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INVARIANT DENSITY AND TIME ASYMPTOTICS FOR COLLISIONLESS KINETIC
EQUATIONS WITH PARTLY DIFFUSE BOUNDARY OPERATORS

B. LODS, M. MOKHTAR-KHARROUBI, AND R. RUDNICKI

ABSTRACT. This paper deals with collisionless transport equations in bounded open domains Ω ⊂
Rd (d > 2) with C1 boundary ∂Ω, orthogonally invariant velocity measure m(dv) with support
V ⊂ Rd and stochastic partly diffuse boundary operators H relating the outgoing and incoming
fluxes. Under very general conditions, such equations are governed by stochastic C0-semigroups
(UH(t))t>0 on L1(Ω× V, dx⊗m(dv)). We give a general criterion of irreducibility of (UH(t))t>0

and we show that, under very natural assumptions, if an invariant density exists then (UH(t))t>0

converges strongly (not simply in Cesarò means) to its ergodic projection. We show also that if no
invariant density exists then (UH(t))t>0 is sweeping in the sense that, for any densityϕ, the total mass
of UH(t)ϕ concentrates near suitable sets of zero measure as t→ +∞.We show also a general weak
compactness theorem which provides a basis for a general theory on existence of invariant densities.
This theorem is based on a series of results on smoothness and transversality of the dynamical flow
associated to (UH(t))t>0 .

1. INTRODUCTION

Kinetic transport equations in bounded geometry is an important field of investigation which
can be traced back to the seminal work [8] where absorbing boundary conditions have been con-
sidered. For more general boundary conditions, relating the incoming and outgoing fluxes at the
boundary of the physical domain, the well-posedness of associated transport equations with general
force terms – including Vlasov-like equations – have been considered in [9, 6, 7] while a thorough
analysis of the free transport equation with abstract boundary conditions on general domains have
been performed in [34] (see also [16, Appendix of § 2, p. 249]). Notice that, for a nonlinear and
collisional kinetic equation such as Boltzmann equation, taking into account general boundary con-
ditions induces notoriously additional difficulties; we just mention here the works [20] (dealing with
close-to-equilibrium solutions) and [24] (for renormalized solutions) and the references therein.

The object of this paper is to build a general theory of time asymptotics (t → ∞) for multi-
dimensional collisionless kinetic semigroups with partly diffuse boundary operators. Our construc-
tion is twofold:
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(1) On the one hand, we continue previous functional analytic works [4, 5, 25, 34] on sub-
stochastic semigroups governing collisionless transport equations with conservative bound-
ary operators in L1-spaces and combine them to recent developments on the asymptotics of
stochastic partially integral semigroups in L1-spaces motivated by piecewise deterministic
processes [31].

(2) On the other hand, we investigate the problem of the existence of invariant densities for col-
lisionless transport equations. Such existence theory depends heavily on our understanding
of compactness properties induced by the diffuse parts of the boundary operators. These
compactness properties rely on the fine knowledge of smoothness and transversality prop-
erties of the dynamical flow induced by the semigroup.

More precisely, we consider transport equations of the form

∂tψ(x, v, t) + v · ∇xψ(x, v, t) = 0, (x, v) ∈ Ω× V, t > 0 (1.1a)

with initial data
ψ(x, v, 0) = ψ0(x, v), (x, v) ∈ Ω× V, (1.1b)

under abstract (conservative) boundary conditions

ψ|Γ− = H(ψ|Γ+
), (1.1c)

where
Γ± = {(x, v) ∈ ∂Ω× V ; ±v · n(x) > 0}

(n(x) being the outward unit normal at v ∈ ∂Ω, see Figure 1) and H is a linear boundary operator
relating the outgoing and incoming fluxes ψ|Γ+

and ψ|Γ− and is bounded on the trace spaces

L1
± = L1(Γ± ; |v · n(x)|π(dx)⊗m(dv)) = L1(Γ±, dµ±(x, v))

where π denotes the Lebesgue surface measure on ∂Ω. We will focus our attention to the case of
nonnegative and conservative boundary conditions, i.e.

Hψ > 0 and ‖Hψ‖L1
−

= ‖ψ‖L1
+
, for any nonnegative ψ ∈ L1

+. (1.2)

Here
Ω ⊂ Rd (d > 2) is an open subset with C1 boundary ∂Ω

and our analysis takes place in the functional space

X = L1 (Ω× V ; dx⊗m(dv))

where V ⊂ Rd is the support of a nonnegative Borel measure m which is orthogonally invariant
(i.e. invariant under the action of the orthogonal group of matrices in Rd). Such a measure covers
the Lebesgue measure on Rd, the surface Lebesgue measure on spheres (one speed or multi-group
models) or even combinations of them.

Very precise one-dimensional results corresponding to slab geometry have been obtained in [26].
Their extension to multi-dimensional geometries (d > 2) is far from being elementary and is com-
pletely open. It is the main concern of the present work to provide such a generalization.

Let
W =

{
ϕ ∈ X; v · ∇xϕ ∈ X, ϕ|Γ± ∈ L

1 (Γ±)
}
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FIGURE 1. x ∈ ∂Ω; Γ0(x) – the tangent space to ∂Ω at x; Γ+(x) – outward
velocities; Γ−(x) – inward velocities.

where v · ∇xϕ is meant in a distributional sense, (see Section 2 below for a reminder of the trace
theory) and let

TH : D(TH) ⊂ X → X

be defined by
THϕ = −v · ∇xϕ, D(TH)= {ϕ ∈W ; ϕ|Γ− = H(ϕ|Γ+

)}.
In contrast to the one-dimensional case [26], in general, TH needs not be a generator. However,
there exists a unique extension

A ⊃ TH

which generates a positive contraction C0-semigroup (UH(t))t>0, see [4, 25, 34]. Notice that
(UH(t))t>0 needs not be stochastic, i.e. mass-preserving on the positive cone X+ of X . Actu-
ally (UH(t))t>0 is stochastic if and only if

A = TH (1.3)

and different characterizations of this property are also available [4, 25]. A general sufficient con-
dition for (UH(t))t>0 to be stochastic is given in Proposition 4.1 below.

Let us briefly describe the main contributions of this paper. We restrict ourselves to the stochastic
case (1.3). A very important role is played here by the irreducibility of (UH(t))t>0 (see Definition
4.3 below). When TH is not a generator, it is not possible to handle easily its closure A = TH.
Despite this fact, the resolvent of A is given by an ”explicit” series converging strongly, see (2.1)
below. By exploiting this series one can derive a very general sufficient criterion of irreduciblity
of (UH(t))t>0 in terms of properties of the stochastic boundary operator H, see Proposition 4.6
below. It is well known (see [17]) that if the kernel of the generator of an irreducible stochastic
C0-semigroup is not trivial (and consequently one-dimensional) then the semigroup is ergodic and
converges strongly in Cesarò means to its one-dimensional (positive) ergodic projection (as t →
+∞). Thus the existence of an invariant density of (UH(t))t>0 is a cornerstone of this construction
and is a fundamental problem for the understanding of the long-time behaviour of (1.1).
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We mainly consider (local in space) stochastic boundary operators H : L1
+ → L1

− which are
(locally in space) convex combinations of reflection and diffuse operators of the form

Hϕ(x, v) = α(x)Rϕ(x, v) + (1− α(x))Kϕ(x, v)

= α(x)ϕ(x,V(x, v)) + (1− α(x))

∫
Γ+(x)

k(x, v, v′)ϕ(x, v′)µx(dv′)

where
Γ− 3 (x, v) 7−→ (x,V(x, v)) ∈ Γ+

is a general µ-preserving reflection law, µx(dv) = |v · n(x)|m(dv) and∫
Γ−(x)

k(x, v, v′)µx(dv) = 1, (x, v′) ∈ Γ+

where α : x ∈ ∂Ω 7−→ α(x) ∈ [0, 1] is a measurable function.
Regarding the long-time behaviour of the solution to (1.1), when

sup
x∈∂Ω

α(x) < 1, (1.4)

we show under quite general assumptions on the kernel k(x, v, v′) that (UH(t))t>0 is partially
integral (i.e. for each t > 0, UH(t) dominates a non trivial integral operator). It follows that if
(UH(t))t>0 has an invariant density ΨH then (UH(t))t>0 is asymptotically stable, i.e.

lim
t→+∞

‖UH(t)f −ΨH‖ = 0

for any density f ; see Theorem 7.5 for a precise statement. This result provides us with a much more
precise result than the mere Cesarò convergence given by the general theory. Converse results are
also given; indeed we show that if (UH(t))t>0 has no invariant density then (UH(t))t>0 is sweeping
with respect to suitable sets. In a more precise way, the total mass of any trajectory of (1.1)

t > 0 7−→ UH(t)ψ0

concentrates for large time t → ∞ near small (or large) velocities or near the boundary ∂Ω × V ,
see Theorem 8.3 for a precise statement. Such asymptotics follow from general results on partially
integral stochastic semigroups [28, 29, 30] which we recall in Appendix B of the paper. These
general theorems on asymptotic stability or sweeping of stochastic collisionless kinetic semigroups
(UH(t))t>0 (and also some related results) are the first object of this paper. Our second object is
to deal with the existence of an invariant density for stochastic collisionless kinetic semigroups
(UH(t))t>0. As far as we know, the existence of an invariant density is known only for the clas-
sical Maxwell diffuse model (see Example 6.3 below) for which it is known that (UH(t))t>0 is
asymptotically stable [2].

Thus our second object is to provide a general existence theory of invariant density for such
kinetic models. We show first, for general stochastic boundary operators H, that 0 is an eigenvalue
of TH associated to a nonnegative eigenfunction if and only if there exists a nonnegative solution
ϕ ∈ L1

+ to the eigenvalue problem
M0Hϕ = ϕ, (1.5)
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which satisfies the additional condition∫
Γ+

ϕ(x, v)|v|−1dµ+(x, v) < +∞ (1.6)

where
M0 : L1

− → L1
+

is the stochastic operator defined by

(M0ϕ) (x, v) = ϕ(x− τ−(x, v)v, v); (x, v) ∈ Γ+, ϕ ∈ L1
−

where τ−(x, v) is the exit time function (see the definition in Section 2 below).
To study the existence of an invariant density, we introduce the sub-class of regular partly diffuse

boundary operators such that the diffuse part is ”weakly compact with respect to velocities” (see
Definition 3.5 below) which enjoys nice approximation properties. The part of the paper concerned
with the existence of an invariant density is very involved and is based on a series of highly technical
results culminating in a key spectral stability result

ress(M0H) = ress(M0 (αR)) (1.7)

(see Theorem 5.6) where ress refers to the essential spectral radius. Since

ress(M0 (αR)) 6 sup
x∈∂Ω

α(x)

then the spectral problem (1.5) has a solution under (1.4) (i.e. when the diffuse reflection is active
everywhere on ∂Ω). If the corresponding eigenfunction satisfies the additional condition (1.6) then
(UH(t))t>0 is asymptotically stable. If not we show a more precise sweeping behaviour: the total
mass of any trajectory t > 0 7−→ UH(t)ψ0 of (1.1) concentrates near the zero velocity as t→ +∞,
see Theorem 8.5.

The above spectral stability result is a consequence of a key weak compactness theorem namely:
for any integers k, ` > 1

K(M0R)kM0K(M0R)`M0K : L1
+ → L1

− is weakly compact.

The proof of this important result (Theorem 5.1), using the Dunford-Pettis criterion, is highly tech-
nical and is given in numerous steps. Roughly speaking, the main difficulty lies in the fact that K
induces compactness only in the velocity variables and several iterations and changes of variables
are necessary to produce the missing compactness in the space variable x ∈ ∂Ω. Such changes
of variables are non trivial and have to be carefully justified. To do this, we take advantage of the
stochastic character of the various operators involved and we show (see Lemma A.11), up to µ-null
sets, smoothness and transversality properties of the µ-preserving iterates

U−k ◦ ξ−1 : Γ− → Γ+ (k ∈ N)

where ξ is the ballistic flow

ξ : (x, v) ∈ Γ+ 7−→ ξ(x, v) = (x− τ−(x, v)v, v)

and
U : (x, v) ∈ Γ+ 7−→ U(x, v) = (x− τ−(x, v)v,V (ξ(x, v))) ∈ Γ−.
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A thorough analysis of the ballistic flow and of U is performed in Appendix A where several non
trivial smoothness and non degeneracy results are given culminating in Lemma A.11 and involving
intrinsic tools from differential geometry. These results are postponed in Appendix A for the sim-
plicity of reading but we wish to point out that our analysis of the flow induced by (UH(t))t>0 is
new (even if results similar to some of ours appear e.g. in [20], see Remark A.6) and has its own
interest independently of the main motivation of this paper.

As far as we know, most of our results are new and appear here for the first time. Finally, we
note that the assumption that ∂Ω is of class C1 plays a role only for the results on smoothness and
transversality of the flow stated in Appendix A; it is likely that the results stated there remain valid
for ∂Ω which is only piecewise of class C1.

The paper is organized as follows: in Section 2, we introduce the mathematical framework and
notations used in the rest of the paper and establish several properties of the various operators
involved in our subsequent analysis. In Section 3 we introduce and analyse the general class of
boundary operators we investigate in the rest of the paper. Section 4 is devoted to general criteria
for the ergodic convergence of the semigroup (UH(t))t>0 (see Theorem 4.7) which is related to the
study of the eigenvalue problem (1.5) as well as the irreducibility property of (UH(t))t>0. In Section
5 we establish the main technical result of the paper (Theorem 5.1) as well of its consequence
on the stability of the essential radius (1.7), see Theorem 5.6. Section 6 is devoted to the main
existence result for an invariant density, Theorem 6.6. The question of the asymptotic stability
of (UH(t))t>0 is then discussed in Section 7 while the sweeping properties of (UH(t))t>0, when
no invariant density exists, are given in Section 8. As already mentioned, the paper ends with two
Appendices. A first one, Appendix A contains all the technical results regarding the smoothness and
transversality of the ballistic flow while Appendix B recall several important results about partially
integral semigroup and sweeping properties used in Section 7 and 8.

We end this Introduction by mentioning that a related work dealing with rates of convergence
to equilibrium is now in preparation [21] extending the results of [27] devoted to slab geometry.
Moreover, we hope also to take advantage of the tools developed here to revisit some important
works (see e.g. [15, 18] and references therein) on stochastic billiards [22].

2. MATHEMATICAL SETTING AND USEFUL FORMULAE

2.1. Functional setting. We introduce the partial Sobolev space

W1 = {ψ ∈ X ; v · ∇xψ ∈ X}.

It is known [12, 13, 16] that any ψ ∈W1 admits traces ψ|Γ± on Γ± such that

ψ|Γ± ∈ L
1
loc(Γ± ; dµ±(x, v))

where
dµ±(x, v) = |v · n(x)|π(dx)⊗m(dv),

denotes the ”natural” measure on Γ±. Notice that, since dµ+ and dµ− share the same expression,
we will often simply denote them by

dµ(x, v) = |v · n(x)|π(dx)⊗m(dv),
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the fact that it acts on Γ− or Γ+ being clear from the context. Note that

∂Ω× V := Γ− ∪ Γ+ ∪ Γ0,

where

Γ0 := {(x, v) ∈ ∂Ω× V ; v · n(x) = 0}.

We introduce the space

W =
{
ψ ∈W1 ; ψ|Γ± ∈ L

1
±
}
.

One can show [12, 13] that W =
{
ψ ∈W1 ; ψ|Γ+

∈ L1
+

}
=
{
ψ ∈W1 ; ψ|Γ− ∈ L1

−
}
. Then, the

trace operators B±: {
B± : W1 ⊂ X → L1

loc(Γ± ; dµ±)

ψ 7−→ B±ψ = ψ|Γ± ,

are such that B±(W ) ⊆ L1
±. Let us define the maximal transport operator Tmax as follows:{
Tmax : D(Tmax) ⊂ X → X

ψ 7→ Tmaxψ(x, v) = −v · ∇xψ(x, v),

with domain D(Tmax) = W1. Now, for any bounded boundary operator H ∈ B(L1
+, L

1
−), define

TH as

THϕ = Tmaxϕ for any ϕ ∈ D(TH),

where

D(TH) = {ψ ∈W ; ψ|Γ− = H(ψ|Γ+
)}.

In particular, the transport operator with absorbing conditions (i.e. corresponding to H = 0)
will be denoted by T0. We recall here that there exists a unique minimal extension (A,D(A))
of (TH,D(TH)) which generates a nonnegative C0-semigroup (UH(t))t>0 in X . We note that
D(A) ⊂ W1 and Aϕ = −v · ∇xϕ = Tmaxϕ for any ϕ ∈ D(A) but the traces B±ϕ need not to
belong to L1(Γ±,dµ±). The resolvent of A is given by

R(λ,A)f = Rλf +
∞∑
n=0

ΞλH (MλH)n Gλf, ∀f ∈ X , λ > 0 (2.1)

where the series is strongly converging inX . See [4, Theorem 2.8] for details. Moreover, (UH(t))t>0

is a stochastic C0-semigroup, i.e.

‖UH(t)f‖X = ‖f‖X ∀f ∈ X+ ; t > 0

if and only if

A = TH.

Actually, under suitable assumptions on H (see Prop. 4.1), A = TH so that (UH(t))t>0 is stochastic.
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2.2. Exit time and integration formula. Let us now introduce the exit time of particles in Ω (with
the notations of [6]), defined as:

Definition 2.1. For any (x, v) ∈ Ω× V, define

t±(x, v) = inf{ s > 0 ; x± sv /∈ Ω}.

To avoid confusion, we will set τ±(x, v) := t±(x, v) if (x, v) ∈ ∂Ω× V.

With the notations of [20], t− is the backward exit time tb. From a heuristic viewpoint, t−(x, v)
is the time needed by a particle having the position x ∈ Ω and the velocity −v ∈ V to reach the
boundary ∂Ω. One can prove [34, Lemma 1.5] that t±(·, ·) is measurable on Ω × V . Moreover
τ±(x, v) = 0 for any (x, v) ∈ Γ± whereas τ∓(x, v) > 0 on Γ±. It holds

(x, v) ∈ Γ± ⇐⇒ ∃y ∈ Ω with t±(y, v) <∞ and x = y ± t±(y, v)v.

In that case, τ∓(x, v) = t±(y, v). Notice also that,

t±(x, v)|v| = t± (x, ω) , ∀(x, v) ∈ Ω× V, v 6= 0, ω = |v|−1 v ∈ Sd−1. (2.2)

We have the following integration formulae from [6].

Proposition 2.2. For any h ∈ X , it holds∫
Ω×V

h(x, v)dx⊗m(dv) =

∫
Γ±

dµ±(z, v)

∫ τ∓(z,v)

0
h (z ∓ sv, v) ds, (2.3)

and for any ψ ∈ L1(Γ−, dµ−),∫
Γ−

ψ(z, v)dµ−(z, v) =

∫
Γ+

ψ(x− τ−(x, v)v, v)dµ+(x, v). (2.4)

Remark 2.3. Notice that with the notations introduced in [6],

Γ±∞ = {(x, v) ∈ Γ± ; τ∓(x, v) =∞} = {(x, v) ∈ Γ± ; v = 0}

so that µ±(Γ±∞) = 0. This explains why the above integration formulae do not involve the sets
Γ±∞. Moreover, because µ−(Γ0) = µ+(Γ0) = 0, we can extend the above identity (2.4) as follows:
for any ψ ∈ L1(Γ− ∪ Γ0, dµ−) it holds∫

Γ−∪Γ0

ψ(z, v)dµ−(z, v) =

∫
Γ+∪Γ0

ψ(x− τ−(x, v)v, v)dµ+(x, v). (2.5)

2.3. About the resolvent of TH. For any λ ∈ C such that Reλ > 0, define{
Mλ : L1

− −→ L1
+

u 7−→ Mλu(x, v) = u(x− τ−(x, v)v, v)e−λτ−(x,v), (x, v) ∈ Γ+ ;

{
Ξλ : L1

− −→ X

u 7−→ Ξλu(x, v) = u(x− t−(x, v)v, v)e−λt−(x,v)1{t−(x,v)<∞}, (x, v) ∈ Ω× V ;
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
Gλ : X −→ L1

+

ϕ 7−→ Gλϕ(x, v) =

∫ τ−(x,v)

0
ϕ(x− sv, v)e−λsds, (x, v) ∈ Γ+ ;

and 
Rλ : X −→ X

ϕ 7−→ Rλϕ(x, v) =

∫ t−(x,v)

0
ϕ(x− tv, v)e−λtdt, (x, v) ∈ Ω× V ;

where 1E denotes the charateristic function of the measurable set E. All these operators are
bounded on their respective spaces. More precisely, for any Reλ > 0

‖Mλ‖ 6 1, ‖Ξλ‖ 6 (Reλ)−1,

‖Gλ‖ 6 ( Reλ)−1, ‖Rλ‖ 6 (Reλ)−1.

The interest of these operators is related to the resolution of the boundary value problem:{
(λ− Tmax)f = g,

B−f = u,
(2.6)

where λ > 0, g ∈ X and u is a given function over Γ−. Such a boundary value problem, with
u ∈ L1

− can be uniquely solved (see [6])

Theorem 2.4. Given λ > 0, u ∈ L1
− and g ∈ X , the function

f = Rλg + Ξλu

is the unique solution f ∈ D(Tmax) of the boundary value problem (2.6).

Remark 2.5. Notice that Ξλ is a lifting operator which, to a given u ∈ L1
−, associates a function

f = Ξλu ∈ D(Tmax) whose trace on Γ− is exactly u. More precisely,

TmaxΞλu = λΞλu, B−Ξλu = u, B+Ξλu = Mλu, ∀u ∈ L1
−. (2.7)

We can complement the above result with the following whose proof can be extracted from [7,
Theorem 4.2]:

Proposition 2.6. If rσ(MλH) < 1 (λ > 0), then A = TH and

R(λ,TH) = Rλ + ΞλHR(1,MλH)Gλ

where the series converges in B(X).

2.4. Some auxiliary operators. For λ = 0, we can extend the definition of these operators in an
obvious way but not all the resulting operators are bounded in their respective spaces. However, we
see from the above integration formula (2.4), that

M0 ∈ B(L1
−, L

1
+) with ‖M0u‖L1

+
= ‖u‖L1

−
, ∀u ∈ L1

−.
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In the same way, one deduces from (2.3) that for any nonnegative ϕ ∈ X:∫
Γ+

G0ϕ(x, v)dµ+(x, v) =

∫
Γ+

dµ+(x, v)

∫ τ−(x,v)

0
ϕ(x− sv, v)ds =

∫
Ω×V

ϕ(x, v)dx⊗m(dv)

(2.8)
which proves that

G0 ∈ B(X,L1
+) with ‖G0ϕ‖L1

+
= ‖ϕ‖X , ∀ϕ ∈ X.

To be able to provide a rigorous definition of the operators Ξ0 and R0 we need the following

Definition 2.7. Introduce the function spaces

Y±1 = L1(Γ± , |v|−1dµ±)

with its associated L1-norm ‖ · ‖Y±1 and

Xτ = L1(Ω× V, t+(x, v)dx⊗m(dv))

with the associated L1-norm ‖ · ‖τ .

The interest of the above boundary spaces lies in the following:

Lemma 2.8. For any u ∈ Y−1 one has Ξ0u ∈ X with

‖Ξ0u‖X =

∫
Γ−

u(x, v)τ+(x, v)dµ+(x, v) 6 D‖u‖Y−1 , ∀u ∈ Y−1 (2.9)

where D is the diameter of Ω, D = supx,y∈∂Ω |x− y|. Moreover, if u ∈ Y−1 then M0u ∈ Y+
1 with

‖M0u‖Y+
1

= ‖u‖Y−1 . (2.10)

If f ∈ Xτ then G0f ∈ Y−1 and R0f ∈ D(T0) ⊂ X and T0R0f = −f .

Proof. From (2.3), for nonnegative u ∈ L1
− :∫

Ω×V
Ξ0u(x, v)dx⊗m(dv) =

∫
Ω×V

Ξ0u(x, v)dx⊗m(dv)

=

∫
Γ+

dµ+(z, v)

∫ τ−(z,v)

0
u(z − sv − t−(z − sv, v)v, v)1{t−(z−sv,v)<∞}ds

=

∫
Γ+

u(z − τ−(z, v)v, v)τ−(z, v)dµ+(z, v)

which, using now (2.4) yields (2.9). If now u ∈ Y−1 , then∫
Γ+

M0u(x, v) |v|−1dµ+(x, v) =

∫
Γ+

u(x− τ−(x, v)v, v)|v|−1dµ+(x, v)

and we deduce from (2.4) that∫
Γ+

M0u(x, v)|v|−1dµ+(x, v) =

∫
Γ−

u(z, v)|v|−1dµ−(z, v)
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which is (2.10). If now f ∈ Xτ is nonnegative, one has directly from (2.3) that∫
Γ+

|v|−1G0f(x, v)dµ+(x, v) = ‖ |v|−1f ‖X 6 D‖f‖τ <∞

which proves that G0f ∈ X. Moreover, using (2.3),∫
Ω×V

R0f(x, v)dx⊗m(dv) =

∫
Γ+

dµ+(z, v)

∫ τ−(z,v)

0
[R0f ](z − sv, v)ds

=

∫
Γ+

dµ+(z, v)

∫ τ−(z,v)

0
ds

∫ t−(z−sv,v)

0
f(z − sv − tv, v)dt

and, since t−(z − sv, v) = τ−(z, v)− s for all (z, v) ∈ Γ+ and all 0 < s < τ−(z, v) we get∫
Ω×V

R0f(x, v)dx⊗m(dv) =

∫
Γ+

dµ+(z, v)

∫ τ−(z,v)

0
ds

∫ τ−(z,v)

s
f(z − tv, v)dt

=

∫
Γ+

dµ+(z, v)

∫ τ−(z,v)

0
t f(z − tv, v)dt

Now, since t+(z − tv, v) = t for any (z, v) ∈ Γ+, the above reads∫
Ω×V

R0f(x, v)dx⊗m(dv) =

∫
Γ+

dµ+(z, v)

∫ τ−(z,v)

0
t+(z − tv, v) f(z − tv, v)dt

and, using again (2.3), one gets∫
Ω×V

R0f(x, v)dx⊗m(dv) =

∫
Ω×V

t+(x, v)f(x, v)dx⊗m(dv).

This proves that R0f ∈ X . Now, it is easy to see that actually g = R0f satisfies Tmaxg = −f and
B−g = 0, i.e. g ∈ D(T0) with T0g = −f. �

Remark 2.9. Notice that, for any nonnegative u ∈ L1
+,∫

Γ+

M0u(x, v)τ−(x, v)dµ+(x, v) =

∫
Γ+

u(x− τ−(x, v)v, v)τ−(x, v)dµ+(x, v)

and, since τ+(x− τ−(x, v)v, v) = τ−(x, v) for any (x, v) ∈ Γ−, we deduce from (2.4) that∫
Γ+

M0u(x, v)τ−(x, v)dµ+(x, v) =

∫
Γ−

u(z, v)τ+(z, v)dµ−(z, v)

This shows that, in (2.10), we can replace Y±1 with L1(Γ±, τ∓(x, v)dµ±(x, v)). In the same way,
one see that, for g ∈ Xτ it holds ‖G0g‖L1(Γ−,τ+dµ−) = ‖g‖τ .

One has the following result:

Proposition 2.10. Let g ∈ Xτ be given and u ∈ L1(Γ−, τ+(x, v)dµ−). The boundary value
problem {

−Tmaxf = g

B−f = u
(2.11)
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admits a unique solution f ∈ X given by f = R0g + Ξ0u.

Proof. Let u ∈ L1(Γ−, τ+(x, v)dµ−) and g ∈ Xτ , since Ξ0u ∈ D(Tmax) with TmaxΞ0u = 0,
B+Ξ0u = M0u and B−Ξ0u = u one sees that f ∈ D(Tmax) with

Tmaxf = TmaxR0g + TmaxΞ0u = T0R0g = −g
while B−f = B−R0g + B−Ξ0u = B−Ξ0u = u. This shows that f = R0g + Ξ0u is a solution to
(2.11). To prove the uniqueness, it suffices to assume that g = u = 0 but then (2.11) reads T0f = 0
which admits the unique solution f = 0. �

3. GENERAL STOCHASTIC PARTLY DIFFUSE BOUNDARY CONDITIONS

Let us explicit here the general class of boundary conditions we aim to deal with. Typical bound-
ary operators arising in the kinetic theory of gases are local with respect to x ∈ ∂Ω. In order to
exploit this local nature of the boundary conditions, we introduce the following notations. For any
x ∈ ∂Ω, we define

Γ±(x) = {v ∈ V ; ±v · n(x) > 0}, Γ0(x) = {v ∈ V ; v · n(x) = 0}
and we define the measure µx(dv) on Γ±(x) given by

µx(dv) = |v · n(x)|m(dv).

This allows to define the L1-space L1(Γ±(x), dµx) in an obvious way. We shall denote the
L1(Γ±(x),µx) norm by ‖ · ‖L1(Γ±(x)). Since, for any ϕ ∈ L1(Γ±, µ±) one has

‖ϕ‖L1
±

=

∫
∂Ω

[∫
Γ±(x)

|ϕ(x, v)|µx(dv)

]
π(dx) =

∫
∂Ω
‖ϕ(x, ·)‖L1(Γ±(x))π(dx)

we can identify isometrically any ϕ ∈ L1
± to the field

x ∈ ∂Ω 7−→ ϕ(x, ·) ∈ L1(Γ±(x)). (3.1)

3.1. Reflection boundary operators. We begin with the following definition of pure reflection
boundary conditions (see [34, Definition 6.1, p.104]):

Definition 3.1. One says that R ∈ B(L1
+, L

1
−) is a pure reflection boundary operator if

R(ϕ)(x, v) = ϕ(x,V(x, v)) ∀(x, v) ∈ Γ−, ϕ ∈ L1
+

where V : x ∈ ∂Ω 7→ V(x, ·) is a field of bijective bi-measurable and µx-preserving mappings

V(x, ·) : Γ−(x) ∪ Γ0(x)→ Γ+(x) ∪ Γ0(x)

such that
i) |V(x, v)| = |v| for any (x, v) ∈ Γ−.

ii) If (x, v) ∈ Γ0 then (x,V(x, v)) ∈ Γ0, i.e. V(x, ·) maps Γ0(x) in Γ0(x).
iii) The mapping

(x, v) ∈ Γ− 7→ (x,V(x, v)) ∈ Γ+

is a C1 diffeomorphism.
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Remark 3.2. This last regularity property on V may require additional regularity of ∂Ω as seen in
Example 3.3.

Note that
[Rϕ](x, v) = [R(x)ϕ(x, ·)](v), ∀ϕ ∈ L1

+, (x, v) ∈ Γ−

where we identify (isometrically) ϕ ∈ L1
+ to the integrable field (3.1) and

x ∈ ∂Ω 7→ R(x) ∈ B(L1(Γ+(x),Γ−(x))

is the field of operators defined by

R(x)ψ(v) = ψ(V(x, v)), ψ ∈ L1(Γ+(x)), v ∈ Γ−(x).

It holds
‖R(x)ψ‖L1(Γ−(x)) = ‖ψ‖L1(Γ+(x)), ∀x ∈ ∂Ω, ψ ∈ L1(Γ+(x)),

therefore, R ∈ B(L1
+, L

1
−) is stochastic since

‖Rϕ‖L1
−

=

∫
∂Ω
‖R(x)ϕ(x, ·)‖L1(Γ−(x)) π(dx) =

∫
∂Ω
‖ϕ(x, ·)‖L1(Γ+(x))π(dx) = ‖ϕ‖L1

+
.

Notice that this last identity is equivalent to the property that the mapping

(x, v) ∈ Γ− 7−→ (x,V(x, v)) ∈ Γ+

is µ-preserving.

Example 3.3. In practical situations, the most frequently used pure reflection conditions are
(a) the specular reflection boundary conditions which corresponds to the case in which V and m

are invariant under the orthogonal group and

V(x, v) = v − 2(v · n(x))n(x) (x, v) ∈ Γ−.

Notice that, for V to be a C1 diffeormorphism, we need ∂Ω to be of class C2.
(b) The bounce–back reflection conditions for which V(x, v) = −v, (x, v) ∈ Γ−.

3.2. Diffuse boundary operators. We introduce the following definition

Definition 3.4. One says that K ∈ B(L1
+, L

1
−) is a stochastic diffuse boundary operator if

Kψ(x, v) =

∫
Γ+(x)

k(x, v, v′)ψ(x, v′)µx(dv′), (x, v) ∈ Γ−, ψ ∈ L1
+ (3.2)

where the kernel k(x, v, v′) induces a field of nonnegative measurable functions

x ∈ ∂Ω 7→ k(x, ·, ·)
where

k(x, ·, ·) : Γ−(x)× Γ+(x)→ R+

is such that ∫
Γ−(x)

k(x, v, v′)µx(dv) = 1, ∀(x, v′) ∈ Γ+.
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FIGURE 2. Regular and diffuse reflection: v – an outward vector, V(x, v) – the
specular reflection, thin vectors – diffuse reflection.

As we did for reflection operators, we identify K ∈ B(L1
+, L

1
−) to a field of integral operators

x ∈ ∂Ω 7−→ K(x) ∈ B(L1(Γ+(x),Γ−(x))

by the formula

[Kψ](x, v) = [K(x)ψ(x, ·)] (v)

where, for any x ∈ ∂Ω

K(x) : ψ ∈ L1(Γ+(x)) 7−→ [K(x)ψ] (v) =

∫
Γ+(x)

k(x, v, v′)ψ(v′)µx(dv′) ∈ L1(Γ−(x)).

Note that K(x) : L1(Γ+(x)) → L1(Γ−(x)) is stochastic for any x ∈ ∂Ω and therefore so is
K ∈ B(L1

+, L
1
−), i.e.

‖Kψ‖L1
−

= ‖ψ‖L1
+

∀ψ ∈ L1
+.

We introduce now a useful class of diffuse boundary operators. Before giving the formal definition,
let us recall that, if K ∈ B(L1

+, L
1
−) given by (3.2) is such that

K(x) ∈ B(L1(Γ+(x)), L1(Γ−(x))) is weakly compact for any x ∈ ∂Ω (3.3)

then, according to the Dunford-Pettis criterion (see [10, Theorem 4.30, p. 115 & Exercise 4.36, p.
129]), for any x ∈ ∂Ω and any ε > 0, there is δ > 0 such that

sup
v′∈Γ+(x)

∫
A
k(x, v, v′)µx(dv) < ε ∀A ⊂ Γ−(x) such that µx(A) < δ

and

lim
m→∞

sup
v′∈Γ+(x)

∫
Γ−(x)\Am

k(x, v, v′)µx(dv) = 0
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for any sequence (Am)m ⊂ Γ−(x) with Am ⊂ Am+1, µx(Am) < ∞ and ∪mAm = Γ−(x). In
particular, for any x ∈ ∂Ω,

lim
m→∞

sup
v′∈Γ+(x)

∫
{v∈Γ−(x) ; |v|>m}

k(x, v, v′)µx(dv) = 0.

Moreover, since

1 =

∫
Γ−(x)

k(x, v, v′)µx(dv) >
∫
{v∈Γ−(x) ; k(x,v,v′)>m}

k(x, v, v′)µx(dv)

> mµx
(
{v ∈ Γ−(x) ; k(x, v, v′) > m}

)
, ∀m ∈ N, (x, v′) ∈ Γ+,

we have
lim
m→∞

sup
v′∈Γ+(x)

µx
(
{v ∈ Γ−(x) ; k(x, v, v′) > m}

)
= 0.

In other words, for any x ∈ ∂Ω, the following holds

lim
m→∞

sup
v′∈Γ+(x)

∫
Sm(x,v′)

k(x, v, v′)µx(dv) = 0 (3.4)

where, for any m ∈ N and any (x, v′) ∈ Γ+

Sm(x, v′) = {v ∈ Γ−(x) ; |v| > m} ∪ {v ∈ Γ−(x) ; k(x, v, v′) > m}.
We introduce then the following class of diffuse boundary operators:

Definition 3.5. We say that a diffuse boundary operator K ∈ B(L1
+, L

1
−) is regular if the family of

operators
K(x) ∈ B(L1(Γ+(x)), L1(Γ−(x))), x ∈ ∂Ω

is collectively weakly compact in the sense that (3.3) holds true for any x ∈ ∂Ω and the convergence
in (3.4) is uniform with respect to x ∈ ∂Ω.

Remark 3.6. A diffuse boundary operator K is regular for instance whenever there exists h : V →
R+ such that

∫
V h(v) |v|m(dv) < +∞ and

k(x, v, v′) 6 h(v) ∀x ∈ ∂Ω, v′ ∈ Γ+(x), v ∈ Γ−(x).

In particular, the classical Maxwell boundary operator (see Example 6.3 below) is a regular diffuse
boundary operator.

We have then the following approximation result.

Lemma 3.7. Assume that K ∈ B(L1
+, L

1
−) is a regular diffuse boundary operator in the sense of

the above definition. Then, there exists a sequence (Km)m ⊂ B(L1
+, L

1
−) such that

(1) 0 6 Km 6 K for any m ∈ N;
(2) limm→∞ ‖K− Km‖B(L1

+,L
1
−) = 0;

(3) For any m ∈ N and any nonnegative f ∈ L1
+ it holds

Kmf(x, v) 6 ψm(v)

∫
Γ+(x)

f(x, v′) |v′ · n(x)|m(dv′), (x, v) ∈ Γ− (3.5)

with ψm = m1Bm where Bm = {v ∈ Rd ; |v| 6 m}.



16 B. LODS, M. MOKHTAR-KHARROUBI, AND R. RUDNICKI

Proof. Let k(x, v, v′) be the kernel associated to K through (3.2). Introduce then km(x, v, v′) =
inf{k(x, v, v′) ; m1Bm(v)} for any m ∈ N, where Bm is the ball of Rd centered in 0 and with
radius m, and set

Kmϕ(x, v) =

∫
Γ+(x)

km(x, v, v′)ϕ(x, v′) |v′ · n(x)|m(dv′), ϕ ∈ L1
+, (x, v) ∈ Γ−.

Clearly, Km ∈ B(L1
+, L

1
−) is a diffuse boundary operator with 0 6 Km 6 K and (3.5) holds.

Moreover, for any x ∈ ∂Ω and any ϕ ∈ L1(Γ+(x)), it is easy to check that

‖K(x)ϕ− Km(x)ϕ‖L1(Γ−(x)) 6 ‖ϕ‖L1(Γ+(x))

× sup
v′∈Γ+(x)

∫
{v∈Γ−(x) ; k(x,v,v′)>m1Bm (v)}

k(x, v, v′)µx(dv),

i.e.

‖K(x)− Km(x)‖B(L1(Γ+(x)),L1(Γ−(x))) 6 sup
v′∈Γ+(x)

∫
{v∈Γ−(x) ; k(x,v,v′)>m1Bm (v)}

k(x, v, v′)µx(dv)

6 sup
v′∈Γ+(x)

∫
Sm(x,v′)

k(x, v, v′)µx(dv).

One sees then that

‖K− Km‖B(L1
+,L

1
−) = sup

x∈∂Ω
‖K(x)− Km(x)‖B(L1(Γ+(x)),L1(Γ−(x)))

goes to zero as m→∞ since the convergence in (3.4) is uniform with respect to x ∈ ∂Ω. �

We complement the above result with a different kind of approximation which will turn useful in
Section 8:

Lemma 3.8. Let K be a regular stochastic diffuse boundary operator with kernel k(x, v, v′). Let

βn(x, v′) =

∫
Γ−(x)∩{|v|> 1

n
}
k(x, v, v′)µx(dv), (x, v′) ∈ Γ+

and

kn(x, v, v′) =
k(x, v, v′)

βn(x, v′)
1{|v|> 1

n}, x ∈ ∂Ω, v′ ∈ Γ+(x), v ∈ Γ−(x)

Then, denoting by Kn the regular stochastic diffuse boundary operator with kernel kn, it holds
(i) limn→+∞ βn(x, v′) = 1 uniformly in (x, v′) ∈ Γ+.

(ii) limn→∞ ‖Kn − K‖B(L1
+,L

1
−) = 0.

Proof. (i) For any x ∈ ∂Ω, set An(x) =
{
v ∈ Γ−(x) ; |v| < 1

n

}
. One has

µx (An(x)) =

∫
Γ−(x)∩{|v|<n−1}

|v · n(x)|m(dv) 6
m(B1)

n

where B1 is the unit ball of Rd. Thus,

lim
n→∞

sup
x∈∂Ω

µx (An(x)) = 0. (3.6)
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Now, since K is regular, (3.4) holds uniformly with respect to x ∈ ∂Ω, i.e. for any ε > 0, there is
m ∈ N large enough so that

sup
(x,v′)∈Γ+

∫
Sm(x,v′)

k(x, v, v′)µx(dv) < ε.

Then, for any n ∈ N and any (x, v′) ∈ Γ+,∫
An(x)

k(x, v, v′)µx(dv) =

∫
An(x)∩Sm(x,v′)

k(x, v, v′)µx(dv)

+

∫
An(x)\Sm(x,v′)

k(x, v, v′)µx(dv) 6 ε+mµx(An(x))

since k(x, v, v′) 6 m on Γ−(x) \ Sm(x, v′). Using then (3.6) we get

lim
n→∞

sup
(x,v′)∈Γ−

∫
Γ−(x)∩{|v|<n−1}

k(x, v, v′)µx(dv) = 0 (3.7)

which shows (i) since
∫

Γ−(x) k(x, v, v′)µx(dv) = 1 for any x ∈ ∂Ω.

(ii) Set K̂n the boundary operator with kernel 1{|v|>n−1}k(x, v, v′). One checks easily that∥∥∥K− K̂n

∥∥∥
B(L1

+,L
1
−)
6 sup

(x,v′)∈Γ−

∫
Γ−(x)∩{|v|<n−1}

k(x, v, v′)µx(dv)

so that limn

∥∥∥K− K̂n

∥∥∥
B(L1

+,L
1
−)

= 0 from (3.7). Since moreover∥∥∥Kn − K̂n

∥∥∥
B(L1

+,L
1
−)
6 sup

(x,v′)∈Γ+

∣∣1− βn(x, v′)
∣∣ ‖K‖B(L1

+,L
1
−)

which goes to zero from point (i), we get the desired result. �

3.3. Stochastic partly diffuse boundary operators. We introduce now the general class of bound-
ary operator we aim at investigating.

Definition 3.9. We shall say that a boundary operator H ∈ B(L1
+, L

1
−) is stochastic partly diffuse

if it writes

Hψ(x, v) = α(x) Rψ(x, v) + (1− α(x)) Kψ(x, v), (x, v) ∈ Γ−, ψ ∈ L1
+ (3.8)

where α(·) : ∂Ω → [0, 1] is measurable, R is a reflection operator, and K ∈ B(L1
+, L

1
−) is a

stochastic diffuse boundary operator given by (3.2).
If the diffuse part K is regular we say that H is a regular stochastic partly diffuse boundary

operator.

Remark 3.10. Notice that, being a convex combination of stochastic operators, a stochastic partly
diffuse operator H is stochastic.
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4. GENERAL RESULTS FOR ABSTRACT STOCHASTIC BOUNDARY OPERATORS

We begin with the following which is a direct consequence of [25, Theorem 21]:

Proposition 4.1. Let H ∈ B(L1
+, L

1
−) be a stochastic boundary operator. Let there exist ϕ ∈ L1

+

such that ϕ > 0 µ-a.e. and ϕ > M0Hϕ. Then, A = TH and (UH(t))t>0 is a stochastic C0-
semigroup, where we recall that (A,D(A)) is the generator of (UH(t))t>0.

We give a general result about the spectrum of TH:

Proposition 4.2. Let H ∈ B(L1
+, L

1
−) be a stochastic boundary operator. Then, there is a nonnega-

tive Ψ ∈ D(TH) with THψ = 0 if and only if 1 is an eigenvalue of M0H associated to a nonnegative
eigenfunction ϕ ∈ Y+

1 such that Hϕ ∈ Y−1 .

Proof. Assume first that there exists ϕ ∈ Y+
1 such that

M0Hϕ = ϕ, and Hϕ ∈ Y−1 .
Then, as already seen (see (2.9)), Ξ0Hϕ ∈ X . Let Ψ = Ξ0Hϕ. One has TmaxΨ = 0, B−Ψ =
B−Ξ0Hϕ = Hϕ, i.e. B−Ψ = HB+Ψ. This means that Ψ ∈ D(TH) with THΨ = 0.

Assume now that 0 ∈ Sp(TH) is associated to a nonnegative eigenfunction Ψ ∈ D(TH). Let
ϕ = B+Ψ and u = B−Ψ. It holds u = Hϕ and, solving the boundary value problem (2.11) (see
Proposition 2.10) yields Ψ = Ξ0u. It is easy to check then that ϕ = M0Hϕ. Since u 6= 0 =⇒
ϕ 6= 0, we get 1 ∈ Sp(M0H). �

We recall the definition of irreducible operators or semigroups in L1-spaces and refer to [1] for
more details.

Definition 4.3. Let (E,Σ,m) be a given σ-finite measure space. Let B ∈ B(L1(E,Σ,m)) be
given. Then, we say that

i) B is positive and write B > 0, if B leaves invariant the cone of nonnegative functions of
L1(E,Σ,m) i.e. for any h ∈ L1(E,Σ,m),

h(s) > 0 for m-a. e. s ∈ E =⇒ Bh(s) > 0 for m-a. e. s ∈ E.

ii) B is positivity improving if for any h ∈ L1(E,Σ,m) non identically zero

h(s) > 0 for m-a. e. s ∈ E =⇒ Bh(s) > 0 for m-a. e. s ∈ E.

iii) B is irreducible if for any non trivial and nonnegative h ∈ L1(E,Σ,m) and any non trivial
nonnegative g ∈ L∞(E,Σ,m), there exists n ∈ N such that

〈Bnh , g〉1,∞ > 0

where 〈·, ·〉1,∞ is the duality bracket between L1(E,Σ,m) and L∞(E,Σ,m).
iv) A positive C0-semigroup (S(t))t>0 on L1(E,Σ,m) with generator (G,D(G)) is irreducible

if, for any non trivial nonnegative h ∈ L1(E,Σ,m) and any non trivial nonnegative g ∈
L∞(E,Σ,m), there exists t > 0 such that 〈S(t)h, g〉1,∞ > 0. This property is equivalent to
the fact thatR(λ,G) is positivity improving for λ > 0 large enough.

We introduce the following:
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Assumption 4.4. H ∈ B(L1
+, L

1
−) is a stochastic operator such that M0H ∈ B(L1

+) is irreducible
and there exists ψ0 ∈ L1

+ such that Hψ0 > 0 µ-a.e. on Γ+.

Remark 4.5. If H is stochastic partly diffuse operator of the form (3.8) and if M0(1 − α)K is
irreducible then so is M0H. This is the case for instance if ‖α‖∞ < 1 and if, for π-a.e. x ∈ ∂Ω

k(x, v, v′) > 0 for µx-a.e. v ∈ Γ−(x), v′ ∈ Γ+(x). (4.1)

In addition, if α(x) > 0 π-a.e. x ∈ ∂Ω, the second condition Hψ0 > 0 µ-a.e. is satisfied
by any ψ0 > 0 µ-a.e. Otherwise, we assume that, for any x ∈ ∂Ω such that α(x) = 0 there
is a subset γ+(x) ⊂ Γ+(x) of positive µx-measure and such that k(x, v, v′) > 0 for µx-a.e.
v ∈ Γ+(x), v′ ∈ Γ+(x). Then, again the second condition is satisfied by any ψ0 > 0 µ-a.e. In
particular, the second assumption in Assumptions 4.4 is always satisfied under (4.1).

One has the following (see also [25, Remark 20]):

Proposition 4.6. Let H ∈ B(L1
+, L

1
−) be a stochastic operator and let Assumptions 4.4 be satisfied.

Then, the C0-semigroup (UH(t))t>0 is irreducible.

Proof. Let h ∈ X and g ∈ L∞(Ω× V,dx⊗m(dv)) be nonnegative and non trivial. Denoting the
duality parity between X and its dual simply by 〈·, ·〉, we have for any λ > 0

〈R(λ,A)h, g〉 = 〈Rλh, g〉+
∞∑
k=0

〈ΞλH (MλH)k Gλg, g〉 = 〈Rλh, g〉+
∞∑
k=0

〈(MλH)k Gλh,H
?Ξ?λg〉

where H? and Ξ?λ denote the dual operator of H and Ξλ respectively. Notice that g? = Ξ?λg is
nonnegative and nontrivial and the same holds for H?Ξ?λ = H?g? since, under Assumption 4.4

〈ψ0,H
?g?〉 = 〈Hψ0, g?〉 > 0.

Now, since the irreducibility of M0H is equivalent to that of MλH for any λ > 0, we deduce that
〈R(λ,A)h, g〉 > 0 for any nonnegative and nontrivial g ∈ L∞(Ω× V,dx⊗m(dv)) which proves
thatR(λ,A)h is positive a. e. on Ω× V andR(λ,A) is positivity improving. �

The main result of this section is then the following:

Theorem 4.7. Let H ∈ B(L1
+, L

1
−) be a stochastic boundary operator and let Assumptions 4.4 be

satisfied. Assume there exists ΨH ∈ D(TH) (with unit norm) such that

THΨH = 0 and ΨH > 0 a.e. on Ω× V.
Then, TH generates a irreducible and stochastic C0-semigroup (UH(t))t>0 on X and ΨH is the
unique invariant density of (UH(t))t>0. Moreover, (UH(t))t>0 is ergodic with ergodic projection

Pf = %f ΨH, where %f =

∫
Ω×Rd

f(x, v)dx⊗m(dv), f ∈ X,

i.e.

lim
t→∞

∥∥∥∥1

t

∫ t

0
UH(s)fds− %fΨH

∥∥∥∥
X

= 0, ∀f ∈ X (4.2)

and X = Ker(TH)⊕ Range(TH).
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Proof. According to Proposition 4.1, there exists ϕ ∈ L1
+ such that ϕ > 0 µ-a.e. and ϕ = M0Hϕ.

Since M0H is irreducible, ϕ > 0 µ-a.e. and we deduce from Proposition 4.1 that A = TH. More-
over, Lemma 4.6 ensures that (UH(t))t>0 is irreducible. Since Ker(TH) 6= 0, the ergodicity of
(UH(t))t>0 follows from [17, Theorem 7.3, p. 174 and Theorem 5.1 p. 123]. �

5. MAIN COMPACTNESS RESULT AND EXISTENCE OF AN INVARIANT DENSITY

5.1. Weak compactness result. We prove here the main compactness result of the paper. The
proof of the result is based on a series of important geometrical results regarding regularity and
transversality of the ballistic flow

ξ : (x, v) ∈ Γ+ 7→ ξ(x, v) = (x− τ−(x, v)v, v) ∈ ∂Ω× V.
Such highly technical results have been postponed to Appendix A for the clarity of the reading and
will be used repeatedly in the proof of the following.

Theorem 5.1. Let K ∈ B(L1
+, L

1
−) be regular diffuse boundary operator and let R ∈ B(L1

+, L
1
−)

be a pure reflection operator. Then, for any integers k, ` > 1, one has

K(M0R)kM0K(M0R)`M0K ∈ B(L1
+, L

1
−)

is weakly compact.

Proof. Let k, ` > 1 be fixed. Let (Km)m ⊂ B(L1
+, L

1
−) be the sequence of approximation obtained

from Lemma 3.7, which is such that limm ‖K − Km‖B(L1
+,L

1
−) = 0. It is then enough to prove the

weak-compactness of Kn(M0R)kM0Km(M0R)`M0Kp for any n,m, p ∈ N. Still using the notations
of Lemma 3.7, introduce

Kmf(x, v) = ψm(v)

∫
v′·n(x)>0

f(x, v′)µx(dv′), f ∈ L1
+, (x, v) ∈ Γ−, m ∈ N

where ψm(v) = m1Bm(v). Given n,m, p ∈ N, using (3.5) and a domination argument, the weak-
compactness of Kn(M0R)kM0Km(M0R)`M0Kp would imply the result. To avoid too heavy nota-
tions, and setting for instance F (v) = max(ψn, ψm, ψp), it suffices to prove that

K(M0R)kM0K(M0R)`M0K

is weakly-compact for

Kϕ(x, v) = F (v)

∫
Γ+(x)

ϕ(x, v′)µx(dv′). (5.1)

Since F is compactly supported and bounded we can assume without loss of generality that

F = 1B1 (5.2)

which amounts to consider only velocities |v| 6 1. Write Rϕ(x, v) = ϕ(x,V(x, v)), (x, v) ∈ Γ−,
ϕ ∈ L1

+, where V satisfies Definition 3.1. Recalling the transformation (see Appendix A)

U : (x, v) ∈ Γ+ 7→ U(x, v) = (ξs(x, v);V(ξ(x, v))) ∈ Γ+

which preserves the measure µ where here, as well as in Appendix A, ξ is the ballistic flow and we
adopt the following notations: for any element z = (x, v) ∈ Ω× V , we write x = zs and v = zv.



COLLISIONLESS KINETIC SEMIGROUPS 21

Consequently, for any j ∈ N, the iterated U j is also µ-preserving. Notice that, for any ϕ ∈ L1
+

and any j ∈ N, (M0R)jϕ(x, v) = ϕ(U j(x, v)), and

(M0R)jM0ϕ(x, v) = ϕ(ξ ◦ U j(x, v)), (x, v) ∈ Γ+. (5.3)

For simplicity, we write Zj = (M0R)jM0 ∈ B(L1
−, L

1
+). It is clear that Zj is stochastic for any

j ∈ N and
K(M0R)kM0K(M0R)`M0K = KZkKZ`K.

Using the notations introduced in the proof of Proposition A.10,

U−` ◦ ξ−1 : Γ− \ γ` → Γ
(`+1)
+ ⊂ Γ+

is a C1 diffeomorphism from Γ− \ γ` onto its image where Γ
(`+1)
+ = Γ+ \

⋃`+1
j=1 Λj and γ` are of

zero µ-measure. Denote here for simplicity

Γ
(`)
− = Γ− \ γ`.

We may make the identification

L1
+ = L1(Γ

(`+1)
+ , dµ), L1

− = L1(Γ
(`)
− , dµ) (5.4)

so that we only have to prove the weak-compactness of

KZkKZ`K : L1(Γ
(`+1)
+ ,dµ) −→ L1(Γ

(`)
− ,dµ).

Notice that, by (5.1) and (5.2), the range of KZkKZ`K can be rather considered as L1(Γ
(`)
− , dµ̃)

where
dµ̃(x, v) = F (v)dµ(x, v) = 1B1(v)|v · n(x)|π(dx)⊗m(dv) (5.5)

is nothing but the restriction of µ− to ∂Ω × B1. In particular, µ̃ is a finite measure. From a simple
consequence of the Dunford-Pettis criterion (see [11, Corollary 4.7.21, p. 288]), we need to prove
that, for any nonincreasing sequence of measurable subsets (Aj)j ⊂ Γ`− with

⋂
j Aj = ∅, it holds

lim
j→∞

sup
‖ϕ‖

L1
+
61

∫
Aj

|KZkKZ`Kϕ(x, v)|dµ(x, v) = 0. (5.6)

Since K and Zj are nonnegative operators, it suffices of course to consider nonnegative ϕ ∈ L1
+ in

(5.6). Let us fix a sequence (Aj)j ⊂ Γ`− with
⋂
j Aj = ∅ and consider a nonnegative ϕ ∈ L1

+.
From now on, the identification (5.4) will be assumed and – for notation simplicity – we shall
always omit the superscript ` in Γ`±, which means that, in the all the sequel, Γ± = Γ

(`)
± and also

Γ±(x) = Γ
(`)
± (x) = {v ∈ Rd ; (x, v) ∈ Γ

(`)
± } for any x ∈ ∂Ω. We set

Ij(ϕ) =

∫
A

KZkKZ`Kϕ(x, v)dµ(x, v).

Introduce then, for n ∈ N, the µ-preserving change of variables

(x, v) ∈ Γ+ 7−→(y, w) = ξ ◦ Un(x, v′) = (Yn(x, v), Vn(x, v′)) ∈ Γ−,
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where Yn and Vn are respectively the “position” and “velocity” components, i.e. Yn(x, v) ∈ ∂Ω
with Vn(x, v)·n(Yn(x, v)) < 0.We denote then the position and velocity components of the inverse
(ξ ◦ Un)−1 : Γ− → Γ+ by Yn,Vn, i.e. given (y, w) ∈ Γ−,

U−n ◦ ξ−1(y, w) = (ξ ◦ Un)−1(y, w) = (Yn(y, w),Vn(y, w)) ∈ Γ+.

Defining, for any x, y ∈ ∂Ω,

Bj,k(y) =

∫
Γ−(y)

Gj(Yk(y, w))F (w)µy(dw), Gj(x) =

∫
Γ−(x)

1Aj (x, v)F (v)µx(dv),

one can show (see the Lemma 5.5 hereafter) that

Ij(ϕ) =

∫
∂Ω
π(dz)

∫
Γ+(z)

F (u)Bj,k(Y`(z, u))µz(du)

∫
Γ+(z)

ϕ(z, w2)µz(dw2).

It is clear then that (5.6) will hold true if

lim
j→∞

sup
z∈∂Ω

∫
Γ+(z)

F (u)Bj,k(Y`(z, u))µz(du) = 0. (5.7)

The proof of this property is given in the next Lemma yielding the desired weak-compactness. �

Lemma 5.2. With the notations of the proof of Theorem 5.1, given z ∈ ∂Ω, introduce

Pj(z) =

∫
Γ+(z)

F (u)Bj,k(Y`(z, u))µz(du).

Then, lim
j→∞

sup
z∈∂Ω

Pj(z) = 0.

The proof of the above will use the the following polar decomposition theorem (see [34, Lemma
6.13, p.113]):

Lemma 5.3. If m is a orthogonally invariant Borel measure with support V ⊂ Rd, introduce m0

as the image of the measure m under the transformation v ∈ Rd 7→ |v| ∈ [0,∞), i.e. m0(I) =
m
(
{v ∈ Rd ; |v| ∈ I}

)
for any Borel subset I ⊂ R+. Then, for any ψ ∈ L1(Rd,m) it holds∫

Rd

ψ(v)m(dv) =
1

|Sd−1|

∫ ∞
0
m0(d%)

∫
Sd−1

ψ(%ω)σ(dω)

where dσ denotes the Lebesgue measure on Sd−1 with total mass |Sd−1|.

Remark 5.4. We shall use in the proof of Lemma 5.2 that, with the notations of Proposition A.8,
for any y ∈ ∂Ω we can construct an orthonormal basis {e1(y), . . . , ed(y)} of Rd depending con-
tinuously on y ∈ ∂Ω with

ed(y) = −n(y)

and such that, in this basis, any $ ∈ Sd−1 can be written as

$ =
d∑
i=1

ωiei(y)



COLLISIONLESS KINETIC SEMIGROUPS 23

where ω = ω(θ) = (ω1, . . . , ωd) is given by (A.14) in terms of the polar coordinates

θ = (θ1, . . . , θd−1) ∈ U = [0, 2π]× [0, π]d−3 ×
[
0,
π

2

]
.

In this case, ω is independent of y ∈ ∂Ω. We also recall that, according to Remark A.9, for any
ε > 0, one can define Sε(y) as those $ ∈ Sd−1 for which

θ ∈ Uε :=
{

(θ1, . . . , θd−1) ∈ U ; sind−2 θd−1 sind−3 θd−2 . . . sin θ2 6 ε
}
.

and prove that limε→0+ supy∈∂Ω σ(Sε(y)) = 0. See Remark A.9 for more details.

Proof of Lemma 5.2. Recall that (5.4) is in force and (Aj)j ⊂ Γ− = Γ`− is non-increasing with⋂
j Aj = ∅. Recall also that

Pj(z) =

∫
Γ+(z)

F (u)µz(du)

∫
Γ−(Y`(z,u))

Gj(Yk(Y`(z, u), w))F (w)µY`(z,u)(dw)

=

∫
Γ+(z)

F (u)µz(du)

∫
Γ−(Y`(z,u))

F (w)µY`(z,u)(dw)×

×
∫

Γ−(Yk(Y`(z,u),w))
1Aj (Yk(Y`(z, u), w), v)F (v)µYk(Y`(z,u),w)(dv)

where F = 1B1 . Therefore,

Pj(z) =

∫
Γ+(z)

F (u)µz(du)

∫
Γ−(Y`(z,u))

F (w)Gj(Yk(Y`(z, u), w))µY`(z,u)(dw).

Introducing the polar coordinates w = %$, u = rν with r, % > 0 and $, ν ∈ Sd−1 and using
Lemma 5.3 (recall that µx(dv) = |v · n(x)|m(dv)) we get

Pj(z) = |Sd−1|−2

∫ 1

0
rm0(dr)

∫
Γ+(z)

|ν · n(z)|σ(dν)

×
∫ 1

0
%m0(d%)

∫
Γ−(Y`(z,rν))

Gj(Yk(Y`(z, rν), %$))|$ · n(Y`(z, rν))|σ(d$).

Since {0} is not an atom for the measure %m0(d%), according to the dominated convergence theo-
rem, it is enough to prove that, for any given %, r ∈ (0, 1) and ν ∈ Sd−1,

lim
j→∞

sup
z∈∂Ω

∫
Γ−(Y`(z,rν))

Gj(Yk(Y`(z, rν), %$))|$ · n(Y`(z, rν))|σ(d$) = 0.

It suffices then to prove that

lim
j→∞

sup
y∈∂Ω

∫
Γ−(y)

Gj(Yk(y, %$))|$ · n(y)|σ(d$) = 0 (5.8)
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and, since % > 0, there is no loss of generality in proving the result only for % = 1. Notice that, for
any ε > 0 and y ∈ ∂Ω,∫

Γ−(y)
Gj(Yk(y,$))|$ · n(y)|σ(d$) =

∫
Γ−(y)∩Sε(y)

Gj(Yk(y,$))|$ · n(y)|σ(d$)

+

∫
Γ−(y)\Sε(y)

Gj(Yk(y,$))|$ · n(y)|σ(d$)

where Sε(y) has been introduced in the above Remark 5.4. Clearly, since ‖Gj‖∞ 6
∫
Rd F (u)|u|m(du),

there is C > 0 independent of j such that

sup
y∈∂Ω

∫
Γ−(y)∩Sε(y)

Gj(Yk(y,$))|$ · n(y)|σ(d$) 6 C sup
y∈∂Ω

σ (Sε(y))

which goes to 0 as ε → 0 according to Remark A.9. Therefore, to show (5.8), we only have to
prove that, for any ε > 0,

lim
j→∞

sup
y∈∂Ω

∫
Γ−(y)\Sε(y)

Gj(Yk(y,$))σ(d$) = 0.

Recall that, with the notations of Section A.2,

U−k ◦ ξ−1 : Γ
(k)
− = Γ− \ γk −→ Γ

(k+1)
+ ,

Yk(y,$) = U−ks ◦ ξ−1(y,$) ∀y ∈ ∂Ω, $ ∈ Γ−(y),

and Γ−(y) = {$ ∈ Sd−1 ; (y,$) ∈ Γ
(k)
− }. Thus, we have to show that, for any ε > 0,

lim
j→∞

sup
y∈∂Ω

∫
Γ−(y)\Sε(y)

Gj

(
U−ks ◦ ξ−1(y,$)

)
σ(d$) = 0. (5.9)

It follows from Lemma A.11 that, for any y ∈ ∂Ω, the mapping

$ ∈ Γ−(y) 7−→ U−ks ◦ ξ−1(y,$) ∈ ∂Ω is of class C1 with differential of rank d− 1. (5.10)

On the other hand, with the notations and parametrization used in Proposition A.8 and recalled in
Remark 5.4, the mapping (θ, y) ∈ U × ∂Ω 7−→ $ = $(θ, y) is continuous while

θ ∈ U 7−→ $ = $(θ, y)

is of class C1 with a continuous derivative (θ, y) ∈ A × ∂Ω 7−→ ∂θ$(θ, y). Since the mapping
θ ∈ Uε 7→ $(θ, y) is a C1 parametrization of Sε(y), by virtue of (5.10) we have that, for any
y ∈ ∂Ω,

θ ∈ U \ Uε 7−→ U−ks ◦ ξ−1(y,$(θ, y)) ∈ ∂Ω

is a regular parametrization of

Ey :=
{
U−ks ◦ ξ−1(y,$) ; $ ∈ Γ−(y) \ Sε(y)

}
⊂ ∂Ω.

Then, according to [32, Lemma 5.2.11 & Theorem 5.2.16, pp. 128–131], the Lebesgue surface
measure πEy(dY ) on Ey is given by

JYk
(y,$)dθ1 . . . dθd−1 = JYk

(y,$)dθ
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where

JYk
(y,$) =

[
det
(

(∂θiYk(y,$) , ∂θ`Yk(y,$))16i,`6d−1

)]1/2
> 0

on U \ Uε. Since the mapping

(θ, y) ∈ U × ∂Ω 7−→ ∂θiYk(y,$(θ, y)) = d$Yk(y,$(θ, y))∂θi$(θ, y))

is continuous for any i = 1, . . . , d− 1, then so is the mapping

(θ, y) ∈ U × ∂Ω 7−→ JYk
(y,$(θ, y))

and there exists Cε > 0 such that

JYk
(y,$(θ, y)) > Cε > 0, ∀(θ, y) ∈ (U \ Uε)× ∂Ω.

Hence, for any y ∈ ∂Ω∫
Γ−(y)\Sε(y)

Gj(U−ks ◦ ξ−1(y,$))σ(d$)

6
1

Cε

∫
U\Uε

Gj

(
U−ks ◦ ξ−1(y,$(θ, y))

)
JYk

(y,$(θ, y))dθ

=
1

Cε

∫
Ey
Gj(Y )πEy(dY ).

Clearly, recalling the definition of Gj – and because the measures π and πEy coincide on Ey – we
get ∫

Ey
Gj(Y )πEy(dY ) =

∫
Ey

(∫
Γ−(Y )

F (v)1Aj (Y, v)µY (dv)

)
πEy(dY )

6
∫
∂Ω

(∫
Γ−(Y )

F (v)1Aj (Y, v)µY (dv)

)
π(dY ) = µ̃(Aj),

where µ̃ is given by (5.5). Thus,

sup
y∈∂Ω

∫
Γ−(y)\Sε(y)

Gj(U−ks ◦ ξ−1(y,$))σ(d$) 6
µ̃(Aj)
Cε

∀j ∈ N.

Since (Aj)j is non-increasing with
⋂
j Aj = ∅ and µ̃ is a finite measure, we have limj µ̃(Aj) = 0

which implies (5.9) and proves the Lemma. �

Lemma 5.5. With the notations of the proof of Theorem 5.1, it holds, for any j ∈ N,

Ij(ϕ) =

∫
∂Ω
π(dz)

∫
Γ+(z)

F (u)Bj,k(Y`(z, u))µz(du)

∫
Γ+(z)

ϕ(z, w2)µz(dw2) (5.11)

where, for any x, y ∈ ∂Ω

Bj,k(y) =

∫
Γ−(y)

Gj(Yk(y, w))F (w)µy(dw), Gj(x) =

∫
Γ−(x)

1Aj (x, v)F (v)µx(dv).
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Proof. We use the notations of the above proof and recall that (5.4) is in force. In particular, we
assume K to be given by (5.1). Notice that, for any nonnegative ψ ∈ L1

−,∫
Aj

KZkψ(x, v)dµ−(x, v) =

∫
Aj

F (v)

(∫
Γ+(x)

Zkψ(x, v′)µx(dv′)

)
dµ−(x, v)

=:

∫
Aj

F (v)Ψk(x)dµ−(x, v)

where, using (5.3), one has

Ψk(x) =

∫
Γ+(x)

Zkψ(x, v′)µx(dv′) =

∫
Γ+(x)

ψ(ξ ◦ Uk(x, v′))µx(dv′), x ∈ ∂Ω.

Simple use of Fubini’s theorem yields∫
Aj

F (v)Ψk(x)dµ−(x, v) =

∫
∂Ω
Gj(x)Ψk(x)π(dx) =

∫
Γ+

Gj(x)ψ(ξ ◦ Uk(x, v′))dµ+(x, v′).

Introduce then the µ-preserving change of variables

(x, v′) ∈ Γ+ 7→(y, w) = ξ ◦ Uk(x, v′) = (Yk(x, v
′), Vk(x, v

′)) ∈ Γ− (5.12)

and noticing that
x = Yk(y, ω)

we have, ∫
Aj

KZkψ(x, v)dµ−(x, v) =

∫
Γ−

Gj(Yk(y, w))ψ(y, w)dµ−(y, w).

Applying this with ψ = Kg for some nonnegative g ∈ L1
+, we get∫

Aj

KZkKg(x, v)dµ−(x, v) =

∫
Γ−

Gj(Yk(y, w))Kg(y, w)dµ−(y, w)∫
Γ−

Gj(Yk(y, w))F (w)dµ−(y, w)

∫
Γ+(y)

g(y, w1)µy(dw1)

and, with g = Z`Kϕ for some nonnegative ϕ ∈ L1
+, noticing that

g(y, w1) = F (V`(y, w1))

∫
Γ+(Y`(y,w1))

ϕ(Y`(y, w1), w2)µY`(y,w1)(dw2)

where we used the notations introduced in (5.12), we get

Ij(ϕ) :=

∫
Aj

KZkKZ`Kϕ(x, v)dµ−(x, v) =

∫
Aj

KZkKg(x, v)dµ−(x, v)

=

∫
Γ−

Gj(Yk(y, w))F (w)dµ−(y, w)×

×
∫

Γ+(y)

(∫
Γ+(Y`(y,w1))

ϕ(Y`(y, w1), w2)µY`(y,w1)(dw2)

)
F (V`(y, w1))µy(dw1).



COLLISIONLESS KINETIC SEMIGROUPS 27

Thanks to Fubini’s Theorem, this reads

Ij(ϕ) =

∫
Γ+

F (V`(y, w1))Bj,k(y)dµ+(y, w1)

∫
Γ+(Y`(y,w1))

ϕ(Y`(y, w1), w2)µY`(y,w1)(dw2)

with
Bj,k(y) =

∫
Γ−(y)

Gj(Yk(y, w))F (w)µy(dw), y ∈ ∂Ω.

We use the µ-preserving change of variables in (5.12), namely

(y, w1) ∈ Γ+ → (z, u) = (Y`(y, w1), V`(y, w1)) = ξ ◦ U `(y, w1) ∈ Γ−

so that y = Y`(z, u), w1 = V`(z, u) and we obtain

Ij(ϕ) =

∫
Γ−

F (u)Bj,k(Y`(z, u))dµ−(z, u)

∫
Γ+(z)

ϕ(z, w2)µz(dw2)

which is exactly (5.11). �

5.2. About the essential spectral radius of M0H. A consequence of the above is the following
stability result for the essential spectral radius of M0H:

Theorem 5.6. Let H ∈ B(L1
+, L

1
−) be a stochastic regular partly diffuse boundary operator given

by (3.8). Then,
ress(M0H) = ress(M0α(·)R).

In particular, ress(M0H) 6 supx∈∂Ω α(x).

Proof. For notation simplicity, we simply denote by αR the operator α(·)R and by β K the operator
(1 − α(·))K (i.e. β(·) = 1 − α(·)). Let λ ∈ C with |λ| > 1. Define K = (M0β K)R(λ,M0αR).
One has

K = λ−1
∞∑
j=0

M0β K
(
λ−1M0αR

)j
and K2(M0β K) = λ−2

∑
k,`>0

λ−k−`M0β K (M0αR)k M0β K (M0αR)` M0β K.

Notice that, for any k, ` > 0, the operator

M0β K (M0αR)k M0β K (M0αR)` M0β K

is dominated by M0K (M0R)k M0K (M0R)` M0K and, from Theorem 5.1, this last operator is weakly-
compact. This shows that

K2(M0β K) : L1
+ → L1

+

is a weakly-compact operator. This results in the weak-compactness of the operator K3 and, as
well-known, (M0β KR(λ,M0αR))6 is compact. Using the terminology of [33], we have M0β K
is (M0αR)-power compact and this is enough to ensure that ress(M0H) = ress(M0α(·)R) (see
[33, Corollary 1.4]). The last estimate is obvious since R is stochastic and ress(M0α(·)R) 6
‖M0α(·)R‖B(L1

+). �
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Remark 5.7. For regular diffuse boundary operator (i.e. H = K or, equivalently, α = 0), we have
ress(M0H) = 0 and M0H is power-compact.

6. KINETIC SEMIGROUP FOR REGULAR PARTLY DIFFUSE BOUNDARY OPERATORS

We introduce the following set of Assumptions:

Assumption 6.1. The regular stochastic partly diffuse boundary operator

H = α(·)R + (1− α(·))K

is such that
A1) Range(K) ⊂ Y−1 ;
A2) R(Y+

1 ) ⊂ Y−1 ;
A3) supx∈∂Ω α(x) < 1.

Remark 6.2. In the above set of Assumptions, it is possible to replace Y±1 with L1(Γ±, τ∓dµ±).
However, in this case, Assumption A2) is not necessarily satisfied for practical examples of bound-
ary conditions (see Example 6.4).

Example 6.3. Consider the classical Maxwell diffuse boundary condition for which

[Hf ](x, v) =
M(v)

γ(x)

∫
v′·n(x)>0

f(x, v′)|v′ · n(x)|dv′, ∀(x, v) ∈ Γ−

with

M(v) =
1

(2πθ)d/2
exp

(
−|v|

2

2θ

)
, and γ(x) =

∫
u·n(x)<0

M(u)|u·n(x)|du, ∀x ∈ ∂Ω

for some θ > 0. Notice that, actually, γ is independent of x and

γ(x) = γd := Cd

∫
Rd

|v|M(v)dv, ∀x ∈ ∂Ω

for some universal constant Cd = |Sd−2|
|Sd−1|

∫ 1

0
t(1− t2)

d−3
2 dt. One has then H(L1

+) ⊂ Y−1 . Indeed,

for f ∈ L1
+ nonnegative, one has

‖Hf‖Y−1 =
1

γd

∫
∂Ω
π(dx)

∫
v·n(x)<0

|v|−1M(v)|v · n(x)|dv

×
∫
v′·n(x)>0

f(x, v′)|v′ · n(x)|dv′

6
1

γd

∫
∂Ω
π(dx)

∫
v′·n(x)>0

f(x, v′)|v′ · n(x)|dv′ = 1

2γd

∫
Γ+

fdµ

where we used that
∫
RdM(v)dv = 1 for the first inequality. This shows that Range H ⊂ Y−1 . This

result extends easily to the case in which the temperature θ depends on x ∈ ∂Ω, i.e. θ = θ(x) with
θ(x) > θ0 > 0 for any x ∈ ∂Ω.
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Example 6.4. Recalling that both V and the measurem are invariant under the orthogonal group
let us consider the pure reflection boundary operator

Rϕ(x, v) = ϕ(x, v − 2(v · n(x))n(x)), (x, v) ∈ Γ−, ϕ ∈ L1
+.

and let ϕ ∈ Y+
1 . Then, with the change of variables w = v − 2(v · n(x))n(x) such that |w| = |v|

and v = w − 2(w · n(x))n(x) (which preserves the measure dµ±) we get

‖Rϕ‖Y−1 =

∫
Γ−

ϕ(x, v − 2(v · n(x))n(x)) |v|−1|v · n(x)|m(dv)π(dx)

=

∫
Γ+

ϕ(x,w)|w|−1 |w · n(x)|π(dx)m(dw),

i.e. R(Y+
1 ) ⊂ Y−1 .

Notice that, in this example, in full generality, we can not replace Y−1 with L1(Γ−, τ+dµ−).
Actually, requiring that

R(L1(Γ+, τ−dµ+)) ⊂ L1(Γ−, τ+dµ−)

amounts to assume that there exists c > 0 such that τ+(x,V(x, v)) 6 cτ−(x, v) for any (x, v) ∈ Γ+

which is a geometrical condition not satisfied if Ω is not strictly convex.

A key point is that, under Assumptions 6.1, the following holds:

Lemma 6.5. Assume H ∈ B(L1
+, L

1
−) satisfies Assumptions 6.1. Then, for any ϕ ∈ L1

+

ψ = R(1,M0(αR))M0((1− α)K)ϕ ∈ Y+
1

so that Hψ ∈ Y−1 .
Proof. Notice that, since supx∈∂Ω α(x) = α0 < 1, one has ‖M0(αR)‖B(L1

+) 6 α0 < 1 and

R(1,M0(αR)) is well-defined. From Assumption 6.1 A1), (1−α(·))Kϕ ∈ Y−1 . Then, from (2.10),
g = M0(1− α)Kϕ ∈ Y+

1 . From Assumption 6.1 A2), αRg ∈ Y−1 and, from (2.10), M0αRg ∈ Y+
1 .

More precisely, ‖M0αR‖B(Y+
1 ) 6 α0 < 1 so that

ψ =
∞∑
n=0

(M0(αR))ng ∈ Y+
1 .

Now, it is clear that Hψ ∈ Y−1 since H(Y+
1 ) ⊂ Y−1 (notice that K maps any function in Y−1 while

R(Y+
1 ) ⊂ Y−1 )). �

We can now state our main existence and uniqueness result about invariant density:

Theorem 6.6. Let H ∈ B(L1
+, L

1
−) be a regular stochastic partly diffuse boundary operator and

let Assumptions 6.1 and 4.4 be satisfied. Then, (TH,D(TH)) is the generator of a stochastic C0-
semigroup (UH(t))t>0. Moreover, (UH(t))t>0 is irreducible and has a unique invariant density
ΨH ∈ D(TH) with

ΨH(x, v) > 0 for a. e. (x, v) ∈ Ω× Rd, ‖ΨH‖X = 1

and Ker(TH) = Span(ΨH).Moreover, (UH(t))t>0 is ergodic, Eq. (4.2) holds andX = Ker(TH)⊕
Range(TH).
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Proof. We begin with proving that, under Assumptions 6.1, 1 ∈ Sp(M0H). Indeed, being both M0

and H stochastic, the spectral radius of M0H is rσ(M0H) = 1 ∈ S(M0H). According to Theorem
5.6, one also has ress(M0H) = ress(M0(αR)) 6 supx∈∂Ω α(x) < 1, i.e.

ress(M0H) < 1 = rσ(M0H).

As well-known (see [23, Theorem 2.1]), this implies that 1 is an isolated eigenvalue of M0H. More-
over, being M0H irreducible, we deduce from [23, Theorem 2.2] the uniqueness and the strict
positivity (almost everywhere) of a nonnegative eigenfunction ϕ.

Let us consider now λ ∈ C with Reλ > 0. Considering the modulus operator |MλH| (see [14]
for a precise definition) one has

|MλH| 6 M0H and |MλH| 6= M0H.

In particular, from [23, Theorem 4.3], rσ (|MλH|) < rσ (M0H) = 1. Since moreover, rσ(MλH) 6
rσ(|MλH|) according to [14, Theorem 1], this proves that rσ(MλH) < 1, i.e. 1 /∈ S(MλH). We
conclude that A = TH thanks to [4, Theorem 4.5]. Let us now show that the eigenfunction ϕ lies
in Y+

1 . Being M0Hϕ = ϕ, we have ϕ = M0(αR)ϕ + M0(1 − α)Kϕ so that, since 1 −M0(αR) is
invertible,

ϕ = R(1,M0(αR))M0((1− α)K)ϕ.

From Lemma 6.5, we get that ϕ ∈ Y+
1 . We deduce then from Proposition 4.2 that there exists

ΨH ∈ D(TH) nonnegative and such that THΨH = 0. We conclude with Theorem 4.7. �

Remark 6.7. The fact that TH is the generator of (UH(t))t>0 does not depend on A1) and A2) in
Assumptions 6.1.

7. ASYMPTOTIC STABILITY OF COLLISIONLESS KINETIC SEMIGROUPS

The object of this section is to complement Theorem 4.7 and Theorem 6.6 where a convergence
in Cesarò means of (UH(t))t>0 to its ergodic projection is given. Indeed, under a quite weak
additional assumption on the kernel ofK we will show that (UH(t))t>0 is asymptotically stable, i.e.
UH(t)f converges in norm as t→ +∞. In particular

lim
t→∞
‖UH(t)f −ΨH‖X = 0 (7.1)

for any density f ∈ X , i.e. any nonnegative f with ‖f‖X = 1. For the sake of simplicity, we
restrict ourselves to the case in whichm(dv) = dv is the Lebesgue measure over

V =
{
v ∈ Rd ; m 6 |v| 6M

}
where 0 6 m < M 6 ∞, although the surface Lebesgue measure on the unit sphere can also be
dealt with, see Remark 8.2 below.

In order to prove asymptotic stability of (UH(t))t>0 we first describe the movement of parti-
cles as a piecewise deterministic Markov process. Then we explain how the stochastic semigroup
(UH(t))t>0 can be defined by this process and finally we prove the asymptotic stability of this
semigroup.
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7.1. Piecewise deterministic Markov process. Consider the following stochastic process which
describes the movement of particles. A particle is moving in the space Ω with a constant velocity
and when it strikes the boundary ∂Ω a new direction is chosen randomly from the directions that
point back into the interior of Ω and the motion continues. We recall that if x ∈ ∂Ω and v′ ∈
Γ+(x) then the distribution of velocity v after reflection is given by a probability measure P (x, v′, ·)
defined on Borel subsets B of Γ−(x) by

P (x, v′, B) = α(x)δV(x,v′)(B) + (1− α(x))

∫
B
h(x, v, v′)m(dv).

where V(x, v) is the regular reflection law. From the Assumptions 6.1 A3) it follows that there
exists ε0 = 1− supx∈∂Ω α(x) > 0 such that 1− α(x) > ε0 for all x ∈ ∂Ω. This implies that

P (x, v′,dv) > ε0h(x, v′, v)m(dv). (7.2)

Let a particle starts at time t = 0 from some point x ∈ Ω with some initial velocity v ∈ V \ {0}
or from x ∈ ∂Ω with velocity v ∈ Γ−(x). Let x(t) be the position and v(t) be the velocity of the
particle at time t and let t1 = t+(x, v). Then x(t) = x + vt and v(t) = v for t ∈ [0, t1). Let
0 < t1 < t2 < . . . be a sequence of times when a particle hits the boundary ∂Ω. Then

Prob(v(tn) ∈ B |x(t−n ) = x, v(t−n ) = v′) = P (x, v′, B)

for every Borel subset B of Γ+(x), where x(t−n ) and v(t−n ) are the left-hand side limits of x(t) and
v(t), respectively, at the point tn. Moreover

x(t) = x(tn) + v(tn)(t− tn), v(t) = v(tn) for t ∈ [tn, tn+1),

x(tn) = x(t−n ) and tn+1 = tn + t+(x(tn), v(tn)) for n > 1.
It is easy to observe that

ξ(t) = (x(t), v(t)), t > 0,

defines a piecewise deterministic Markov process [31] with values in the space

E = (Ω× V ) ∪ Γ− .

The process {ξ(t)}t>0 has càdlàg sample paths, i.e., they are right-continuous with left limits. Let
P(t, x, v, B) be the transition probability function for this process, i.e.

P(t, x, v, B) = Prob(ξ(t) ∈ B | ξ(0) = (x, v)),

where B are Borel subsets of E . The semigroup (UH(t))t>0 can be uniquely determined by the
transition probability function P(t, x, v, B) because the following relation holds∫

B
UH(t)f(y, w) dy ⊗m(dw) =

∫
Ω×V

P(t, x, v, B)f(x, v)dx⊗m(dv)

for all f ∈ X , Borel subsets B of Ω× V and t > 0.

Remark 7.1. It should be noted that we do not assume here that Ω is a strictly convex set and it can
happen that at some boundary points x some outward or inward vectors belong to the tangent space
Γ0(x). In such cases trajectories can be tangent to the boundary ∂Ω, especially in the case when
we consider the specular reflection (see Fig. 3). But there is no need to consider such pathological
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FIGURE 3. Examples of pathological trajectories in the case of the specular reflec-
tion v′ – outward vector, v – inward vector.

trajectories because the set Γ0 has zero measure for µ and does not play any role in the definition
of the boundary operator H .

7.2. Asymptotic stability. Now we check that the semigroup (UH(t))t>0 is partially integral (see
Appendix B.1 for precise definition), i.e. that for some t > 0 there there exists an integrable
function q : Ω× V × Ω× V → [0,∞), q 6≡ 0, such that

P(t, x, v, B) >
∫
B
q(x, v, y, w) dy ⊗m(dw). (7.3)

In order to prove this property we need a rather weak assumption concerning function h(x, v, v′).

Definition 7.2. Let H ∈ B(L1
+, L

1
−) be a stochastic partly diffuse boundary operator of the form

(3.8). We say that the boundary operator H is weakly locally diffuse (WLD) if for each point x ∈ ∂Ω
and v′0 ∈ Γ+(x) there exists a v0 ∈ Γ−(x) and δ > 0 such that

k(x, v, v′) > 0 for µx-a. e. v ∈ Γ−(x) ∩B(v0, δ), v′ ∈ Γ+(x) ∩B(v′0, δ). (7.4)

If we replace condition (7.4) by a stronger one:

k(x, v, v′) > δ for all v ∈ Γ−(x) ∩B(v0, δ), v′ ∈ Γ+(x) ∩B(v′0, δ). (7.5)

then the boundary operator H will be called strongly locally diffuse (SLD).

Lemma 7.3. Assume that the operator H is weakly locally diffuse and satisfies Assumptions 4.4
and 6.1. Then the semigroup (UH(t))t>0 is partially integral.

Proof. Let (x, v) ∈ E0 = Ω × (V \ {0}) be the initial position and velocity of a particle. At time
t1 = t+(x, v) it hits the point x1 = x + t+(x, v)v on the boundary ∂Ω. Then we choose a new
velocity v̄1 ∈ Γ−(x1) and at time t1 + t+(x1, v̄1) the particle hits the boundary for the second time
at the point x̄2 = x1 + t+(x1, v̄1)v̄1. We choose a new velocity v̄2 ∈ Γ−(x2). Let t > 0 satisfies
inequalities

t1 + t+(x1, v̄1) < t < t1 + t+(x1, v̄1) + t+(x2, v̄2) (7.6)

and let τ = t− t1. We will find an neighborhood U of (v̄1, v̄2) ∈ V such that for (v1, v2) ∈ U we
have v1 ∈ Γ−(x1), v2 ∈ Γ−(x1 + t+(x1, v1)v1) and (7.6) is satisfied for (v1, v2) ∈ U . Then

x(t) = x2 + (τ − t+(x1, v1))v2

= x1 + t+(x1, v1)v1 +
(
τ − t+(x1, v1)

)
v2
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FIGURE 4. Position x(t) of the particle after two collisions with the boundary.

and v(t) = v2 is the position at time t of the particle if it starts from x with velocity v, and after
hitting the boundary we choose velocities v1 and v2 (see Fig. 4). We define the function F : U → V
by

F (v1, v2) =
(
x1 + t+(x1, v1)v1 +

(
τ − t+(x1, v1)

)
v2, v2

)
= (F1(v1, v2), F2(v1, v2)) .

Now we check that if

∇v̄1t+(x1, v̄1) · v̄2 6= t+(x1, v̄1) +∇v̄1t+(x1, v̄1) · v̄1 (7.7)

then the function F is a local diffeomorphism in some neighborhood of (v̄1, v̄2). Indeed, let us
denote the Jacobian matrix of F by JF =

(
∂F
∂v1

, ∂F
∂v2

)
. One checks easily that

detJF (v1, v2) = det

(
∂F1

∂v1

)
= det

( ∂

∂v1

(
t+(x1, v1)(v1 − v2)

)
=: detM

where the matrix M is given by

M = c Id +A, A = a⊗ u = atu,

where a is the vector a = ∂v1t+(x1, v1), u = v1 − v2 and c = t+(x1, v1). We check then that ∗

detM = cd−1 (c+ a · u) = td+(x1, v1) + td−1
+ (x1, v1)∇v1t+(x1, v1) · (v1 − v2).

Consequently, if (7.7) holds then the Jacobian matrix JF (v̄1, v̄2) is non singular and F is a dif-
feomorphism in some neighborhood of (v̄1, v̄2). Observe that condition (7.7) does not hold only

∗Indeed, let p(z) be the characteristic polynomial of A, p(z) = det(A− zId). Since the rank of A is less or equal to
1, z = 0 is a root of p with multiplicity at least d− 1 while the trace tr(A) = u · a should also be a root of p. Therefore,

p(z) = (−1)d zd−1(z − u · a)

and, taking z = −c gives the result.
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on a (2d − 1)-dimensional differentiable manifold in R2d and we can change equality in (7.7) to
inequality after a small perturbation of the vector v̄2. We have

P(t, x, v, B) = Prob((x(t), v(t)) ∈ B)

> Prob((v1, v2) ∈ U : F (v1, v2) ∈ B)

>
∫

F−1(B)

ε2
0k(x1, v1, v)k(x1 + v1t+(x1, v1), v2, v1)m(dv1)m(dv2).

Since x1 = x+ vt+(x, v) we can define

κ(x,v)(v1, v2) := ε2
0k(x1, v1, v)k(x1 + v1t+(x1, v1), v2, v1).

Since k satisfies WLD, for each (x0, v0) ∈ E0 there exist δ′ > 0 and v̄1 ∈ Γ−(x1), v̄2 ∈
Γ−(x1 + t+(x1, v̄1)v̄1) such that κ(x,v)(v1, v2) > 0 a. e. for (x, v) ∈ B((x0, v0), δ′) and (v1, v2) ∈
B((v̄1, v̄2), δ′). Without lost of generality we can assume that condition (7.7) holds and F is a
diffeomorphism from U0 = B((v̄1, v̄2), δ′) onto F (U0). Then

P(t, x, v, B) >
∫

F−1(B)

κ(x,v)(v1, v2)m(dv1)m(dv2)

=

∫
B∩F (U0)

κ(x,v)(F
−1(y, w)) |detJF−1(y, w)| dy ⊗m(dw)

where JF−1(y, w) =
(
∂F−1

∂y , ∂F
−1

∂w

)
is the Jacobian matrix of F−1. From the last inequality it

follows that (7.3) holds for

q(x, v, y, w) = 1F (U0)(y, w)κ(x,v)(F
−1(y, w)) |detJF−1(y, w)|

and the semigroup (UH(t))t>0 is partially integral. �

Remark 7.4. It is very likely that an analytical proof based upon the Dyson-Phillips-like represen-
tation of the semigroup (UH(t))t>0 obtained in [3, 5] may replace the adopted probabilistic proof.
Such a proof seems more involved than the probabilistic one given here and we did not investigate
further on this point.

Combining Theorem 4.7, Theorem B.2 and Lemma 7.3 we obtain:

Theorem 7.5. Let the assumptions of Theorem 4.7 be satisfied. Assume moreover that H is weakly
locally diffuse, then the semigroup (UH(t))t>0 is asymptotically stable.

Remark 7.6. In particular, under the conditions of Theorem 6.6, the semigroup (UH(t))t>0 is
asymptotically stable.
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8. SWEEPING PROPERTIES OF COLLISIONLESS KINETIC SEMIGROUPS

The asymptotic stability of the semigroup (VH(t))t>0 is strictly connected with the existence of
an invariant density which was assumed in Theorem 4.7 and proved in Theorem 6.6. We inves-
tigate here the behaviour of (UH(t))t>0 when this semigroup has no invariant density. A crucial
role is played by sweeping property (see Appendix B.2). We first establish the following which
complements Lemma 7.3:

Lemma 8.1. If H is strongly locally diffuse (in the sense of Definition 7.2), then, defining E0 =
Ω × (V \ {0}), for every (x0, v0) ∈ E0 there exist ε > 0, t > 0, and a measurable function
η0 : E0 → [0,∞) such that ∫

E0
η(x, v) dx⊗m(dv) > 0

and
q(x, v, y, w) > η(y, w)1B0(ε)(x, v) for (y, w) ∈ Ω× V , (8.1)

where B0(ε) is the open ball in E0 centered at (x0, v0) with radius ε.

Proof. The proof uses the notations introduced in the proof of Lemma 7.3. Recall that (UH(t))t>0

is partially integral with

q(x, v, y, w) = 1F (U0)(y, w)κ(x,v)(F
−1(y, w)) |detJF−1(y, w)| .

If the operator H is strongly locally diffuse then there there exist δ′ > 0 and v̄1 ∈ Γ−(x1), v̄2 ∈
Γ−(x1 + t+(x1, v̄1)v̄1) such that κ(x,v)(v1, v2) > δ′ for all (x, v) ∈ B((x0, v0), δ′) and (v1, v2) ∈
B((v̄1, v̄2), δ′). Now setting

η(y, w) = 1F (U0)(y, w) |detJF−1(y, w)|

we check that η satisfies the desired properties. �

Remark 8.2. We note that Lemma 8.1 and Lemma 7.3 are also true when m(dv) is a surface
Lebesgue measure on a sphere but the proofs are slightly more technical. Indeed, instead of two
reflections at the boundary (see Figure 4) we need one more reflection to achieve the property that
the semigroup is partially integral.

According to Theorem B.4 and the previous Lemma, we have:

Theorem 8.3. Let us assume that (UH(t))t>0 is stochastic and has no invariant density. If the
boundary operator H is strongly local diffuse then (UH(t))t>0 is sweeping from all compact subsets
of E0.

Proof. Since ((Ω× V ) \ E0) is of zero measure for the measure dx⊗m(dv), we can assume that
the semigroup (UH(t))t>0 is defined on the space L1(E0,B(E0), dx⊗m(dv)). Then, on this space,
Lemma 8.1 exactly means that (UH(t))t>0 satisfies property (K) of Theorem B.4. �

Remark 8.4. For any ε > 0 and M > ε we define the set

Fε,M = {(x, v) ∈ Ω× V : ε 6 |v| 6M, dist(x, ∂Ω) > ε},
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where dist(x, ∂Ω) = inf{|x − y| : y ∈ ∂Ω}. Since the set Fε,M is compact in the space E0, for
every f ∈ X we have

lim
t→∞

∫
Fε,M

UH(t) f(x, v) dx⊗m(dv) = 0. (8.2)

This result has the following probabilistic interpretation. If the semigroup (UH(t))t>0 has no in-
variant density, the velocity of almost all particles converges to 0 or to∞ or particles get close to
the boundary ∂Ω when time goes to infinity.

We complement Theorem 8.3 by a more precise sweeping result:

Theorem 8.5. Assume that H ∈ B(L1
+, L

1
−) is a regular stochastic partly diffuse operator given

by (3.8) and satisfying Assumptions 4.4. Assume moreover that H is weakly locally diffuse (WLD),
supx∈∂Ω α(x) < 1 and

µ+

({
(x, v′) ∈ Γ+;

∫
Γ−(x)

k(x, v, v′)τ+(x, v)µx(dv) = +∞

})
> 0. (8.3)

Then

lim
t→∞

∫
Ω×V

1{|v|>ε}UH(t)f(x, v) dx⊗m(dv) = 0, ∀ε > 0, ∀f ∈ X. (8.4)

Proof. Note first that TH is the generator of (UH(t))t>0 (see Remark 6.7). By virtue of Theorem
B.5, the proof simply consists in showing that (UH(t))t>0 has no invariant density and in construct-
ing a function Ψ = Ψ(x, v) such that

0 < Ψ(x, v) <∞ a. e. on Ω× V,
∫

Ω×V
Ψ(x, v)dx⊗m(dv) = +∞,∫

Ω×V
1{|v|>ε}Ψ(x, v)dx⊗m(dv) < +∞ (ε > 0) (8.5)

and

UH(t)Ψ 6 Ψ, ∀t > 0. (8.6)

The proof will be given in several steps. First of all, according to Theorem 5.6, there exists
ϕ ∈ L1

+ such that

M0Hϕ = ϕ, ‖ϕ‖L1
+

= 1. (8.7)

Since M0K is irreducible then this ϕ is unique.
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• First step: The function Ψ = Ξ0Hϕ satisfies (8.5). Indeed, one first notices that∫
Γ−

[Kϕ](x, v)τ+(x, v)dµ−(x, v)

=

∫
∂Ω

dπ(x)

∫
Γ−(x)

(∫
Γ+(x)

k(x, v, v′)ϕ(x, v′)µx(dv′)

)
τ+(x, v)µx(dv)

=

∫
∂Ω

dπ(x)

∫
Γ+(x)

(∫
Γ−(x)

k(x, v, v′)τ+(x, v)µx(dv)

)
ϕ(x, v′)µx(dv′)

=

∫
Γ+

(∫
Γ−(x)

k(x, v, v′)τ+(x, v)µx(dv)

)
ϕ(x, v′)dµ+(x, v′).

Therefore, under assumption (8.3) and because ϕ(x, v′) > 0 a.e. on Γ+, we have∫
Γ−

[Kϕ] (x, v)τ+(x, v)dµ−(x, v) = +∞.

Using Lemma 2.8 – identity (2.9) – and with ε0 = 1− supx∈∂Ω α(x) > 0∫
Ω×V

Ψ(x, v)dx⊗m(dv) =

∫
Γ−

[Hϕ] (x, v)τ+(x, v)dµ−(x, v)

> ε0

∫
Γ−

[Kϕ] (x, v)τ+(x, v)dµ−(x, v) = +∞.

Hence, ∫
Γ−

[Hϕ] (x, v) |v|−1dµ−(x, v) =∞

since τ−(x, v) 6 |v|−1D (where we recall thatD is the diameter of Ω). Thus, Hϕ /∈ Y−1 and 0 is not
an eigenvalue of TH (associated to a nonnegative eigenvalue) according to Proposition 4.2. Since
TH is the generator of (UH(t))t>0, this means that (UH(t))t>0 has no invariant density. Moreover,∫

Ω×V
1{|v|>ε}Ψ(x, v)dx⊗m(dv) =

∫
Γ−

1{|v|>ε} [Hϕ] (x, v)τ+(x, v)dµ−(x, v)

6
D

ε
‖Hϕ‖L1

−
=
D

ε
‖ϕ‖L1

+
.

Using that M0Hϕ = ϕ, one has ϕ(x, v) = [Hϕ] (x− τ−(x, v)v, v), for any (x, v) ∈ Γ+ and, from
the irreducibility of M0H, we get 0 < ϕ(x, v) < +∞ a.e. on Γ+ which in turns implies that

0 < Ψ(x, v) = Ξ0Hϕ(x, v) = [Hϕ] (x− t−(x, v)v, v) < +∞ a.e. on Ω× V.
This proves that Ψ satisfies (8.5).

In order to prove that Ψ satisfies also (8.6) we shall resort to Lemma 3.8 and for any n ∈ N,
introduce the regular diffuse operator given by Hn = αR + (1 − α)Kn with Kn is defined as in
Lemma 3.8. As before, for any n ∈ N, there exists ϕn ∈ L1

+ such that

M0Hnϕn = ϕn, ‖ϕn‖L1
+

= 1.
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• Second step: limn ‖ϕn − ϕ‖L1
+

= 0.

To prove this, we notice that ϕn −M0αRϕn = M0 [(1− α)Kn]ϕn so that

ϕn = R(1,M0αR) (M0(1− α)Kn)ϕn =: Lnϕn, ∀n ∈ N.
According to Theorem 5.1 (see also the proof of Theorem 5.6), for any n ∈ N, the operator L3

n is
weakly compact so that L6

n is compact. By virtue of Lemma 3.8, it holds that

lim
n

∥∥L6
n − L6

∥∥
B(L1

+)
= 0

where L := R(1,M0αR) (M0(1− α)K) . Therefore, since ϕn = L6
nϕn, the sequence (ϕn)n is

relatively compact in L1
+ and a subsequence – still denoted (ϕn)n – converges in L1

+ to some
g ∈ L1

+ with unit norm. It is easy to check then that g = L6g which implies that M0Hg = g.
We deduce from this that g = ϕ by uniqueness. This shows finally that the whole sequence (ϕn)n
converges to ϕ in L1

+.
• Third step: Introducing the semigroup (VHn(t))t>0 associated to the boundary operator Hn

n ∈ N, it holds
lim
n
‖VHn(t)f − UH(t)f‖X = 0, ∀t > 0, f ∈ X. (8.8)

Indeed, for any n ∈ N the resolvent of the generator THn is given by

R(λ,THn) = ΞλHn (λ−MλHn)−1 Gλ + Rλ

and it is easy to check, using again Lemma 3.8 and Eq. (2.1) that

lim
n
‖R(λ,THn)f −R(λ,A)f‖X = 0, ∀λ > 0, f ∈ X

where we recall that (A,D(A)) is the generator of (UH(t))t>0. We deduce the second step from the
Trotter-Kato approximation Theorem [17, Theorem 3.19, p. 83].
• Fourth step. Introduce then Ψn = M0Hnϕn. According to Theorem 6.6,

VHn(t)Ψn = Ψn, ∀n ∈ N, t > 0.

On the other hand, since limn ‖Hnϕn − Hϕ‖L1
−

= 0, we have, for any ε > 0,

lim
n

∥∥1{|v|>ε}Hnϕn − 1{|v|>ε}Hϕ
∥∥
L1
−

= 0

and also
lim
n

∥∥Ξ0(1{|v|>ε}Hnϕn)− Ξ0(1{|v|>ε}Hϕ)
∥∥
L1
+

= 0

or equivalently
lim
n

∥∥1{|v|>ε}Ψn − 1{|v|>ε}Ψ
∥∥
L1
+

= 0.

Let then
Ψε
n = 1{|v|>ε}Ψn, Ψε = 1{|v|>ε}Ψ, n ∈ N, ε > 0,

we note that
VHn(t)Ψε

n 6 Ψn and 1{|v|>ε}VHn(t)Ψε
n 6 Ψε

n

for any n ∈ N, ε > 0, t > 0.Using the Third step, we can pass to the limit in norm in this inequality
as n→ +∞ and get

1{|v|>ε}UH(t)Ψε 6 Ψε 6 Ψ.
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Letting ε→ 0, the monotone convergence theorem yields to UH(t)Ψ 6 Ψ, i.e. Ψ satisfies (8.6) and
the proof is concluded. �

APPENDIX A. ABOUT THE BALLISTIC FLOW

We establish in this appendix several important properties of the so-called ballistic flow

ξ : (x, v) ∈ Γ+ 7→ ξ(x, v) = (x− τ−(x, v)v, v) ∈ ∂Ω× V

which are fundamental for the proof of our main weak compactness result Theorem 5.1. For the
clarity of exposition, we postponed these results in an Appendix but strongly believe that the results
stated here have their own mathematical interest. In this Appendix, we will use the following
notations: for any element z = (x, v) of the extended phase space Ω× V , we will call x the space
component of z and v the velocity component of z, writing x = zs and v = zv.

With the notations of [20], ξ = xb. Notice that, as already observed in [20, 34], in non convex
domain this deterministic flow does not avoid the grazing set Γ0, i.e. in full generality

ξ(x, v) ∈ Γ− ∪ Γ0

and – as far as the regularity of ξ is concerned – the set {(x, v) ∈ Γ+ ; ξ(x, v) ∈ Γ0} will be
particularly relevant. Notice though that

ξ ∈ Γ+ ∪ Γ0 → Γ− ∪ Γ0

is invertible with inverse

ξ−1 : (x, v) ∈ Γ− ∪ Γ0 7−→ ξ−1(x, v) = (x+ τ−(x, v)v, v) ∈ Γ+ ∪ Γ0.

Moreover, according to (2.5) with ψ = 1Γ0 we see that∫
Γ+∪Γ0

1Γ0(ξ(x, v))µ+(dx,dv) = µ−(Γ0) = 0

which proves that

µ+ ({(x, v) ∈ Γ+ ∪ Γ0 ; ξ(x, v) ∈ Γ0}) = 0. (A.1)

We introduce the following where we focus on velocity which are unit vectors (this is no loss of
generality by virtue of (2.2))

Definition A.1. Let

Γ̂± =
{

(x, ω) ∈ ∂Ω× Sd−1 ; (x, ω) ∈ Γ± and ξ(x, ω) ∈ Γ∓

}
and introduce, for any x ∈ ∂Ω the section

Γ̂±(x) =
{
ω ∈ Sd−1 ; (x, ω) ∈ Γ̂±

}
.
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A.1. Regularity of the travel time. The main result of this section is the following:

Theorem A.2. The set Γ̂± are open subsets of Γ± and

τ∓ : (x, ω) ∈ Γ̂± 7→ τ∓(x, ω) ∈ R+

is of class C1.

We will split the proof of the above in a series of Lemma – dealing with τ− but all the results
have their counterpart for τ+:

Lemma A.3. The set Γ̂+ is an open subset of Γ+ and τ− is continuous on Γ̂+.

Proof. Let us fix x0 ∈ ∂Ω and ω0 ∈ Γ̂+(x0), i.e. ω0 · n(x0) > 0 and ω0 · n(ξ0) < 0 where
ξ0 = x0 − τ−(x0, ω0)ω0 is the space component of ξ(x0, ω0). For simplicity, set

τ0 = τ−(x0, ω0).

Let (xn, vn) ⊂ Γ+ be a given sequence such that limn(xn, vn) = (x0, ω0). In particular, we can
assume that |vn| 6= 0 for any n ∈ N. Set then ωn = |vn|−1vn ∈ Sd−1 for any n ∈ N and

yn = xn − τ−(xn, ωn)ωn ∈ ∂Ω ∀n ∈ N.
Taking a subsequence if necessary (recall that ∂Ω is compact), we may assume that (yn)n converges
to some y0 ∈ ∂Ω. Then, since τ−(xn, ωn) = |yn − xn| we get that

lim
n
τ−(xn, vn) = lim

n
τ−(xn, ωn)|vn|−1 = lim

n
τ−(xn, ωn) = |y0 − x0| =: τ1

and, consequently, letting n goes to infinity in the definition of yn yields

y0 = x0 − τ1ω0 ∈ ∂Ω.

This in particular shows that τ0 6 τ1. To prove that τ1 = τ0, let us argue by contradiction and
assume that τ1 > τ0. Since both y0 = x0 − τ1ω0 and ξ0 = x0 − τ0ω0 belong to ∂Ω and since
ω0 · n(ξ0) < 0, the set {

t ∈
(
τ0 , τ1

)
; x0 − tω0 /∈ Ω

}
is open and not empty. Therefore, there exists δ > 0 such that τ1 > δ + τ0 and

x0 − tω0 /∈ Ω ∀t ∈ (τ0 , δ + τ0). (A.2)

Notice that xn − tωn ∈ Ω for all t ∈ (0, τ−(xn, ωn)) and any n ∈ N. Since limn τ−(xn, ωn) = τ1,
we get that, for n ∈ N large enough,

xn − tωn ∈ Ω ∀t ∈ (0, τ0 + δ).

Letting then n goes to infinity, we obtain x0 − tω0 ∈ Ω for any t ∈ (0, τ0 + δ) which contradicts
(A.2). Therefore, τ1 = τ0 which proves the continuity of τ− on Γ̂+. Let us now show that Γ̂+

is open. We keep the previous notations, fixing (x0, ω0) ∈ Γ̂+. Let us assume that there exists a
sequence (xn, ωn) ⊂ Γ+ such that limn(xn, ωn) = (x0, ω0) where ωn ∈ Sd−1 for any n ∈ N but
(xn, ωn) /∈ Γ̂+. This means that

ωn · n(xn − τ−(xn, ωn)ωn) = 0, ∀n ∈ N.
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From the previous part of the proof, we know that limn xn − τ−(xn, ωn)ωn = x0 − τ−(x0, ω0)ω0

and, since n(·) is continuous, we get

ω0 · n(x0 − τ−(x0, ω0)ω0) = 0,

which contradicts the assumption that (x0, ω0) ∈ Γ̂+. Therefore, no sequence with the above
properties can exist and Γ̂+ is open. �

Lemma A.4. For any x ∈ ∂Ω, the mapping

ω ∈ Γ̂+(x) 7−→ τ−(x,w) ∈ R+

is differentiable and
∇ωτ− : (x, ω) ∈ Γ̂+ 7−→ τ−(x, ω) ∈ R+ (A.3)

is continuous.

Proof. As before, let us fix x0 ∈ ∂Ω and ω0 ∈ Γ̂+(x0). Since the normal vector n(·) is continuous
on ∂Ω, we deduce from Lemma A.3 that there exists a radius r > 0 such that

ω · n(x) > 0 and ω · n(ξs(x, ω)) < 0 ∀(x, ω) ∈ U(x0)×V(ω0), (A.4)

where U(x0) = B(x0, r) ∩ ∂Ω is an open neighbourhood of x0 and V(ω0) = B(ω0, r) ∩ Sd−1 is
an open neighbourhood of ω0. The continuity of τ− implies that there exists t0 > 0 such that

τ−(x, ω) > t0 > 0 ∀(x, ω) ∈ U(x0)×V(ω0). (A.5)

Since the mapping ξ : (x, ω) ∈ Γ̂+ 7→ ξ(x, ω) = (x − τ−(x, ω)ω, ω) ∈ Γ− is continuous,
invertible with inverse

ξ−1 : (y, ω) ∈ Γ− 7→ ξ−1(y, ω) = (y + τ+(y, ω)ω, ω) ∈ Γ̂+

and since ξ(Γ̂+) ⊂ Γ̂−, one has ξ−1 continuous. In particular

{(x− τ−(x, ω)ω, ω), (x, ω) ∈ U(x0)×V(ω0)}

is an open neighbourhood of ξ(x0, ω0) and

W(z0) := {x− τ−(x, ω)ω, (x, ω) ∈ U(x0)×V(ω0)}

is an open neighbourhood of z0 = x0 − τ−(x0, ω0)ω0 = ξs(x0, ω0) ∈ ∂Ω. Since ∂Ω is of class
C1 then (up to choosing a smaller neighbourhood W(z0) if necessary), there exists a C1 bijective
mapping

Ψ : y ∈ (−1, 1)d−1 7−→ Ψ(y) ∈W(z0)

with Ψ(0) = z0 and such that such that the range of the differential dΨ(y) has dimension d− 1 for
any y ∈ (−1, 1)d−1. We introduce open pieces of ∂Ω indexed by x ∈ ∂Ω

Sx = {x− τ−(x, ω)ω, ω ∈ V(ω0)} ⊂W(z0).

Define then
Ox = Ψ−1(Sx), x ∈ U(x0),
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one sees that, for any x ∈ ∂Ω, the mapping Ψ : y ∈ Ox 7→ Ψ(y) ∈ Sx is a parametrization of Sx.
Namely, given (x, ω) ∈ U(x0)×V(ω0), there is a unique y ∈ Ox such that x−τ−(x, ω)ω = Ψ(y).
Thus,

τ−(x, ω) = |x−Ψ(y)| and ω =
x−Ψ(y)

|x−Ψ(y)|
. (A.6)

In particular x0 − τ−(x0, ω0)ω0 = z0 = Ψ(0), and ω0 = x0−Ψ(0)
|x0−Ψ(0)| . Introduce the C1 mapping

H : (x, y) ∈ U(x0)× (−1, 1)d−1 7→ H(x, y) =
x−Ψ(y)

|x−Ψ(y)|
∈ V(ω0) (A.7)

and, for any z ∈ Rd \ {0}, let Pz denote the orthogonal projection on the hyperplane orthogonal to
z,

Pzh = h⊥z := h− 〈h, z̄〉 z̄, z̄ =
z

|z|
∈ Sd−1, h ∈ Rd.

Notice that Pz = Pz̄ for any z ∈ Rd \{0}. Because the differential of the mapping z ∈ Rd \{0} 7→
z
|z| is given by

h ∈ Rd 7→ −|z|−1Pzh, h ∈ Rd

it follows that the differential dyH(x, y) of H is given by

dyH(x, y) : h ∈ Rd 7−→ −
Px−Ψ(y) (dΨ(y)h)

|x−Ψ(y)|
= −Pω (dΨ(y)h)

|x−Ψ(y)|
, (A.8)

where ω = H(x, y) = |x − Ψ(y)|−1 (x−Ψ(y)). Note that the differential dyH(x, y) depends
continuously on (x, y) ∈ U(x0)× (−1, 1)d−1. Let us assume for a while that

Rank (dyH(x0, 0)) = d− 1. (A.9)

Then, the dimension of the range of dyH(x, y) remains of dimension d−1 for x close enough to 0.
Recalling that ω0 = |x0−Ψ(0)|−1 (x0 −Ψ(0)), we deduce from the local inverse function theorem
that, in some open neighbourhood U′(x0)× (−δ, δ)d−1 of (x0, 0) and a neighbourhood V′(ω0) of
ω0 such that the equation

ω = H(x, y) (x, y) ∈ U′(x0)× (−δ, δ)d−1

is solved uniquely as
y = G(x, ω), (x, ω) ∈ U′(x0)×V′(x0)

whereG(x, ·) is a C1 mapping on a neighbourhoodV′(ω0) of ω0 and the mapping (x, ω) 7→ G(x, ω)
is continuous on U′(x0)×V′(ω0). It follows that, for x ∈ U′(x0) the mapping

ω ∈ V′(ω0) 7−→ τ−(x, ω) = |x−Ψ(y)| = |x−Ψ(G(x, ω))|
is differentiable with differential dωτ−(x, ω) given by

dωτ−(x, ω) : h ∈ Rd 7−→ −〈x−Ψ(G(x, ω)),dΨ(G(x, ω))dωG(x, ω)h〉
|x−Ψ(G(x, ω))|

. (A.10)

Since dωG(x, ω) = (dyH(x,G(x, ω)))−1 and the mapping (x, ω) 7→ G(x, ω) is continuous then
so is

(x, ω) ∈ U′(x0)×V′(ω0) 7−→ dωτ−(x, ω)
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which proves the Lemma under assumption (A.9). It only remains to prove (A.9). Notice that

Range(dΨ(0)) =
{

dΨ(0)h; h ∈ Rd−1
}

is the (d− 1)-dimensional tangent space of ∂Ω at z0 = Ψ(0) with x0 −Ψ(0) = τ−(x0, ω0)ω0 and{
Px0−Ψ(0) (dΨ(0)h) ; h ∈ Rd−1

}
= Pω0(Range(dΨ(0))

is the orthogonal projection of Range(dΨ(0)) on the orthogonal hyperplane to ω0. One sees that

ω0 · n(Ψ(0)) < 0 =⇒ ω0 /∈ Range(dΨ(0)))

and consequently Pω0(Range(dΨ(0))) coincides with the orthogonal hyperplane to ω0. In partic-
ular, it has dimension d− 1 which is exactly (A.9). �

Lemma A.5. For any ω ∈ Sd−1, the mapping

x ∈ Γ̂+(ω) 7→ τ−(x,w) ∈ R+

is differentiable and

∇xτ− : (x, ω) ∈ Γ̂+ 7→ τ−(x, ω) ∈ R+

is continuous.

Proof. As in the previous Lemma, we fix x0 ∈ ∂Ω and ω0 ∈ Γ̂+(x0) and consider an open neigh-
bourhood U(x0)×V(ω0) of (x0, ω0) on which (A.4) and (A.5) hold. For any ω ∈ V(ω0), define

Sω = {x− τ−(x, ω)ω; x ∈ U(x0)}

and, with the notation of the previous Lemma, Sω ⊂ W(z0) for any ω ∈ V(ω0) where W(z0) is
the image of the C1 function

Ψ : y ∈ (−1, 1)d−1 7−→ Ψ(y) ∈W(z0)

with Ψ(0) = z0 and Rank(dΨ(y)) = d− 1 for any y ∈ (−1, 1)d−1. This allows to introduce, as in
the previous Lemma,Oω = Ψ−1(Sω) and Sω is parametrized by Ψ (defined now onOω), i.e. given
(x, ω) ∈ U(x0)×V(ω0), there is a unique y ∈ Oω such that x− τ−(x, ω)ω = Ψ(y) and (A.6) and
(A.7) still hold. We have seen in the proof of Lemma A.4 that H is C1 with differential dyH(x, y)

given by (A.8) and depending continuously on (x, y) ∈ U(x0)× (−1, 1)d−1. In particular, as seen
earlier, at (x, y) = (x0, 0) the differential dyH is given by

dyH(x0, 0) : h ∈ Rd−1 7−→ −Pω0 (dΨ(0)h)

|x0 −Ψ(0)|
= −Pω0 (dΨ(0)h)

τ−(x0, ω0)

and has (d− 1)-dimensional range. As before, from the implicit function theorem, there is a neigh-
bourhood (−δ, δ)d−1×U′′(x0) of (0, x0) and a neighbourhoodV′′(ω0) of ω0 on which the equation
ω = |x−Ψ(y)|−1 (x−Ψ(y)) with (y, x) ∈ (−δ, δ)d−1 ×U′′(x0) is solved uniquely as

y = Ĝ(ω, x), (ω, x) ∈ V′′(ω0)×U′′(x0)



44 B. LODS, M. MOKHTAR-KHARROUBI, AND R. RUDNICKI

where Ĝ(ω, ·) is a C1 mapping and (ω, x) ∈ V′′(ω0) × U′′(x0) 7→ Ĝ(ω, x) is continuous. It
follows that the mapping x ∈ U′′(x0) 7→ τ−(x, ω) =

∣∣∣Ψ(Ĝ(ω, x))− x
∣∣∣ is differentiable for any

ω ∈ V′′(ω0) with differential given by

dxτ−(x, ω) : h ∈ Tx 7−→ −
〈Ψ(Ĝ(ω, x))− x,dΨ(G(ω, x))dxĜ(ω, x)h− h〉

|Ψ(Ĝ(ω, x))− x|
(A.11)

where Tx is the tangent space of ∂Ω at x ∈ ∂Ω. Let us prove now the continuity of dxτ−(·, ·).

Because ω + Ψ(Ĝ(ω,x))−x
|Ψ(Ĝ(ω,x))−x|

= 0, differentiating with respect to x along the direction h tangent at
∂Ω at x yields

P
Ψ(Ĝ(ω,x))−x

(
dΨ(Ĝ(ω, x))dxĜ(ω, x)h− h

)
|x−Ψ(Ĝ(ω, x))|

= 0

i.e.

Pω

(
dΨ(Ĝ(ω, x))dxĜ(ω, x)h

)
= Pωh, ∀h ∈ Tx

where we used that ω is the unit vector in the direction of (Ψ(Ĝ(ω, x))− x). This implies that

dΨ(Ĝ(ω, x))dxĜ(ω, x)h = Pωh+
〈

dΨ(Ĝ(ω, x)))dxĜ(ω, x)h, ω
〉
ω. (A.12)

Since dΨ(Ĝ(ω, x))dxĜ(ω, x)h is a tangent vector to ∂Ω at Ψ(Ĝ(ω, x)) = ξs(x, ω) = x −
τ−(x, ω)ω, taking the inner product of the above identity with the normal unit vector n(ξs(x, ω))
yields 〈

dΨ(Ĝ(ω, x))dxĜ(ω, x)h, ω
〉
〈ω, n(ξs(x, ω))〉 = −〈Pωh, n(ξs(x, ω))〉 .

Inserting this into (A.12) and since ω · n(ξs(x, ω)) 6= 0 we get

dΨ(Ĝ(ω, x))dxĜ(ω, x)h = Pωh−
〈Pωh, n(ξs(x, ω))〉
〈ω, n(ξs(x, ω))〉

ω

which, plugged into (A.11), yields

dxτ−(x, ω)h = −〈ω,Pωh−
〈Pωh , n(ξs(x, ω))〉
〈ω , n(ξs(x, ω))〉

ω − h〉

= 〈h ; ω〉 − 〈Pωh ; n(ξs(x, ω))〉
〈ω ; n(ξs(x, ω))〉

i.e.

dxτ−(x, ω)h =
〈h, n(ξs(x, ω))〉
〈ω, n(ξs(x, ω))〉

(A.13)

This gives directly the continuity of the mapping (x, ω) 7→ dxτ−(x, ω) since ξs is continuous on
Γ̂+. �
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Remark A.6. Notice that (A.13) allows to recover the expression

∇xτ−(x, ω) =
1

ω · n(ξs(x, ω))
n(ξs(x, ω)), (x, ω) ∈ Γ̂+

which was obtained in [20, Lemma 3] for some special structure of Ω. Moreover, using (A.10)
and using the range of the differential of Ψ(G(x, ω)) is the orthogonal of Span(n(G(x, ω)) we can
prove

∇ωτ−(x, ω) =
τ−(x, ω)

ω · n(ξs(x, ω))
n(ξs(x, ω)), (x, ω) ∈ Γ̂+

which, again, is a result obtained in a special case in [20, Lemma 3].

Proof of Theorem A.2. The above three Lemmas give directly the proof of Theorem A.2 for τ− and
Γ̂+. The proof for τ+ and Γ̂− is done similarly. �

An immediate consequence of Theorem A.2 is the following regularity of the ballistic flow:

Corollary A.7. The ballistic flow:

ξ : (x, ω) ∈ Γ̂+ 7−→ ξ(x, ω) = (x− τ−(x, ω)ω, ω) ∈ Γ−

is a C1 diffeomorphism from Γ̂+ onto its image and

ξ−1 : (x, ω) ∈ Γ̂− 7−→ ξ−1(x, ω) = (x+ τ+(x, ω)ω, ω) ∈ Γ+

is a C1 diffeomorphism from Γ̂− onto its image.

A.2. Further non degeneracy results. We introduce a local polar parametrization of the boundary
which will turn useful later on:

Proposition A.8. For any x ∈ ∂Ω, there is a closed subset S(x) ⊂ Γ̂−(x) with zero surface
Lebesgue measure dσ and such that the mapping ω ∈ Γ̂−(x) \ S(x) 7→ x + τ+(x, ω)ω ∈ ∂Ω has
a differential of rank d− 1. As a consequence, the differential of the mapping

ξ−1(x, ·) : ω ∈ Γ̂−(x) \ S(x) 7−→ (x+ τ+(x, ω)ω, ω) ∈ Γ−

has rank 2(d− 1).

Proof. For any x ∈ ∂Ω, we choose an orthonormal basis {e1(x), . . . , ed−1(x), ed(x)} – depending
continuously on x ∈ ∂Ω – where

ed(x) = −n(x).

Let us write the components of ω ∈ Γ̂−(x) in this basis using polar coordinates

ω1 = sin θd−1 . . . sin θ3 sin θ2 sin θ1,

ω2 = sin θd−1 . . . sin θ3 sin θ2 cos θ1,

ω3 = sin θd−1 . . . sin θ3 cos θ2,
...

ωd−1 = sin θd−1 cos θd−2,

ωd = cos θd−1

(A.14)
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with θ1 ∈ [0, 2π] and θ2, . . . , θd−1 ∈ [0, π]. Notice that the assumption ω ∈ Γ̂−(x) actually implies
that θd−1 ∈ [0, π/2).We will write θ = (θ1, . . . , θd−2, θd−1) and U := [0, 2π]× [0, π]d−3×

[
0, π2

]
,

so that ω ∈ Γ̂−(x) =⇒ θ ∈ U . Notice that the set U is independent of x ∈ ∂Ω. Within this frame
and with the above set of coordinates, we write

T (x, θ1, . . . , θd−2, θd−1) := τ+(x, ω) and

G(x, θ1, . . . , θd−2, θd−1) = x+ T (x, θ1, . . . , θd−2, θd−1)ω, ∀ω ∈ Γ̂−(x).

From Theorem A.2, for any x ∈ ∂Ω, the mapping θ ∈ U 7→ T (x,θ) is of class C1. It is then clear
that the set of ω ∈ Sd−1 given by (A.14) such that the vectors(

∂θjG(x,θ)
)
j=1,...,d−1

are linearly independent coincide with the set at which the differential of the mapping ω ∈ Γ̂−(x) 7→
x+ τ+(x, ω)ω ∈ ∂Ω is of full rank d− 1.

One has
∂θjG(x,θ) = ∂θjT (x,θ)ω + T (x,θ)∂θjω

and, because |G(x,θ)− x| = T (x,θ), it is easy to check that ∂θjT (x,θ) = ω · ∂θjG(x,θ), i.e.

∂θjG(x,θ)− (∂θjG(x,θ) · ω)ω = T (x,θ)∂θjω.

Notice that ∂θjG(x,θ) − (∂θjG(x,θ) · ω)ω is nothing but the projection of ∂θjG(x,θ) on the hy-
perplane ω⊥. Recalling that T (x,θ) > 0, we see that

(
∂θjG(x,θ)− (∂θjG(x,θ) · ω)ω

)
j=1,...,d−1

are independent if and only if (∂θjω)j=1,...,d−1 are independent, or equivalently, if the Gram matrix
Jθ(ω) =

(
∂θiω , ∂θjω

)
i,j

is not singular. It is well known that

det (Jθ(ω)) = sind−2 θd−1 sind−3 θd−2 . . . sin θ2. (A.15)

In other words, if det (Jθ(ω)) 6= 0, then
(
∂θjG(x,θ)− (∂θjG(x,θ) · ω)ω

)
j=1,...,d−1

are inde-

pendent and one deduces easily that then
(
∂θjG(x,θ)

)
j=1,...,d−1

are also independent. We define
then

S(x) = {ω ∈ Γ̂−(x) ; det (Jθ(ω)) = 0}
the mapping ω ∈ Γ̂− \ S(x) 7→ x+ τ+(x, ω)ω has a differential of rank d− 1. It is clear that S(x)
is closed. Let us now prove that indeed S(x) has a zero surface Lebesgue measure. Using then
(A.15), we get that

ω ∈ S(x) if and only if θj ∈ {0, π} for some j = 2, . . . , d− 1.

The conditions θd−1 ∈ {0, π} only means θd−1 = 0 (recall that θd−1 6 π/2) which means that
ω = (0, . . . , 0, 1). Then, for d > 3, the condition θd−2 ∈ {0, π} means that

ω = (0, . . . , 0,± sin θd−1, cos θd−1),

i.e ω belongs to some (half) unit circle of Sd−1. More generally, the condition θd−j ∈ {0, π} for
2 6 j 6 d−2 describes a unit (j−1)-dimensional (half)-spheres of Sd−1. This means that S(x) can
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be written as S(x) =
⋃d−2
j=2 Cj where Cj is a closed set with positive (d− j)–Lebesgue measure †

(2 6 j 6 d−2). Therefore, σ(S(x)) = 0 (where we recall that dσ is the Lebesgue surface measure
over Sd−1) and the conclusion follows. �

Remark A.9. For any x ∈ ∂Ω and any ε > 0, introduce the set Sε(x) of all ω ∈ Γ̂−(x) ⊂ Sd−1

whose polar coordinates θ = (θ1, . . . , θd−1) in the basis {e1(x), . . . , ed(x)} are such that

det (Jθ(ω)) 6 ε

where we recall that the determinant det (Jθ(ω)) is given by (A.15) with ω = ω(θ) given by (A.14).
Notice that det (Jθ(ω)) is actually independent of x ∈ ∂Ω. Then, the surface Lebesgue measure
σ(Sε(x)) of Sε(x) is given by∫

Sd−1

1Sε(x)(ω)σ(dω) =

∫
Uε

det (Jθ(ω)) dθ 6 ε πd−2

where Uε = {θ ∈ U ; sind−2 θd−1 sind−3 θd−2 . . . sin θ2 6 ε}. Therefore

lim
ε→0+

sup
x∈∂Ω

σ (Sε(x)) = 0.

We have then the following.

Proposition A.10. Assume that, for π-a. e. x ∈ ∂Ω, V(x, ·) : Γ−(x) → Γ+(x) is a field of
measurable mappings associated to a pure reflection boundary operator as in Definition 3.1 and let{

U : (x, v) ∈ Γ+ ∪ Γ0 7−→ U(x, v) = (x− τ−(x, v)v,V(x− τ−(x, v)v, v))

= (ξs(x, v),V(ξ(x, v))) ∈ Γ+ ∪ Γ0.

For any k ∈ N there exists a subset γk ⊂ Γ− such that:
(1) γk is a closed subset of Γ− with µ(γk) = 0.
(2) U−k ◦ ξ−1 (Γ− \ γk) is an open subset of Γ+ and

U−k ◦ ξ−1 : Γ− \ γk → Γ+

is a C1 diffeomorphism from Γ− \ γk onto its image.

Proof. We first notice that, thanks to Corollary A.7, U : Γ̂+ → Γ+ is a C1 diffeomorphism from
Γ̂+ onto its image U(Γ̂+) which is an open set of Γ+. Let us introduce

∆ := Γ+ \ Γ̂+ = {(x, v) ∈ Γ+ ∪ Γ0 ; ξ(x, v) ∈ Γ0}

As already noticed in (A.1),
µ(∆) = 0,

i.e. ∆ is a closed set of Γ+ of zero dµ-measure. Since

U (Γ+ ∪ Γ0) = U(Γ0) ∪ U(Γ̂+) ∪ U(∆)

†namely Cj = {ω ∈ Γ̂+(x) ; θd−j = 0 or θd−j = π}
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we have that µ
(
U(Γ̂+)

)
= µ (U (Γ+ ∪ Γ0)) = Γ+ ∪ Γ0 since U is µ-preserving as a composition

of the µ-preserving mapping ξ and V . Therefore

µ
(

Γ+ \ U(Γ̂+)
)

= 0.

Introduce then Γ
(1)
+ = Γ̂+,

Γ
(2)
+ =

{
(x, ω) ∈ Γ

(1)
+ ; U(x, ω) ∈ Γ̂+

}
and

Λ1 = Γ
(1)
+ \ Γ

(2)
+ .

One has Λ1 = U−1(∆) is a closed subset of Γ̂+ with µ(Λ1) = 0. Moreover,

U2 : Γ
(2)
+ → Γ+

is a C1 diffeomorphism from Γ
(2)
+ onto its image. Since U2 is µ-preserving, writing the disjoint

unions
Γ

(1)
+ = Γ

(2)
+ ∪ Λ1, U2(Γ

(1)
+ ) = U2(Γ

(2)
+ ) ∪ U2(Λ1)

we see that µ(U2(Γ
(2)
+ )) = µ(U2(Γ

(1)
+ )) = µ(U(Γ

(1)
+ )) and

µ
(

Γ+ \ U2(Γ
(2)
+ )
)

= 0.

By induction, assuming that there is Γ
(k−1)
+ ⊂ Γ̂+ such that that

Uk−1 : Γ
(k−1)
+ → Γ+

is a C1 diffeomorphism from Γ
(k−1)
+ onto its image Uk−1(Γ

(k−1)
+ ) which is of full µ-measure, i.e.

µ
(

Γ+ \ Uk−1
(

Γ
(k−1)
+

))
= 0,

then define
Γ

(k)
+ = {(x, ω) ∈ Γ

(k−1)
+ ; Uk−1(x, ω) ∈ Γ̂+} (A.16)

so that
Λk−1 = Γ

(k)
+ \ Γ

(k−1)
+ =

(
Uk−1

)−1
(∆)

is a closed subset of Γ+ with µ(Λk−1) = 0 while

Uk : Γ
(k)
+ → Γ+

is a C1 diffeomorphism from Γ
(k)
+ onto its image Uk

(
Γ

(k)
+

)
. As before, writing the disjoint unions

Γ
(k−1)
+ = Γ

(k)
+ ∪ Λk−1, Uk

(
Γ

(k−1)
+

)
= Uk

(
Γ

(k)
+

)
∪ Uk(Λk−1)

we see that µ
(
Uk
(

Γ
(k)
+

))
= µ

(
Uk
(

Γ
(k−1)
+

))
= µ

(
Uk−1

(
Γ

(k−1)
+

))
so that

µ
(

Γ+ \ Uk
(

Γ
(k)
+

))
= 0.
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On the other hand, according to Corollary A.7,

ξ : Γ̂+ → Γ−

is a C1 diffeomorphism from Γ̂+ onto its image. Using the definition (A.16) for k + 1 we see that

Λk = Γ
(k)
+ \ Γ

(k+1)
+ =

(
Uk
)−1

(∆)

is a closed subset of Γ+ with µ(Λk) = 0 and

ξ ◦ Uk : Γ
(k+1)
+ → Γ−

is a C1 diffeomorphism from Γ
(k+1)
+ onto its image (ξ ◦ Uk)

(
Γ

(k+1)
+

)
. Arguing as before and

writing

Γ
(k)
+ = Γ

(k+1)
+ ∪ Λk,

(
ξ ◦ Uk

)(
Γ

(k)
+

)
=
(
ξ ◦ Uk

)(
Γ

(k+1)
+

)⋃(
ξ ◦ Uk

)
(Λk)

and since ξ ◦ Uk is µ-preserving, we have that

µ
((
ξ ◦ Uk

)(
Γ

(k+1)
+

))
= µ

((
ξ ◦ Uk

)(
Γ

(k)
+

))
= µ

(
Uk
(

Γ
(k)
+

))
where we used that ξ is also µ-preserving. Therefore

µ
(

Γ− \
((
ξ ◦ Uk

)(
Γ

(k+1)
+

)))
= 0.

Since
(
ξ ◦ Uk

)
(Γ

(k+1)
+ ) is an open subset of Γ− then setting

γk := Γ− \
((
ξ ◦ Uk

)(
Γ

(k+1)
+

))
one sees that γk is a closed subset of Γ− with µ(γk) = 0 and

U−k ◦ ξ−1 : Γ− \ γk → Γ
(k+1)
+

is a C1 diffeomorphism from Γ− \ γk onto its image. �

In the next Lemma, we used the notations of Proposition A.8:

Lemma A.11. For any x ∈ ∂Ω, let S(x) ⊂ Γ̂−(x) be the closed set introduced in Proposition A.8.
For any k ∈ N, let

Ok(x) =
{
ω ∈ Γ̂−(x) ; ξ−1(x, ω) ∈ Uk(Γ(k+1)

+ )
}

where ∆k+1 is defined thanks to (A.16). Then, for any ω ∈ Ok(x) \ S(x), the differential

dω(U−k ◦ ξ−1)(x, ω)

has rank 2(d − 1). As a consequence dω
(
U−ks ◦ ξ−1

)
(x, ω) has rank d − 1 where we recall that

U−ks denotes the space component of U−k, namely, if U−k(y, v) = (z, u) then U−ks (y, v) = z.
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Proof. Notice that open subsets of ∂Ω × Sd−1 are C1 manifolds of dimension 2(d − 1) and then,
so are open subsets of Γ+ or Γ−. According to Proposition A.8, the differential dωξ

−1(x, ω) has
rank 2(d − 1) at each point (x, ω) ∈ Γ− provided ω ∈ Γ̂−(x) /∈ S(x). By virtue of (A.16),
Uk : Γ

(k+1)
+ → Γ̂+ is a C1 diffeomorphism from Γ

(k+1)
+ onto its image Uk(Γ(k+1)

+ ) ⊂ Γ̂+. Thus

U−k : Uk
(

Γ
(k)
+

)
→ Γ

(k+1)
+

is a C1 diffeomorphism. In particular, for any (y, ω′) ∈ Uk(Γ(k+1)
+ ), the differential dU−k(y, ω′) is

an isomorphism between the (2d − 1) dimensional tangent spaces. Finally, the differential of the
mapping

ω ∈ Ok(x) \ S(x) 7−→
(
U−k ◦ ξ−1

)
(x, ω) ∈ Γ

(k+1)
+

given by dω
((
U−k ◦ ξ

)
(x, ω)

)
= dU−k

(
ξ−1(x, ω)

)
dωξ

−1(x, ω) has maximal rank 2(d − 1).
This ensures that the rank of dω

(
Uks ◦ ξ−1(x, ω)

)
is also maximal, equal to d− 1. �

APPENDIX B. REMINDERS ON PARTIALLY INTEGRAL STOCHASTIC SEMIGROUPS

We collect here several results on partially integral stochastic semigroups in L1(E,Σ,m) where
(E,Σ,m) is a given σ-finite measure space.

B.1. Partially integral stochastic semigroup. We begin with the following definition

Definition B.1. A stochastic semigroup {P (t)}t>0 on the space L1(E,Σ,m) is called partially
integral if there exists a measurable function k : (0,∞) × E × E → [0,∞), called a kernel, such
that for every y ∈ E all nonnegative f ∈ L1(E,Σ,m) we have

P (t)f(y) >
∫
E
k(t, x, y)f(x)m(dx) (B.1)

and ∫
E

∫
E
k(t, x, y)m(dx)⊗m(dy) > 0

for some t > 0.

We have then the following (see [28])

Theorem B.2. Let {P (t)}t>0 be a partially integral stochastic semigroup. Assume that the semi-
group {P (t)}t>0 has a unique invariant probability density f∗. If f∗ > 0 a.e., then the semigroup
{P (t)}t>0 is asymptotically stable.

Let P(t, y, B) be a probability transition function for the semigroup {P (t)}t>0, i.e.∫
B

P (t)f(y)m(dy) =

∫
E

P(t, x,B)f(x)m(dx)

for all f ∈ L1(E,Σ,m), B ∈ Σ and t > 0. Then inequality (B.1) can be rewritten as

P(t, x,dy) > k(t, x, y)m(dy).
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B.2. Sweeping property. We define now the sweeping property for stochastic semigroups:

Definition B.3. A stochastic semigroup {P (t)}t>0 on the space L1(E,Σ,m) is sweeping from a
set A if

lim
t→∞

∫
A
P (t)f(x)m(dx) = 0

for each density f .
If moreover (E, ρ) is a metric space and Σ = B(E) is the σ–algebra of Borel subsets of E, a

partially integral semigroup {P (t)}t>0 with kernel k(t, ξ, z) is said to satisfy the property (K) on
E if the following holds:

(K) for every ξ0 ∈ E there exist ε > 0, t > 0, and a measurable function η : E → [0,∞) such
that ∫

E
η(ξ)m(dξ) > 0

and
k(t, ξ, z) > η(z)1B(ξ0,ε)(ξ), (ξ, z) ∈ E × E,

where B(ξ0, ε) = {ξ ∈ E : ρ(ξ, ξ0) < ε}.

We have the following which is a simple consequence of a general result concerning asymptotic
decomposition of stochastic semigroups (see [29, Corollary 2]):

Theorem B.4. Let {P (t)}t>0 be a stochastic semigroup on L1(E,Σ,m), where E is a separable
metric space, Σ = B(E), and m is a σ-finite measure on (E,Σ). Assume that {P (t)}t>0 has the
property (K) and has no invariant density. Then {P (t)}t>0 is sweeping from all compact sets.

B.3. Foguel alternative. If a stochastic semigroup has no invariant density but we are able to find a
subinvariant function f∗ > 0, then we can precisely point out all sets having the sweeping property
[30]. We start with some general description.

Let a stochastic semigroup {P (t)}t>0 be given and assume that this semigroup is partially inte-
gral. If the kernel k(t, x, y) satisfies∫

E

∫ ∞
0

k(t, x, y) dtm(dx) > 0 y – a.e.,

then {P (t)}t>0 is called a pre-Harris semigroup. In particular, if a semigroup is partially integral
and irreducible then it is pre-Harris semigroup. The following condition plays a crucial role in
studying sweeping.

(KT): There exists a measurable function f∗ such that: 0 < f∗ < ∞ a.e., P (t)f∗ ≤ f∗ for
t > 0, f∗ /∈ L1 and

∫
A f∗(x)m(dx) <∞.

In (KT) we have written P (t)f∗ for a non-integrable function. We can use such notation be-
cause any substochastic operator P may be extended beyond the space L1 (see [19] Chap. I). If
f is an arbitrary non-negative measurable function, then we define Pf as a pointwise limit of the
sequence Pfn, where (fn) is any monotonic sequence of non-negative functions from L1 pointwise
convergent to f almost everywhere.
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Theorem B.5 ([30], Corollary 3). Let {P (t)}t>0 be a pre-Harris stochastic semigroup which has
no invariant density. Assume that the semigroup {P (t)}t>0 and a set A ∈ Σ satisfy condition
(KT). Then the semigroup {P (t)}t>0 is sweeping with respect to A.
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760



COLLISIONLESS KINETIC SEMIGROUPS 53

[25] M. MOKHTAR-KHARROUBI, On collisionless transport semigroups with boundary operators of norm one, J. Evol.
Equ. 8 (2008), 327–352.

[26] M. MOKHTAR-KHARROUBI, R. RUDNICKI, On asymptotic stability and sweeping of collisionless kinetic equa-
tions. Acta Appl. Math.147 (2017), 19–38.

[27] M. MOKHTAR-KHARROUBI, D. SEIFERT, Rates of convergence to equilibrium for collisionless kinetic equations
in slab geometry, J. Funct. Anal. 275 (2018), 2404–2452.
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