy = |xo— ¥ (0)|~! (2o — ¥(0)), we deduce from the local inverse function theorem
that, in some open neighbourhood U’(z¢) x (—6, )%~ of (20, 0) and a neighbourhood V’(wq) of
wp such that the equation

w=H(x,y) (x,y) € U'(xg) x (0, 5)d*1

dyH(z,y) : h € R — — (A.8)

is solved uniquely as
y = G(z,w), (z,w) € U'(z0) x V(o)
where G(z, -) is a C! mapping on a neighbourhood V’(wj) of wg and the mapping (z,w) — G(x,w)
is continuous on U’ () x V’(wp). It follows that, for zz € U’(x) the mapping
w € V(wo) — m—(2,w) = |z = U(y)| = [z — V(G(z,w))]

is differentiable with differential d,,7— (x,w) given by
(x =V (G(z,w)),dV(G(z,w))duG(x,w)h)

|z — W(G (2, w)) '
Since d,G(z,w) = (dyH (z, G(z,w)))”" and the mapping (z,w) — G(z,w) is continuous then
s0 is

dy7_(z,w) : h e RY — —

(A.10)

(z,w) € U'(z0) X V(wp) — dp— (7, w)
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which proves the Lemma under assumption (A.9). It only remains to prove (A.9). Notice that
Range(d¥(0)) = {d\I/(O)h; he Rd—l}
is the (d — 1)-dimensional tangent space of 92 at zp = ¥(0) with zy — ¥(0) = 7_ (20, wp)wo and
{]PIO (o) (AT(0)R) 5 h € R 1} = P, (Range(d¥(0))
is the orthogonal projection of Range(dW¥(0)) on the orthogonal hyperplane to wy. One sees that
)

wo - n(¥(0)) < 0 = wo ¢ Range(d¥(0)))

and consequently P, (Range(dW¥(0))) coincides with the orthogonal hyperplane to wp. In partic-
ular, it has dimension d — 1 which is exactly (A.9). O

Lemma A.5. For any w € S, the mapping
zely(w)— 7 (r,w) e RY
is differentiable and
Vot : (z,w) €Ty 5 7_(2,w) € RT
is continuous.

Proof. As in the previous Lemma, we fix zo € 02 and wy € f+(x0) and consider an open neigh-
bourhood U(zp) x V(wp) of (xg,wp) on which (A.4) and (A.5) hold. For any w € V(wy), define

Sw ={z— 7_(z,w)w; = € U(xp)}

and, with the notation of the previous Lemma, S, C W(z¢) for any w € V(wp) where W (zp) is
the image of the C! function

U :ye (-1, — U(y) € W(x)

with ¥(0) = z and Rank(d¥(y)) = d — 1 forany y € (—1,1)?~L. This allows to introduce, as in
the previous Lemma, O, = ¢! (Sw) and S, is parametrized by ¥ (defined now on O,,), i.e. given
(x,w) € U(zp) x V(wp), there is a unique y € O,, such that v — 7_(z, w)w = ¥(y) and (A.6) and
(A.7) still hold. We have seen in the proof of Lemma A.4 that H is C 1 with differential dyH(z,y)
given by (A.8) and depending continuously on (x,y) € U(zg) x (—1,1)% L. In particular, as seen
earlier, at (z,y) = (zo, 0) the differential d, H is given by

Py, (dP(0)h) Py, (d¥(0)h)
o —W(0)]  7(x0,wo)

d,H(20,0) : h € R —

and has (d — 1)-dimensional range. As before, from the implicit function theorem, there is a neigh-
bourhood (—d, )41 x U”(z0) of (0, x0) and a neighbourhood V" (wp) of wy on which the equation
w= |z —V(y)|" (z — ¥(y)) with (y,z) € (—0,0)%1 x U”(x0) is solved uniquely as

~

= G(w, ), (w,z) € V" (wp) x U ()
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where G(w, ) is a C* mapping and (w,z) € V”(wy) x U”(zo) — G(w,z) is continuous. It

follows that the mapping z € U"(z¢) — 7—(z,w) = |¥(G(w,z)) — x| is differentiable for any
w € V"(wp) with differential given by

(U(G(w,z)) — z,dV(G(w, 2))de G (w, z)h — h)

dp7—(z,w) : h € Tp— — =
(G (w,z)) — =

(A.11)

where 7 is the tangent space of 02 at x € 0f2. Let us prove now the continuity of d,7_(-,-).

Because w + % = 0, differentiating with respect to = along the direction h tangent at
0N at z yields 7
Py o) a (d\IJ(G(w, 2))do G (w, )h — h) i
|z = U(G(w, 7))l
ie.

P, (dﬁl(@(w,x))dz@(w,x)h> —P,h, VheT,

~

where we used that w is the unit vector in the direction of (V(G(w, z)) — x). This implies that
dU(G(w, 2))dyGw, 2)h = Pk + <d\p(€;(w, 2 oG (w, 2)h, w> w. (A.12)

Since d¥(G(w,z))d,G(w, )k is a tangent vector to I at ¥(G(w,z)) = &(z,w) = & —
7_(x,w)w, taking the inner product of the above identity with the normal unit vector n(&;(z,w))
yields

(A0 (G, 2))duCw, ), ) (w,(Es(,w))) = = (Puh, n(€s(w,w))
Inserting this into (A.12) and since w - n(&s(z,w)) # 0 we get

i (Ruhin((w)
AEE NI = Pl = 2, e w)

which, plugged into (A.11), yields

(Puh, n(s(x,w)))
(w, n(&s(z,w)))

(Pyh; n(€s(z,w)))
(w; n(&s(z,w)))

dp7—(z,w)h = —(w, P,h — w—h)

= (h; w) —

ie.

(h,n(&s(z,w)))
(w,n(&s(z,w)))
Ihis gives directly the continuity of the mapping (z,w) +— d,7_(z,w) since &, is continuous on
ry. O

dp7—(z,w)h = (A.13)
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Remark A.6. Notice that (A.13) allows to recover the expression

1 ~
TG "e@e), @) el

which was obtained in [20, Lemma 3] for some special structure of ). Moreover, using (A.10)
and using the range of the differential of V(G (x,w)) is the orthogonal of Span(n(G(x,w)) we can
prove

Vor—(z,w) =

W) e sy e T
w - n(&s(z,w)) (&s(z,w)), (x,w) e 'y

which, again, is a result obtained in a special case in [20, Lemma 3].

VT (z,w) =

Proof of Theorem A.2. The above three Lemmas give directly the proof of Theorem A.2 for 7_ and
I'+. The proof for 74 and I'_ is done similarly. g

An immediate consequence of Theorem A.2 is the following regularity of the ballistic flow:
Corollary A.7. The ballistic flow:
€ (zw) el — €(z,w) = (v — 7 (2, w)w,w) € T_
is a C' diffeomorphism from f.,. onto its image and
&' (mw) el — & (z,w) = (& + 74 (2, w)w,w) € Ty
is a C! diffeomorphism from T_ onto its image.

A.2. Further non degeneracy results. We introduce a local polar parametrization of the boundary
which will turn useful later on:

Proposition A.8. For any x € 0S), there is a closed subset S(x) C f_(m) with zero surface
Lebesgue measure do and such that the mapping w € I'_(x) \ S(z) — = + 7+ (z,w)w € OQ has
a differential of rank d — 1. As a consequence, the differential of the mapping

£z, wel_(2)\ S(@) — (4 74 (2,w)w,w) € T_
has rank 2(d — 1).

Proof. Forany x € 052, we choose an orthonormal basis {e; (z), ..., eq—1(x), eq(z)} — depending
continuously on z € 92 — where

eq(xr) = —n(x).
Let us write the components of w € I'_(x) in this basis using polar coordinates
(

w1 =sinfy_1...sinf3sinfysin b1,
w9 =sinfy_1...sin#3sin 6 cos by,
w3 =sinf,_1...sinf3cos by,
(A.14)
Wi—1 =sinfy_1cosby_o,
Wy =cosf,;_q
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with 6 € [0,2x] and s, ... ,04_1 € [0, 7. Notice that the assumption w € I'_ () actually implies
that 64_, € [0,7/2). We will write @ = (61, ...,0q_2,0q_1) and U := [0, 2] x [0, 7]%~3 x [0, g] )

sothatw € I'_(z) => 6 € U. Notice that the set U is independent of z € 9$2. Within this frame
and with the above set of coordinates, we write

T(z,01,...,04-2,04_1) = 1+(z,w) and
G(z,01,...,04-2,001)=x+T(z,01,...,002,001)w, VwecT_(z).

From Theorem A.2, for any z € 95, the mapping @ € U > T(z,0) is of class C'. It is then clear
that the set of w € S¢~! given by (A.14) such that the vectors

(00,G(2,0)) ., 44

are linearly independent coincide with the set at which the differential of the mapping w & r_ (x) —
z + 74 (x,w)w € O is of full rank d — 1.
One has

0p,G(,0) = 09, T (2,0)w + T(z,0)0p,w
and, because |G(z, 0) — z| = T'(x, 0), itis easy to check that 9y, T'(z,0) = w - 0y, G(x, 0), i.e.
0p;G(7,0) — (0p,G(2,0) - w)w = T(x,0)0,w.
Notice that 9p, G (, 8) — (0p,G(z,0) - w)w is nothing but the projection of dp, G(x, &) on the hy-
perplane w™. Recalling that T'(z,0) > 0, we see that (0930(:5, 0) — (0p,G(z,0) -w)w)Fl o
are independent if and only if (Ogjw) j=1,...,d—1 are independent, or equivalently, if the Gram matrix
Jo(w) = (dg,w, Op,w), ; is not singular. It is well known that

det (Jp(w)) = sin?260,_; sin? 30,5 ...sinbs. (A.15)
In other words, if det (Jg(w)) # 0, then (9, G(x,0) — (99, G(, 0) -w)w)j:17.'.7d_1 are inde-
pendent and one deduces easily that then ((9ng (x, 0))j:1 ;. are also independent. We define

then R
S(z) ={w e T'-(2); det (Jp(w)) = 0}

the mapping w € I'_ \ S(z) — = + 74 (2, w)w has a differential of rank d — 1. It is clear that S ()
is closed. Let us now prove that indeed S(x) has a zero surface Lebesgue measure. Using then
(A.15), we get that

w e S(x) if and only if ; € {0, 7} forsome j=2,...,d—1.

The conditions §;_1 € {0, 7} only means ;1 = 0 (recall that §;_; < 7/2) which means that
w=(0,...,0,1). Then, for d > 3, the condition ;_5 € {0, 7} means that

w=(0,...,0,+sinf;_1,cos04_1),

i.e w belongs to some (half) unit circle of S?~!. More generally, the condition 6, ; € {0, 7} for
2 < j < d—2 describes a unit (j —1)-dimensional (half)-spheres of S?~!. This means that S(z) can
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be written as S(z) = U?;g C; where C; is a closed set with positive (d — j)-Lebesgue measure '
(2 < j < d—2). Therefore, o(S(z)) = 0 (where we recall that do is the Lebesgue surface measure
over S 1) and the conclusion follows. O

Remark A.9. For any z € 9 and any € > 0, introduce the set S.(z) of all w € T_(x) C S
whose polar coordinates @ = (01, . ..,04_1) in the basis {e1(x), ..., eq(x)} are such that

det (Jp(w)) < e

where we recall that the determinant det (Jg(w)) is given by (A.15) withw = w(0) given by (A.14).
Notice that det (Jgp(w)) is actually independent of x € O0X). Then, the surface Lebesgue measure

o(Se(x)) of S=(x) is given by

/ 15, (2)(w)o(dw) =/ det (Jp(w)) dO < e m?2
Sd—1

€

where U, = {0 € U ; 1920, 1 sin?304_o ...sinby < e}. Therefore

lim sup o (S:(z)) =0.
e—=0T 2€oQ

We have then the following.

Proposition A.10. Assume that, for m-a. e. x € 0Q, V(z,) : I'_(x) = ' (x) is a field of
measurable mappings associated to a pure reflection boundary operator as in Definition 3.1 and let

U: (x,v) e’y ULy — U(z,v) = (x—71—(2,0)v,V(x —7_(z,0)V,0))
= (gs(l'v U)» V(é(l‘a U))) € I‘Jr U F0-
For any k € N there exists a subset v, C I'_ such that:

(1) ~y is a closed subset of T'_ with () = 0.
(2) U™* 0 &=1(I'_ \ Ax) is an open subset of T\ and

Fog T T\ Ty
is a C* diffeomorphism from T'_ \ 4y, onto its image.

Proof We first notice that, thanks to Corollary A.7, U : F+ — T'y is a C! diffeomorphism from
F+ onto its image U/ (F+) which is an open set of I';. Let us introduce

A =T \Ty ={(x,v) €Ty UTo; &(x,v) € T}

As already noticed in (A.1),
n(A) =0,

i.e. Ais aclosed set of I'; of zero dy-measure. Since

U (DL UTo) =UTo) UUT L) UU(A)

fnamely Cj = {w € T4.(2) ; fa—j = Oorfa_; = 7}
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we have that (Z/{(IAUF)) =pU (T UTy)) =T4 Ul since U is u-preserving as a composition
of the p-preserving mapping £ and V. Therefore

p (T \UT)) =o.
Introduce then FSFI) = er,
Ff) = {(m,w) € F(j) s U(z,w) € er}

and . )
A =T\ T,

One has A; = U~1(A) is a closed subset of T, with p(A1) = 0. Moreover,
uw? P -,

is a C! diffeomorphism from I‘f) onto its image. Since U2 is u-preserving, writing the disjoint
unions
rV=r®una, w2 =w2c?)uvurn)

we see that p(U2(T'P)) = p@TV)) = p(@)) and

p (T \u2r)) =o.

By induction, assuming that there is rf‘” C er such that that
ut Y Sy

is a C! diffeomorphism from Ff_l) onto its image U+~ (I‘Sf_l) ) which is of full y-measure, i.e.

p(r e (47)) <o

then define R

I’Slf) ={(z,w) € Fgf_l) s U (2,w) €Ty} (A.16)
so that .

Aoy =TT = (Uh1) (a)
is a closed subset of ' with p1(Ax—1) = 0 while
ut T STy
is a C! diffeomorphism from Fgf) onto its image /¥ (I‘gf)) . As before, writing the disjoint unions
e =P une, ut (rE) =t (0) vt (A

we see that (Z/lk (Fgf))) = (Z/lk (Ff_l)» =u (Z/lkfl (I‘(f_l)» so that

y (m \ Uk (r(f))) —0.
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On the other hand, according to Corollary A.7,
€ : er — I
is a C! diffeomorphism from f+ onto its image. Using the definition (A.16) for k£ + 1 we see that
A= TN TED = (1) (a)
is a closed subset of I, with u(Ag) = 0 and
gottt - T 1

is a C! diffeomorphism from I‘S’_ﬁl) onto its image (& o U*) (Ffﬂ)). Arguing as before and
writing

) = 1 (g oZ/Ik) (r@) - (g ° u’f) (F(f“)) g (5 ° u’“) (Ag)

and since &€ o ¥ is p-preserving, we have that

n((gout) (7)) = ((ou) (1)) = (1" (7))

where we used that & is also p-preserving. Therefore

(1 () (1)) =

Since (£ o U*) (FS{CH)) is an open subset of I'_ then setting

e (o) (477)

one sees that -y is a closed subset of I'_ with p(;) = 0 and
UFog™ T\ v — T
is a C! diffeomorphism from I'_ \ ~;, onto its image. O
In the next Lemma, we used the notations of Proposition A.8:

Lemma A.11. For any z € 8%, let S(z) C T_ () be the closed set introduced in Proposition A.8.
Forany k € N, let

Ox(w) = {w el (2); €\ (w,w) UM T}
where A1 is defined thanks to (A.16). Then, for any w € O(z) \ S(x), the differential
doUF o€ ) (z,w)

has rank 2(d — 1). As a consequence d,, (U;* 0 €71) (z,w) has rank d — 1 where we recall that
UTF denotes the space component of U™F, namely, if U= (y,v) = (z,u) then U7 (y,v) = 2.
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Proof. Notice that open subsets of 9Q x S9! are C! manifolds of dimension 2(d — 1) and then,
so are open subsets of I'; or I'_. According to Proposition A.8, the differential d,&€~!(z,w) has

rank 2(d — 1) at each point (z,w) € T'_ provided w € I'_(z) ¢ S(z). By virtue of (A.16),

uk - FSfH) — T, is a C! diffeomorphism from rf*” onto its image U’“(F(fﬂ)) c I';. Thus

u ot () Ty

is a C! diffeomorphism. In particular, for any (y,w’) € L{k(FEfH)), the differential A/~ (y, w') is
an isomorphism between the (2d — 1) dimensional tangent spaces. Finally, the differential of the

mapping
w € O(x) \ S(2) — (U o€ (w,w) e T

given by do, (UF 0 &) (z,w)) = dU™* (¢ (z,w)) dw€& ! (2,w) has maximal rank 2(d — 1).
This ensures that the rank of d, (Z/{sk o & (x, w)) is also maximal, equal to d — 1. O
APPENDIX B. REMINDERS ON PARTIALLY INTEGRAL STOCHASTIC SEMIGROUPS

We collect here several results on partially integral stochastic semigroups in L'(E, ¥, m) where
(E, 3, m) is a given o-finite measure space.

B.1. Partially integral stochastic semigroup. We begin with the following definition

Definition B.1. A stochastic semigroup {P(t)};>0 on the space L'(E,%, m) is called partially
integral if there exists a measurable function k: (0,00) x E x E — [0,00), called a kernel, such
that for every y € E all nonnegative f € L*(E, X, m) we have

fwmw>/mmemmm> (B.1)

FE
and

/ / k(t, 2, y) m(dz) @ m(dy) > 0
EJE
for some t > 0.

We have then the following (see [28])

Theorem B.2. Let {P(t)}:>0 be a partially integral stochastic semigroup. Assume that the semi-
group {P(t)}>0 has a unique invariant probability density f.. If f. > 0 a.e., then the semigroup
{P(t) }+=0 is asymptotically stable.

Let P(t,y, B) be a probability transition function for the semigroup { P(t)}+>0, i.e.

/Pwﬂwm@w=/Pw%mﬂ@m@m
B E

forall f € LY(E,%,m), B € ¥ and t > 0. Then inequality (B.1) can be rewritten as
P(t,x,dy) = k(t, z,y) m(dy).
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B.2. Sweeping property. We define now the sweeping property for stochastic semigroups:

Definition B.3. A stochastic semigroup {P(t)};>0 on the space L'(E, X, m) is sweeping from a
set A if
lim [ P(t)f(x)m(dz) =0

t—o00 A

for each density f.

If moreover (E, p) is a metric space and ¥ = B(FE) is the o—algebra of Borel subsets of E, a
partially integral semigroup { P(t)}4>0 with kernel k(t,§, z) is said to satisfy the property (K) on
E if the following holds:

(K) forevery & € E there existe > 0,t > 0, and a measurable function n: E — [0, 00) such
that

/ n(E)m(de) > 0
E

and
k(t7§>z) > n(z)lB(fo,a)(§)7 (gvz) €EEXE,
where B(§o,€) = {{ € E: p(§,&) < e}

We have the following which is a simple consequence of a general result concerning asymptotic
decomposition of stochastic semigroups (see [29, Corollary 2]):

Theorem B.4. Let {P(t)}i>0 be a stochastic semigroup on L'(E, X, m), where E is a separable
metric space, ¥ = B(E), and m is a o-finite measure on (E,Y). Assume that {P(t)};>o has the
property (K) and has no invariant density. Then { P(t) };+>0 is sweeping from all compact sets.

B.3. Foguel alternative. If a stochastic semigroup has no invariant density but we are able to find a
subinvariant function f, > 0, then we can precisely point out all sets having the sweeping property
[30]. We start with some general description.

Let a stochastic semigroup { P(¢) };>0 be given and assume that this semigroup is partially inte-
gral. If the kernel k(t, z, y) satisfies

// k(t,z,y)dtm(dz) >0 y —ae.,
EJo

then {P(t) }+>¢ is called a pre-Harris semigroup. In particular, if a semigroup is partially integral
and irreducible then it is pre-Harris semigroup. The following condition plays a crucial role in
studying sweeping.
(KT): There exists a measurable function f, such that: 0 < f, < oo a.e., P(t)f« < fi for
t>0, fo ¢ L' and [, fu(x) m(dz) < oco.

In (KT) we have written P(t)f, for a non-integrable function. We can use such notation be-
cause any substochastic operator P may be extended beyond the space L' (see [19] Chap. I). If
f 1s an arbitrary non-negative measurable function, then we define P f as a pointwise limit of the
sequence P f,,, where (f,,) is any monotonic sequence of non-negative functions from L' pointwise
convergent to f almost everywhere.
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Theorem B.5 ([30], Corollary 3). Let { P(t)}i>0 be a pre-Harris stochastic semigroup which has
no invariant density. Assume that the semigroup {P(t)};>0 and a set A € X satisfy condition
(KT). Then the semigroup { P(t) }1>0 is sweeping with respect to A.

(1]

(2]
(3]
(4]
(5]
(6]
(7]

[8

—_—

(9]
[10]

[11]
[12]

[13]

[14]
[15]

[16]
[17]
[18]
(19]
[20]
(21]

(22]
(23]

[24]

REFERENCES

W. ARENDT, A. GRABOSCH, G. GREINER, U. GROH, H.P. LOoTZ, U. MOUSTAKAS, R. NAGEL, F. NEUBRAN-
DER, U. SCHLOTTERBECK, One-parameter Semigroups of Positive Operators, Lecture Notes in Math., vol. 1184,
Springer-Verlag, Berlin, 1986.

L. ARKERYD, A. NOURI, Boltzmann asymptotics with diffuse reflection boundary conditions, Monatsh. Math.,
123 (1997), 285-298.

L. ARLOTTI, Explicit transport semigroup associated to abstract boundary conditions, Discrete Contin. Dyn. Syst.
A, 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. I, 102—111.
L. ARLOTTI, B. LoDSs, Substochastic semigroups for transport equations with conservative boundary conditions,
J. Evol. Equations, S (2005) 485-508

L. ARLOTTI, B. LoDS, Transport semigroup associated to positive boundary conditions of unit norm: a Dyson-
Phillips approach, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014) 2739-2766.

L. ARLOTTI, J. BANASIAK, B. LODS, A new approach to transport equations associated to a regular field: trace
results and well-posedness, Mediterr. J. Math., 6 (2009), 367-402.

L. ARLOTTI, J. BANASIAK, B. LODS, On general transport equations with abstract boundary conditions. The case
of divergence free force field, Mediterr. J. Math., 8 (2011), 1-35.

C. BARDOS, Problémes aux limites pour les équations aux dérivées partielles du premier ordre a coefficients réels;
théorémes d’approximation; application a I’équation de transport, Ann. Sci. Ecole Norm. Sup. 3 (1970), 185-233.
R. BEALS, V. PROTOPOPESCU, Abstract time-dependent transport equations, J. Math. Anal. Appl. 121 (1987),
370-405.

H. BREZIS, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New
York, 2011.

V. 1. BOGACHEV, Measure Theory, Vol. I, Springer-Verlag, Berlin, 2007.

M. CESSENAT, Théoremes de traces L, pour les espaces de fonctions de la neutronique. C. R. Acad. Sci. Paris.,
Ser. 1299 (1984), 831-834.

M. CESSENAT, Théorémes de traces pour les espaces de fonctions de la neutronique. C. R. Acad. Sci. Paris., Ser. |
300 (1985), 89-92.

R. V. CHACON, U. KRENGEL, Linear modulus of linear operator, Proc. Amer. Math. Soc., 15 (1964), 553-559.

F. COMETS, S. Porov, G. M. SCHUTZ, M. VACHKOVSKAIA, Billiards in a General Domain with Random Re-
flections, Arch. Ration. Mech. Anal. 191 (2009), 497-537.

R. DAUTRAY, J. L. LIONS, Mathematical analysis and numerical methods for science and technology. Vol. 6:
Evolution problems 11, Berlin, Springer, 2000.

E. B. DAVIES, One-parameter Semigroups, Academic Press, 1980.

S. N. EVANS, Stochastic billiards on general tables, Ann. Appl. Probab. 11 (2001), 419-437.

S. R. FOGUEL, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold Comp., New York, 1969.

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197
(2010) 713-809.

B. Lops, M. MOKHTAR-KHARROUBI, Algebraic convergence to equilibrium for the transport equation with partly
diffuse boundary conditions, work in progress.

B. LoDS, MOKHTAR-KHARROUBI, R. RUDNICKI, On stochastic billiards, work in preparation.

1. MAREK, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math. 19
(1970), 607-628.

S. MISCHLER, Kinetic equations with Maxwell boundary conditions, Ann. Sci. Ecole Norm. Sup. 43 (2010), 719-
760



COLLISIONLESS KINETIC SEMIGROUPS 53

[25] M. MOKHTAR-KHARROUBI, On collisionless transport semigroups with boundary operators of norm one, J. Evol.
Equ. 8 (2008), 327-352.

[26] M. MOKHTAR-KHARROUBI, R. RUDNICKI, On asymptotic stability and sweeping of collisionless kinetic equa-
tions. Acta Appl. Math.147 (2017), 19-38.

[27] M. MOKHTAR-KHARROUBI, D. SEIFERT, Rates of convergence to equilibrium for collisionless kinetic equations
in slab geometry, J. Funct. Anal. 275 (2018), 2404-2452.

[28] K. PICHOR, R. RUDNICKI, Continuous Markov semigroups and stability of transport equations, J. Math. Anal.
Appl. 249 (2000), 668—685.

[29] K. PICHOR, R. RUDNICKI, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal.
Appl. 436 (2016), 305-321.

[30] R. RUDNICKI, On asymptotic stability and sweeping for Markov operators, Bull. Pol. Ac.: Math. 43 (1995), 245—
262.

[31] R. RUDNICKI, M. TYRAN-KAMINSKA, Piecewise Deterministic Processes in Biological Models, SpringerBriefs
in Applied Sciences and Technology, Mathematical Methods, Springer, Cham, Switzerland 2017.

[32] D. W. STROOCK, Essentials of integration theory for analysis, Springer, 2011.

[33] J. VOIGT, A perturbation theorem for the essential spectral radius of strongly continuous semigroups, Monatsh.
Math. 90 (1980), 153-161

[34] J. VOIGT, Functional analytic treatment of the initial boundary value problem for collisionless gases, Habilita-
tionsschrift, Miinchen, 1981.

UNIVERSITA DEGLI STUDI DI TORINO & COLLEGIO CARLO ALBERTO, DEPARTMENT OF ECONOMICS AND
STATISTICS, CORSO UNIONE SOVIETICA, 218/BIS, 10134 TORINO, ITALY.
E-mail address: bertrand.lodsQunito.it

UNIVERSITE DE BOURGOGNE FRANCHE-COMTE, LABORATOIRE DE MATHEMATIQUES, CNRS UMR 6623, 16,
ROUTE DE GRAY, 25030 BESANCON CEDEX, FRANCE
E-mail address: mustapha.mokhtar—kharroubi@univ-fcomte.fr

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, BANKOWA 14, 40-007 KATOWICE, POLAND
E-mail address: rudnickiQus.edu.pl



	1. Introduction 
	2. Mathematical setting and useful formulae
	2.1. Functional setting
	2.2. Exit time and integration formula
	2.3. About the resolvent of TH
	2.4. Some auxiliary operators

	3. General stochastic partly diffuse boundary conditions
	3.1. Reflection boundary operators
	3.2. Diffuse boundary operators
	3.3. Stochastic partly diffuse boundary operators

	4. General results for abstract stochastic boundary operators
	5. Main compactness result and existence of an invariant density
	5.1. Weak compactness result
	5.2. About the essential spectral radius of M0H

	6. Kinetic semigroup for regular partly diffuse boundary operators
	7. Asymptotic stability of collisionless kinetic semigroups
	7.1. Piecewise deterministic Markov process
	7.2. Asymptotic stability

	8. Sweeping properties of collisionless kinetic semigroups
	Appendix A. About the ballistic flow
	A.1. Regularity of the travel time
	A.2. Further non degeneracy results

	Appendix B. Reminders on partially integral stochastic semigroups
	B.1. Partially integral stochastic semigroup
	B.2. Sweeping property
	B.3. Foguel alternative

	References

