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Many complex systems find a convenient representation in terms of networks: structures made by
pairwise interactions (links) of elements (nodes). For many biological and social systems, elementary
interactions involve however more than two elements, and simplicial complexes are more adequate
to describe such phenomena. Moreover, these interactions often change over time. Here, we propose
a framework to model such an evolution: the Simplicial Activity Driven (SAD) model, in which the
building block is a simplex of nodes representing a multi-agent interaction. We show analytically and
numerically that the use of simplicial structures leads to crucial structural differences with respect
to the activity-driven (AD) model, a paradigmatic temporal network model involving only binary
interactions. It also impacts the outcome of paradigmatic processes modelling disease propagation
or social contagion. In particular, fluctuations in the number of nodes involved in the interactions
can affect the outcome of models of simple contagion processes, contrarily to what happens in the
AD model.

The use of a network representation has become com-
monplace for describing and studying a large number of
complex systems: the elements of the systems are seen
as nodes, and links between nodes represent pairwise in-
teractions [1, 2]. However, in many contexts, represent-
ing interactions as pairwise does not tell the whole story.
Examples include collaborations among groups of actors
in movies [3], spiking neuron populations [4, 5] and co-
authorships in scientific publications [6].

Let us consider the latter for illustration purposes: In a
network representation, a paper co-authored by n scien-
tists yields a clique of n(n− 1)/2 links, which is however
treated in the same way as n(n−1)/2 papers authored by
pairs of scientists (or any other combination of subgroups
among these n scientists leading to the same number of
links). While this is equivalent for n = 2, the number
of co-authors of a scientific paper is often larger than
2. For instance, data (see Supplemental Material - SM)
show that the average number of authors of APS papers
has steadily increased from 2 to 6 between the 1940s and
now. In such cases (n > 2), simplicial representations are
more apt to preserve the information observed in data.
To take this issue into account, simplicial descriptions
have recently been adopted in models of emerging ge-
ometry [7, 8], null models for higher order interactions
[9, 10], network inference [11], brain structure and dy-
namics [4, 12, 13].

We recall that formally, a (d− 1)-dimensional simplex
σ is defined as the set of d vertices σ = [x0, x1, . . . , xd−1].
A collection of simplices is a simplicial complex K if for
each simplex σ all its possible subfaces (defined as subsets
of σ) are themselves contained in K (see SM). In the case
of group interactions, this requirement can be considered
trivially satisfied, as each group interaction implies all
the possible sub-interactions. Finally, the 1-skeleton of a
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simplicial complex is the collection of all its edges, i.e.,
the underlying network.

Networks and interactions moreover evolve in time,
and the field of temporal networks has indeed become
very active [14, 15]. In particular, several models of time-
evolving networks have been put forward, based on mi-
croscopic rules for the establishment and end of interac-
tions between pairs of nodes [16–18]. Among these, the
activity driven (AD) temporal network model [17] has
attracted a lot of attention. In this model, each agent
(node) is assigned an activity potential that determines
at each time its probability to create pairwise interactions
with other agents selected at random. The AD model and
its extensions [19–22] have become a paradigm of tempo-
ral networks and have been used to study the impact of
the network’s temporal evolution on dynamical processes
occurring on top of it [17, 23].

Models of temporally evolving simplicial interactions
are however still missing. Here we bridge this gap by
proposing a modeling framework for temporal group ac-
tivation data: the Simplicial Activity Driven model. Our
aim is to provide a simple framework that can be used as
a basis for richer temporal models taking into account the
simplicial nature of interactions, and on which dynami-
cal processes can be studied by analytical and numerical
means to shed light on the impact of both simplicial and
temporally evolving interactions.

In its simplest version, the model considers N nodes,
whose interactions change over time as follows:

(i) Each node i is endowed with an activity rate ai
taken from a predefined distribution F ;

(ii) At each time step ∆t, each node i fires with prob-
ability ai∆t; when it fires, it creates an (s − 1)-
simplex (in networks’ terms, a clique of size s) with
s−1 other nodes chosen uniformly at random. Each
activation hence contributes s(s− 1)/2 interactions
to the network;
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(iii) At the following time step, the existing simplices
are erased and the process starts anew.

In the framework of collaborations, nodes can represent
scientists and the activity ai their propensity to create
collaborations: step (ii) corresponds to the creation of a
collaboration of s scientists resulting in the co-authorship
of a paper. We underline the main difference with the AD
model in Fig. 1: in the AD model, each active node cre-
ates a set of binary interactions with the chosen nodes
(in the language of collaborations, s−1 papers with each
2 authors) while, in the SAD model, nodes that are not
active but are targeted by an active node obtain links
to all the other nodes in the simplex, creating a coher-
ent activation unit. The parameter s defines the size of
the collaborations and can either be fixed or a random
variable extracted at each activation from a distribution
p(s). As for the AD model, the SAD model is Markovian:
agents do not have memory of the previous time steps,
and it can be refined by adding memory or community
effects [19, 22].

In the following, we first study this model from a
structural point of view,highlighting also the differences
between considering the obtained system as a network
(given by the 1-skeleton of the simplicial complex) and
taking into account its simplicial nature. We also provide
an analysis of a paradigmatic dynamical process occur-
ring on top of the SAD model. Since the AD model
has been widely studied in the literature as a paradigm
for temporally evolving networks, we underline in each
case how the introduction of coherent units of s nodes
as building blocks, instead of sets of binary interactions,
yields radically different structural properties and im-
pacts the properties of dynamical processes.

aiΔt s = 4

node-matched AD (nAD):
s-1 links

edge-matched AD (eAD):
s(s-1)/2 links

a)

b) c)

i ii

FIG. 1. SAD model. a) At each timestep, a node i activates
with probability ai∆t. Upon activation it creates a coherent
unit of s nodes (an (s − 1)-simplex), with links between all
pairs. b) In contrast, in the standard AD model (nAD) only
the s− 1 edges stemming from the activated node are added.
c) In the eAD model

(
s
2

)
links stem from the activated node,

conserving at each interaction the number of links of the SAD
model.

The comparison with the activity-driven model can be
done in two ways: we can indeed consider AD models de-
signed to involve either the same number of nodes (node-
matched AD model, nAD) or the same number of interac-

tions (edge-matched AD model, eAD) as the SAD model
at each time step (see Fig. 1). In the former, for each ac-
tivation with group size s in the SAD model, we consider
an AD activation with size m = s− 1, i.e., the activated
node creates interactions with s − 1 other nodes chosen
at random: this leads to the same total number of con-
tacted nodes per activation in the nAD and in the SAD
model. In the eAD, for each activation with group size
s, we consider instead an AD activation with m =

(
s
2

)
,

hence preserving the total number of interactions of each
activation.
Structure Let us focus on the structural properties

of the SAD model, once aggregated over a fixed number
T of timesteps. We first consider the 1-skeleton of the
SAD model, i.e., the network obtained as the union of
all its edges, in order to compare its properties to AD
networks, and then consider pure simplicial properties –
not reducible to a network approach.

In the aggregated SAD, each node i is linked by an edge
to all the nodes with whom it has interacted at least once
during the aggregation time-window. The degree of i in
the corresponding aggregated network corresponds to the
number of distinct nodes with whom i has interacted; in
the interpretation of a scientific collaboration network,
it gives the total number of distinct collaborators of a
scientist.

Denoting by kT (i) the expected aggregated degree at
time T of node i with activity ai, we compute it by
separating it into two contributions. The first comes
from node i’s own activation events, which occur at each
timestep ∆t with probability ai∆t: after T timesteps,
i will have activated ∼ Tai times; for fixed simplex
size s, this means it will have made Taim̄ interactions
(m̄ = s − 1). The second contribution comes from the
activations of other nodes: every node j 6= i will have
activated Taj times; in each activation of j 6= i, i was
selected with probability m̄/(N−1) and, if selected, pro-
vided with m̄ interactions. Hence, at time T node i will
have accumulated κT (i) interactions with:

κT (i) = m̄aiT +
∑
j 6=i

m̄2Taj
N − 1

' m̄T (ai + m̄〈a〉) (1)

where the approximation holds for N � 1. For any node
distinct from i, the probability not to have been involved
in any of these interactions is (1 − 1/(N − 1))κT (i), and
hence finally the number of distinct nodes having inter-
acted with i is

kSADT (i) = (N − 1)

[
1−

(
1− 1

N − 1

)κT (i)
]

(2)

' N
[
1− e−

Tm̄(ai+〈a〉m̄)

N

]
(3)

where the approximation holds for large N and small
T/N (in the SM we also give the derivation for the ag-
gregated degree distribution). In Fig. 2a we show the
excellent agreement between the prediction for the ag-
gregated degree averaged over all nodes, 〈kSADT (i)〉, at
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fixed s, and numerical simulations. We also compare it

with the nAD and eAD models, for which k
n/eAD
T (i) =

N(1 − e−Tm(ai+〈a〉)/N ) [17] with m = m̄ for nAD and
m =

(
s
2

)
for eAD.

Interestingly, kSADT depends on m̄2: thus, if the sim-
plex size s is allowed to fluctuate, the size of such fluc-
tuations will affect the aggregated degree (see SM). This
phenomenology is in contrast with the nAD model, which
has no dependence on the second moment of s, while
the eAD inherits it from the matching of the number of
edges created at each activation (since each activation
creates m = s(s− 1)/2 edges, the resulting total number
of activations and the integrated degree depend on the
fluctuations of s).

From this aggregated network degree point of view, we
thus observe a similar behaviour for the SAD and eAD
models. Figure 2b however highlights that this is not
the whole story, and that the SAD model building mech-
anism leads to an important structural difference with
the eAD model: as each activation creates

(
s
2

)
interac-

tions that involve only s−1 nodes, the size of the largest
connected component (GCC) in the SAD integrated un-
til T grows with T much more slowly than in the eAD
model, for which each activation creates a star reaching(
s
2

)
nodes; in fact, it grows in the same way as in the

nAD, despite creating more interactions at each step (for
s > 2, as for s = 2 the three models are the same). Over-
all, the structural properties of the SAD model, from the
point of view of its 1-skeleton, present thus both similar-
ities and important differences with AD models with the
same numbers of events.

Let us now focus on purely simplicial structural prop-
erties of the SAD model. First, we compute the average
number k2(i, T ) of 2-simplices to which a node i belongs
in the SAD aggregated until T , in a way similar to the
computation of kT (i). We obtain (see SM for details):

k2(i, T ) =

(
N − 1

2

)(
1− e−

(s−1)(s−2)
(N−1)(N−2)

T (ai+m̄〈a〉)
)
. (4)

It is important to note that k2(i, T ) corresponds to the
number of distincts cliques of three nodes to which i has
participated from time 0 to T , which is different from the
number of triangles to which i belongs in the 1-skeleton
of the aggregated SAD: indeed, a triangle (i, j, k) can be
obtained even if links (i, j), (i, k) and (j, k) are never
present in the same (s − 1)-simplex. We show in Fig.
2c that the average of k2(i, T ) over all nodes is correctly
predicted by Eq. (4) for various values of T and of s
(see SM for a more extensive validation of Eq. (4)). The
figure also shows that the average number of triangles to
which a node belongs grows faster with both s and T than
〈k2(i, T )〉, highlighting the differences between simplices
and triangles and thus the importance of the simplicial
nature of the SAD model.

We moreover present in Fig. 2d the eigenspectrum
of the simplical Laplacian (see SM) of the aggregated
SAD, a cornerstone of studies of how dynamical pro-
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FIG. 2. Structural properties of SAD model. In all
plots we use N = 2000 nodes and activities sampled from
F (a) = (a/a0)−α, α = 2.1 and a0 = 5 · 10−3. (a) Average ag-
gregated degree 〈kT 〉 for the SAD model and corresponding
nAD and eAD models vs. simplex size s, with T = 10. Sym-
bols: numerical values; lines: theoretical predictions (for the
SAD, Eq. 3 averaged over all nodes). (b) Temporal growth
of the aggregated GCC size S for the SAD (solid lines), nAD
(crosses) and eAD (dashed lines) for various fixed simplex size
s. (c) Empty symbols: average 〈k2(i, T )〉 over all nodes i of
the number of 2-simplices to which i belongs, in the SAD
aggregated until time T , for various values of s and of T .
Continuous lines: prediction (4) averaged over nodes. The
filled symbols give instead the average number of triangles to
which a node i belongs in the 1-skeleton of the aggregated
SAD. (d) Eigenspectrum of the simplicial Laplacian L1 com-
puted on the aggregated SAD 1-skeleton (here with s = 4),
on the actual aggregated SAD simplicial complex and on the
clique complex of the 1-skeleton of the aggregated SAD sim-
plicial complex (in which each (k+ 1)-clique of the 1-skeleton
is promoted to a k-simplex). Aggregation time: T = 100.

cesses are affected by the underlying structure. This fig-
ure highlights how the eigenspectrum differs, depending
on whether we compute the Laplacian on the 1-skeleton,
on the aggregated SAD simplicial complex, or on the
clique complex obtained by considering each clique of the
1-skeleton as a simplex. These differences illustrate fur-
ther how the SAD contains information not reducible to
its 1-skeleton, i.e., to a network.

To further our analysis, we now explore how dynamical
processes are impacted by the SAD model.
Dynamical processes We consider the paradigmatic

susceptible-infected-susceptible (SIS) model for disease
spreading [24]. In this model, nodes can be either sus-
ceptible (S) or infectious (I). Infectious individuals prop-
agate the disease to susceptible ones at rate β whenever
they are interacting, and recover spontaneously at rate
µ, becoming again susceptible. In a homogeneous popu-
lation, the epidemic threshold λc separates an epidemic-
free state at low values of the parameter λ = β/µ from
an endemic state at high values of λ.

To calculate the SIS epidemic threshold for the SAD
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model, we use a temporal heterogeneous mean-field ap-
proach similar to the one used for the AD model [17]:
nodes are classified according to their activity, and we
denote by Na the number of nodes with activity a; Ita
and Sta denote respectively the numbers of infectious and
susceptible nodes with activity a at time t. We thus have
Na = Sta + Ita, N =

∫
daNa is the total population, and

It =
∫
daIta the total number of infectious at time t.

Let us consider for simplicity the case of the SAD
model with fixed clique size s. The variation during a
time step ∆t of the number of infectious is given by the
following equation taking into account the evolution of
both interactions and spreading process:

It+∆t
a − Ita = −µ∆tIta + β∆tSaa(s− 1)

∫
da′

Ita′

N

+ β∆tSa

∫
da′a′

Ita′

N
(s− 1)

+ β∆tSa

∫
da′a′

Sa′

N
(s− 1)

∫
da′′

Ia′′

N
(s− 2). (5)

The first term corresponds to the recovery of nodes with
activity a. The second term corresponds to susceptible
nodes with activity a that become active at time t (with
probability a∆t) and create a simplex of size s (with
s − 1 other nodes) that includes infectious nodes with
any activity (hence the integration over a′). The third
term stems from the fact that susceptible nodes with ac-
tivity a can be chosen as clique partners by infectious
nodes with activity a′ that become active (with proba-
bility a′∆t). While these three terms also appear in the
case of a spreading process on an AD network, the last
term is specific to the SAD model: it describes the cases
in which susceptible nodes with activity a are chosen by a
susceptible with activity a′, which becomes active (with
probability a′∆t) and creates a simplex that also includes
an infectious node with activity a′′.

Straightforward computations detailed in the SM yield
then the epidemic threshold condition

β

µ
>

2

s(s− 1)〈a〉+ (s− 1)
√
s2〈a〉2 + 4(〈a2〉 − 〈a〉2)

,

(6)

to compare with the result β
µ > 1/(m〈a〉+ m

√
〈a2〉) for

an AD model with parameter m.
If the sizes of the cliques formed in the SAD model

are extracted at random at each activation from a dis-
tribution p(s), the r.h.s. of Eq. (5) needs simply to be
integrated as

∫
dsp(s), if the size s is independent of the

activity a. The epidemic threshold becomes

β

µ
>

2

〈s(s− 1)〉〈a〉+
√

∆
, (7)

with ∆ = 〈(s−1)(s−2)〉〈(s−1)(s+2)〉〈a〉2+4〈s−1〉2〈a2〉
(see details in the SM). Notably, it depends not only on
the average clique size but also on the second moment of
p(s), and vanishes as 1/〈s2〉 if the clique size fluctuations

a)
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FIG. 3. SIS epidemic threshold for AD and SAD mod-
els. a) epidemic prevalence versus λ = β/µ: the epidemic
transition in the SAD model is delayed as compared with an
SIS model on the corresponding eAD model (here N = 1000,
s = 4, T = 20000). Vertical lines correspond to the theoret-
ical values of the epidemic thresholds (Eq. (6) for the SAD
model). b) Increasing the average connectivity of the under-
lying network lowers the epidemic threshold in all models; for
the s-regular SAD model λc (Eq. (6)) is always larger than
for the corresponding eAD model. In both panels, node ac-
tivities were sampled from F (a) = (a/a0)−α, α = 2.1 and
a0 = 5 · 10−3.

diverge (see SM). This is in contrast with the case of
the SIS model on the AD model, in which fluctuations of
the numbers of links created at each time step would not
change the epidemic threshold (m just being replaced by
its average).

Figure 3a displays the result of numerical simulations
of an SIS model on temporal eAD and SAD networks,
showing agreement with the theoretical values of the epi-
demic threshold. We moreover compare in panel (b) the
epidemic threshold obtained in a SAD model with fixed
clique size s with the epidemic threshold obtained in the
nAD and eAD models. In the former case, the epidemic
threshold is smaller in the SAD model, which can be
related to the fact that the SAD model has more inter-
actions than the nAD network. In the latter case on the
contrary, the fact that the s(s − 1)/2 interactions are
created as cliques hampers the spread on the SAD with
respect to the eAD network, leading to a higher epidemic
threshold for the SAD case (see SM for examples). .

To conclude, we have presented a new model for tem-
poral networks, based on the fact that the fundamen-
tal building blocks of many social networks are coherent
units of several individuals interacting as a group, rather
than dyadic interactions. Our Simplicial Activity Driven
model considers indeed agents who, when active, create
simplices with other agents, yielding a simplicial com-
plex once aggregated. We have shown how this mecha-
nism leads to fundamental differences with respect to a
well-known model in which active agents create sets of
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dyadic interactions, the activity-driven model, and how
the structural properties of the SAD model differ from
those of its 1-skeleton, showing the necessity to take into
account its simplical nature and not to reduce it to a net-
work interpretation. These differences appear not only at
the structural level but have also strong consequences on
how dynamical processes unfold on these networks, as we
have illustrated on a paradigmatic epidemic model (we
also show in the SM that a social contagion process on
the SAD displays a rich phenomenology, and can become
extremely slow in the SAD with respect to an AD model).
As noted in its definition, the SAD model is Markovian,
as the AD model: it does not yield non-Poissonian nor
bursty temporal patterns. However, thanks to this sim-
plicity, our model lends itself to analytical investigations

of its structural properties and of contagion processes,
which has allowed us to highlight the need to correctly
take into account the simplicial nature of interactions in
models as well as the fluctuations of the numbers of nodes
involved in these interactions. Moreover, it can serve as
a starting point for a number of refinements, such as
adding memory effects, node categories and interacting
probabilities depending on these categories, or correla-
tions between activity of an agent and size of the simpli-
cial complex it creates. Moreover, it would be interesting
to study further dynamical processes on the SAD model
and its variations. Finally, the SAD model constitutes
a first null model for the homology of temporal complex
systems with high-order interactions. We hope that our
work will stimulate research in such directions.
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SIMPLICIAL ACTIVITY DRIVEN MODEL: SUPPLEMENTAL MATERIAL

I. CO-AUTHORSHIP DATA

We consider a dataset containing all publications in American Physical Society (APS) journals from year 1893 to
2016. The dataset is part of the “APS Data Sets for Research” and can be freely obtained from https://journals.
aps.org/datasets. The dataset contains 587675 papers by 413513 different authors. Figure S1 illustrates the
evolution of the distribution of the number of co-authors as deduced from this dataset: over the course of a few
decades, this distribution has evolved from a narrow one in the 1940s to progressively broader distributions in 1960s
and up present times, with both average and fluctuations increasing with time. The average number of authors of
a paper has steadily increased from 2 to 6 between the 1940s and now. Moreover, the inset of Fig. S1 shows the

temporal evolution of the ratio βs = 〈s2〉
〈s〉 between the first two moments of p(s), highlighting the increase in the

heterogeneity of the distribution.

1900
1920

1940
1960

1980
2000

2020

0 5 10 15 20
Size s

10 3

10 2

10 1

p(
s)

1940
1960
1980

year

2

4

6

s

FIG. S1. Distributions of the number s of co-authors of a paper in the APS dataset. The distribution becomes
broader in more recent times. Inset: evolution of the ratio βs = 〈s2〉/〈s〉.

II. SIMPLICES AND SIMPLICIAL COMPLEXES

We provide here several definitions related to simplicial complexes and their properties. A full treatment can be
found in [25].

• In its simplest form, a k-dimensional simplex (k-simplex) σ is a set of vertices σ = [p0, . . . , pk−1]. The d-
dimensional subfaces of σ are all the subsets of σ composed by d+ 1 vertices of σ.

• A simplicial complex X is a collection of simplices such that if σ ∈ X then all its propers subfaces are also in
X.

• The k-skeleton Xk of X is the simplicial complex obtained by the union of all the simplices in X with dimension
equal or lesser than k; the 1-skeleton of a simplicial complex is then the collection of all its edges, hence the
underlying graph.

• We define the set of n-dimensional chains Cn(X) of a simplicial complex X as the formal sums of n-simplices.
This is formally expressed as:

Cn(X) = {r1σ1 + r2σ2 + ...|ri ∈ Z, σi ∈ Xn}. (S1)

• We define then the boundary map ∂n, which maps n-dimensional chains Cn(X) to (n − 1)-dimensional chains
Cn−1(X) and corresponds to the intuitive idea of mapping a simplex to its boundary. Formally the boundary

https://journals.aps.org/datasets
https://journals.aps.org/datasets
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map is defined as:

∂n: Cn(X)→ Cn−1(X) (S2)

∂n[v0, ..., vn] =

n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn] (S3)

where we omit the vertex with the hat. For example, a 2-simplex (a full triangle) is mapped to the alternated sum
of its three concatenated edges (1-simplices). The boundary map satisfies ∂n∂n+1 = 0 ∀n (hence im ∂n+1 ⊂
ker ∂n), which encodes the intuitive idea that the boundary of something has no boundary.

• The simplicial complex X induces the chain complex, · · · → Cn+1 → Cn → Cn−1 → · · · through boundary
maps ...∂n+2, ∂n+1, ∂n, ∂n−1, ...

• The n-homology group of X is then defined by the quotient of two vector spaces, the kernel of the map ∂n
quotiented by the image of the boundary map ∂n+1,

Hn(X) = ker ∂n/ im ∂n+1, (S4)

where n indicates the dimension of the homology group. The corresponding Betti number βn is the dimension
of Hn and correspondingly the number of n-dimensional holes.

• We define a simplicial connected k-component as a set of k-simplices in X such that i) each simplex shares at least
one (k−1)-face with another k-simplex in the component, and ii) given two simplices A and B in the component,
there exists a connected path via (k − 1)-adjacency (i.e., a list of k-simplices [A0 = A, ,A1, · · · , An−1, An = B]
such that for all i Ai and Ai+1 share a common (k − 1)-face) between the two simplices (similarly to clique
percolation [26]).

We observe that, given a simplicial complex X, it is possible to consider two derived simplicial complexes:

• its 1-skeleton, X1, corresponding to the underlying graph (on which for example we study the spreading process
of the SIS model);

• the clique complex Cl(X) built from X1 by promoting every (k+1)-clique in X1 to the corresponding k-simplex
(e.g. a 4-clique maps to a 3-simplex).

By construction, note that X1 ⊂ X ⊂ Cl(X): for example, while it is possible to have an empty triangle in X
composed by the simplices [a, b], [a, c], [b, c], the same triangle would automatically be filled as [a, b, c] in Cl(X).

III. DETAILED COMPUTATION OF THE AGGREGATED DEGREE

The number of interactions of i between times 0 and T is given by:

κT (i) = m̄aiT +
∑
j 6=i

m̄2Taj
N − 1

' m̄T (ai + m̄〈a〉) (S5)

where the approximation holds for N � 1. We can then write kT (i) as [17]

kT (i) = (N − 1)

[
1− (1− 1

N − 1
)Tm̄(ai+〈a〉m̄)

]
(S6)

' (N − 1)
[
1− e−

Tm̄(ai+〈a〉m̄)

N−1

]
(S7)

Following [17], it is also possible to derive the distribution of these degrees. We write ai = ηxi, where xi is the
activity potential and η is a free parameter useful when data are available in order to match the average degree in the
simulated temporal network to that of the real one. From this we can calculate the activity potential xi of node i as:

xi = −N − 1

m̄Tη
ln

(
1− kT (i)

N − 1

)
− m̄〈a〉

η
(S8)

' kT (i)

m̄Tη
− m̄〈a〉

η
(S9)
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FIG. S2. Structural properties of SAD model. (a) Average aggregated degree 〈kT 〉 for the SAD model and corresponding
nAD and eAD models for a range of simplex sizes s (for N = 2000, T = 10, activities sampled from P (a) = (a/a0)−α, α = 2.1
and a0 = 5 · 10−3). 〈kT 〉 grows quadratically with s in the SAD and in the eAD models and linearly in the nAD model. Inset:
〈kT 〉 depends on the second moment of s in the SAD model (and in the eAD by inheritance of the fluctuations in s), but not
in the nAD model. (b) Temporal growth of the size S of the aggregated GCC for the SAD (solid lines), nAD (crosses) and
eAD (dashed lines) for various fixed simplex size s. The nAD and SAD models have the same behaviour as expected by design
of the node-matched AD model, while the eAD model systematically generates much larger GCC sizes as compared to the
corresponding SAD model.

where the approximation again holds for small k/N . Using the expressions above, by simple substitution we obtain
the functional form for the integrated degree distribution:

PT (k) ∼ 1

mTη

1

1− k
N−1

F

[
−N − 1

mTη
ln

(
1− k

N − 1

)
− m〈a〉

η

]
. (S10)

For clarity of illustration, we also report here a larger version of Fig. 2a and 2b of the main text, adding also in the
inset the behaviour of kT as a function of the heterogeneity of the distribution of s, βs = 〈s2〉/〈s〉 (see inset of Fig.
S2a): we create SAD networks where we sample clique sizes from distributions p(s) with fixed average and variable
heterogeneities, in order to illustrate that, if the simplex size s is allowed to fluctuate, the size of such fluctuations
will affect the aggregated degree.

IV. NUMBER OF 2-SIMPLICES

In a similar way as for the aggregated degree, one can compute k2(i, T ) defined as the average number of 2-simplices
to which a node i belongs, in the SAD aggregated until time T .

First, the average number of (s − 1)-simplices created between 0 and T to which i belongs is computed, similarly
to Eq. (S5), as

χT (i) = aiT +
∑
j 6=i

m̄Taj
N − 1

. (S11)
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FIG. S3. Theoretical versus empirical k2(i, T ). We show, as a scatterplot in which each dot corresponds to a node i,
the comparison of the predicted and the measured values of k2(i, T ) for individual nodes i (averaged over 50 iterations of the
same SAD model) and for various aggregation times T = 60, 120, 240 steps. The value of the Pearson’s correlation between
theoretical and empirical values increases for longer aggregation times (in all cases the correlation is significant, p � 10−6).
These results were obtained from a SAD model with N = 2000 and activities sampled from a Pareto distribution with exponent
α = 2.4.

Indeed, i fires on average aiT times, and the second term is simply the average number of times that i is chosen by
another node j to be in a (s− 1)-simplex.

Let us now fix j and k, with j 6= k and both distinct from i. For each of the χT (i) (s− 1)-simplices, the probability
that j and k are part of it is (s − 1)(s − 2)/((N − 1)(N − 2)), so the probability that the pair (j, k) is not part of
any of these simplices is p = (1 − (s − 1)(s − 2)/((N − 1)(N − 2)))χT (i), and the probability that the pair is part of
at least one common simplex with i is 1 − p. Each distinct pair (j, k) part of at least one common simplex with i
yields a distinct 2-simplex (i, j, k) to which i belongs. As there are (N − 1)(N − 2)/2 pairs of nodes distinct from i,
the number of 2-simplices to which i belongs is thus finally

k2(i, T ) =

(
N − 1

2

)(
1− exp

(
− (s− 1)(s− 2)

(N − 1)(N − 2)
T (ai + (s− 1)〈a〉)

))
. (S12)

In addition to Figure 2d in the main text, Figures (S3) and (S4) confirm the validity of Eq. (S12) at a more detailed
level. First, Fig. (S3) shows a scatterplot of the empirically measured value of k2(i, T ) vs. its theoretical value Eq.
(S12) for each node i in a SAD model with N = 2000 nodes and activities sampled from a Pareto distribution with
exponent α = 2.4. In Figure (S3), the empirical k2(i, T ) is obtained by an average over 50 realisations of the same
SAD model (i.e., each node i has the same activity ai in the 50 realisations). Note that the agreement between theory
and empirical value increases as T increases and also for larger values of k2, i.e., when the average is performed on
larger numbers of events, showing that the dispersion around the perfect agreement (given by the dashed diagonal
line) is due to the finite number of realisations.

In addition, Fig. (S4) displays the average over nodes of k2(i, T ) versus T , for various values of s, showing a perfect
agreement between theory and numerical results. Importantly, Fig. (S4) also clearly confirms that k2(i, T ) is different
from (smaller than) the average number of triangles to which i belongs in the aggregated network, as for instance a
triangle (i, j, k) in the aggregated network could be created by the aggregation of three simplices created at different
timesteps, containing respectively (i, j) but not k, (i, k) but not j and (j, k) but not i.

Finally, Figure (S5) reports, as a function of the aggregation time T , the distributions of the size of the largest
2-simplex component in the aggregated SAD model, and of the largest 3-clique component in the 1-skeleton of the
aggregated SAD model. We recall (see Section (II) for general definitions) that a connected 2-simplex component is
a set of 2-simplices in the aggregated SAD such that i) each 2-simplex shares at least one 1-face (here, an edge) with
another 2-simplex in the component, and ii) given two simplices A and B in the component, there exists a connected
path via 1-simplex-adjacency between the two simplices, i.e., here, a list of 2-simplices [A0 = A,A1, · · · , An−1, An = B]
such that ∀i Ai and Ai+1 share a common edge. For the largest 3-clique component in the 1-skeleton, the definition
is the same but replacing 2-simplices by triangles, as the 1-skeleton does not distinguish between triangles and 2-
simplices. Hence, the number of possible paths is much larger in the 1-skeleton and the size of the largest 3-clique
component grows much faster than the one of the largest 2-simplex component.
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FIG. S4. Temporal evolution of 〈k2(i, T )〉. We show the evolution of 〈k2(i, T )〉 (i.e., k2(i, T ) averaged over nodes) as a
function of the aggregation time T , for various values of s. Markers correspond to simulations, dashed lines to the prediction of
Equation (S12). As expected, 〈k2(i, T )〉 grows slower than the average number of all triangles (genuine 2-simplices and triangles
composed only by three edges) to which a node belongs in the 1-skeleton of the aggregated SAD. The latter corresponds to the
only information available if one considers only the network structure, forfeiting the higher order simplicial one. Shaded areas
represent Bayesian 95% confidence intervals on 〈k2(i, T )〉. The results were obtained from 200 realizations of a SAD model
with N = 2000 and activities sampled from a Pareto distribution with exponent α = 2.4.
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FIG. S5. Temporal growth of largest simplicial and clique connected components. We show as violin plots, over a
range of aggregation times, the distributions of the size of the largest connected 2-simplex component (orange) in the aggregated
SAD model and of the size of the largest 3-clique component (dark gray) computed on the 1-skeleton of the aggregated SAD
model. As expected, the latter grows much faster than the former due to the presence of triangles that are not 2-simplices.
The results shown are obtained from 200 iterations of the SAD model with N = 2000 and activities sampled from a Pareto
distribution with exponent α = 2.4.

V. SIMPLICIAL LAPLACIAN

The conventional graph Laplacian, L0 = D−A, is one of the cornerstone of the study of how dynamical processes
are affected by the underlying graph structure [24]. L0 operates on the graph’s nodes (0-simplices): it is indeed an
N ×N matrix, where N is the number of nodes.

In the case of a generic simplicial complex, it is possible to define a combinatorial (or simplicial) Laplacian Lk for
each dimension k of the simplices composing it. The definition of Lk [27] is written in terms of boundary maps:

Lk = ∂k+1∂
∗
k+1 + ∂∗k∂k (S13)

where it is easy to see that Lk maps Ck → Ck. The two terms of the sum are also known respectively as Lupk and

Ldownk . This is due to the fact that Lupk goes up in dimension first and then down (Lupk : Ck → Ck+1 → Ck), while

the Ldownk does the opposite (Ldownk : Ck → Ck−1 → Ck). Finally, one can see that L0 reduces to L0 = ∂1∂
∗
1 since

∂∗0∂0 is always vanishing.
Similarly to the graph Laplacian, the properties of the Laplacian relate to the processes spreading on such simplices,
for example as it pertains to random walks [28, 29] and control [30]. Further, the dimension of kerLk can be proven to
be the same as the dimension of the corresponding homology group Hk [31]. That is, the number of null eigenvalues is
the same as the number of holes of the corresponding dimensions. This is true also for the standard graph Laplacian
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L0, where the number of null eigenvalues is the same as the number of connected components (0-dimensional holes).
As L0 operates only on the nodes, its eigenspectrum is the same for the simplicial complex and its 1-skeleton.

However, this is no more true for larger values of k. We can see an effect of this in the density of null eigenvalues of
L1 for a simplicial complex X when compared to its 1-skeleton and to the clique complex built from its 1-skeleton.
Indeed, the 1-skeleton has no higher simplices, so all loops in the graph will count as holes, increasing the dimension
of H1 and hence of kerL1. We therefore expect βskeleton1 ≥ βX1 . Conversely, the clique complex Cl(X) will have by
construction at least as many 2-simplices as X itself and hence it will have βCl1 ≤ βX1 . In Figure 2d of the main text
we confirm this numerically.
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VI. SIS MODEL ON THE SAD TEMPORAL NETWORK

We consider the susceptible-infected-susceptible (SIS) model for disease spreading. In this model, nodes can be
either susceptible (S) or infectious (I). Infectious individuals can propagate the disease to susceptible ones at rate β
whenever they are interacting, and recover spontaneously at rate µ, becoming again susceptible.

We denote by Na the number of nodes with activity a. The total number of nodes is N =
∫
daNa.

Sta and Ita denote respectively the number of susceptible and infectious of activity a at time t. We have the simple
conservation equation Na = Sta + Ita, and the total number of infectious individuals is It =

∫
daIta.

A. Case of a fixed clique size s.

As explained in the main text, the time evolution of the number of infectious is given by the following equation:

It+∆t
a − Ita = −µ∆tIta + β∆tStaa(s− 1)

∫
da′

Ita′

N

+ β∆tSta

∫
da′a′

Ita′

N
(s− 1)

+ β∆tSta

∫
da′a′

Sta′

N
(s− 1)×

∫
da′′

Ita′′

N
(s− 2) (S14)

If we integrate (5) over a we get an equation for It:

It+∆t − It = −µ∆tIt + β∆t(s− 1)〈a〉It + β∆t(s− 1)θt + β∆t(s− 1)(s− 2)〈a〉It

= −µ∆tIt + β∆t(s− 1)2〈a〉It + β∆t(s− 1)θt (S15)

where θt =
∫
daaIta.

Multiplying (5) by a and integrating we get an equation for θt:

θt+∆t − θt = −µ∆tθt + β∆t(s− 1)〈a2〉It + β∆t(s− 1)〈a〉θt + β∆t(s− 1)(s− 2)〈a〉2It

= −µ∆tθt + β∆t(s− 1)〈a〉θt + β∆t
(
(s− 1)〈a2〉+ (s− 1)(s− 2)〈a〉2

)
It (S16)

These equations can be rewritten as (
It+∆t − It
θt+∆t − θt

)
= J

(
It

θt

)
(S17)

with

J =

(
−µ+ β(s− 1)2〈a〉 β(s− 1)

β
(
(s− 1)〈a2〉+ (s− 1)(s− 2)〈a〉2

)
−µ+ β(s− 1)〈a〉

)
(S18)

The characteristic polynomial of J is

(x+ µ)2 − βs(s− 1)〈a〉(x+ µ) + β2(s− 1)2(〈a〉2 − 〈a2〉)

from which we find its eigenvalues:

Λ± =
(
βs(s− 1)〈a〉 − 2µ± β(s− 1)

√
s2〈a〉2 + 4(〈a2〉 − 〈a〉2)

)
/2.

The epidemics does not vanish if and only if the largest eigenvalue Λ+ is positive. This yields the epidemic threshold
condition:

β

µ
> λSADc (S19)

with

λSADc =
2

s(s− 1)〈a〉+ (s− 1)
√
s2〈a〉2 + 4(〈a2〉 − 〈a〉2)

(S20)
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B. Case of a distribution of clique sizes P (s)

Let us assume that the size of the clique created at each activation is taken from a distribution p(s). The size s
and the activity of the active node at time t are uncorrelated. With respect to the case of fixed clique size, we then
just add an integration on p(s) in the evolution equation of Ita:

It+∆t
a − Ita = −µ∆tIta + β∆t

∫
dsp(s)Staa(s− 1)

∫
da′

Ita′

N

+ β∆t

∫
dsp(s)Sta

∫
da′a′

Ita′

N
(s− 1)

+ β∆t

∫
dsp(s)Sta

∫
da′a′

Sta′

N
(s− 1)×

∫
da′′

Ia′′

N
(s− 2). (S21)

Proceeding as before, we obtain coupled equations for It and θt, with the matrix J given now by:

J =

(
−µ+ β〈(s− 1)2〉〈a〉 β〈s− 1〉

β
(
〈s− 1〉〈a2〉+ 〈(s− 1)(s− 2)〉〈a〉2

)
−µ+ β〈s− 1〉〈a〉.

)
(S22)

The eigenvalues of J are now

Λ± =
(
β〈s(s− 1)〉〈a〉 − 2µ± β

√
〈(s− 1)(s− 2)〉〈(s− 1)(s+ 2)〉〈a〉2 + 4〈s− 1〉2〈a2〉

)
/2

Imposing that the largest one is positive gives the epidemic threshold condition

β

µ
> λSADc (S23)

with

λSADc =
2

〈s(s− 1)〉〈a〉+
√
〈(s− 1)(s− 2)〉〈(s− 1)(s+ 2)〉〈a〉2 + 4〈s− 1〉2〈a2〉

. (S24)

We observe that the epidemic threshold goes to 0 as 1/〈s2〉 if the fluctuations of the clique size diverge, at fixed
average 〈s〉. We illustrate this in Fig. (S6).

101 102

s2

100

101

SA
D

s = 2
s = 3
s = 4
s = 5
s = 6
s = 7

FIG. S6. Dependence of λSAD on 〈s2〉. We show explicitly that λSAD decreases proportionally to ∼ 1/〈s2〉 for various
average simplex sizes 〈s〉. We used 〈a〉 = 0.035 and 〈a2〉 = 0.001. The dashed black line is a reference to guide the eye and has
slope -1.
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FIG. S7. Ratio λSADc /λeADc for co-authorship data. We plot the ratio between the predicted epidemic thresholds for
the SAD and corresponding eAD models built using the empirical distributions F (a) and p(s) extracted each year from the
APS co-authorship data. The ratio grows between the years 1900 and 2015, driven by βa = 〈a2〉/〈a〉 until the 1950s and by
βs = 〈s2〉/〈s〉 afterwards.

C. Ratio between SAD and eAD epidemic thresholds

Using the expressions for λSADc and λeADc , it is possible to write explicitly the expression for the ratio between the
two quantities:

λSADc

λeADc

=
〈a〉+

√
〈a2〉

〈a〉+
√
〈a2〉
√

Θ
(S25)

with

Θ =
4〈s− 1〉2

〈s(s− 1)〉2
+
〈(s− 1)(s− 2)〉〈(s− 1)(s+ 2)〉

〈s(s− 1)〉2
· 〈a〉

2

〈a2〉
(S26)

where for the eAD we used m = s(s−1)/2. While the expression above can take values smaller than 1, for meaningful
values of the first two orders of s and a (s ≥ 2, 〈s2〉 ≥ 〈s〉2) it is always larger or equal to 1, implying that the SAD
critical threshold is always higher than that of the corresponding eAD model.

As an example, Fig. S7 shows the ratios obtained when using the activity and clique size distributions measured in
each year in the APS dataset: this ratio changes significantly between the data of 1900 and 2015, driven by changes
in the activity fluctuations βa until the 1950s and in the co-authorship size fluctuations βs afterwards.

We also give in Table S2 other examples of values obtained for the ratio between the predicted epidemic thresholds
for the SAD and corresponding eAD using data sets collected by the SocioPatterns collaboration and publicly available
[32]: each data set describes the face-to-face contacts of individuals in a certain context (offices, conference, hospital,
school...) as measured by wearable sensors worn by the participants to the data collection, with a temporal resolution
of 20 seconds. We first aggregate the data on a certain temporal resolution ∆, and measure on these data the
distributions of node activities F (a) and of clique sizes p(s). We then use Eq. (S25) to compute the ratio between
the predicted epidemic thresholds for SAD and eAD models defined by these activity and clique size distributions.
Note that the ratio increases for larger ∆, due to the fact that the clique size distribution broadens for smaller time
resolution (larger ∆).

D. Case of a uniform activity

Let us consider the case of a uniform activity: ai = a0 ∀i. Then 〈a〉2 = 〈a2〉 = a2
0 and it is easy to see that

λSADc =
1

s(s− 1)a0
= λeADc (S27)

i.e., the epidemic thresholds are then the same in the SAD and eAD models. To understand this point, it is useful to
get back to the evolution equation for the number of infectious individuals in each activity class, Ia. Since the activity
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TABLE S1.

TABLE S2. Values of λSADc /λeADc for SocioPatterns data: for each data set and for each temporal resolution, we extract the
empirical distributions F (a) and p(s), and compute the corresponding ratio of epidemic threshold using Eq. (S25).

data set context 5min 15min 30min 60min
sThiers13 Highschool 1.0220 1.0285 1.0339 1.0390
sInVS13 Offices 1.0085 1.0113 1.0127 1.0156
sLH10 Hospital 1.0772 1.1118 1.1401 1.1748
sSFHH Conference 1.0583 1.0693 1.0831 1.1037
sInVS15 Offices 1.0176 1.0262 1.0324 1.0468
sLyonSchool School 1.0220 1.0353 1.0499 1.0700

is the same for all nodes, there is only one class of nodes, and we note I = Ia0 , S = Sa0 : the dynamical equation will
concern only this quantity, which averages over all nodes, and is thus mean-field. The intuition is that, as a result,
the various terms concerning the various types of edges and contagion processes will be of a similar nature, no more
depending on the activities of the joined nodes, and only the number of such possible events will be of importance:
as SAD and eAD have the same number of created edges at each time step, the mean-field equations will be the same
for these two cases.

In mathematical details, all the integrals in the evolution equation (S14) are simplified and one obtains

It+∆t − It = −µ∆tIt + β∆tSta0(s− 1)
It

N

+ β∆tSta0
It

N
(s− 1)

+ β∆tSta0
St

N
(s− 1)× I

N
(s− 2) (S28)

yielding

It+∆t − It = −µ∆tIt + β∆ta0(s− 1)
StIt

N

(
2 +

(s− 2)St

N

)
(S29)

At short times (or close to the threshold), St ≈ N so

It+∆t − It ≈ −µ∆tIt + β∆ta0s(s− 1)
StIt

N
(S30)

In the eAD case, the evolution equation lacks the last term of the SAD model case:

It+∆t
a − Ita = −µ∆tIta + β∆tStaam

∫
da′

Ita′

N

+ β∆tSta

∫
da′a′

Ita′

N
m

(S31)

and for a uniform activity a0, the second and third terms are equal, yielding

It+∆t − It = −µ∆tIt + 2β∆tSta0m
It

N
(S32)

which for m = s(s− 1)/2 is the same as Eq. (S30).
The equality between the evolution equations for the SIS on the SAD and eAD models when the activity is uniform

can be understood as follows. The various terms in the evolution equation correspond each to one type of links:

for the eAD model, the term β∆tStaam
∫
da′

It
a′
N corresponds to links created by susceptible individuals of activity

a towards infectious of any activity (hence the integral over a′), while the term ∆tmSta
∫
da′a′

It
a′
N is instead due to

infectious of activity a creating links towards susceptibles of any activity. In other words, the m links created at
each step translate into 2m contagion opportunities, each weighted by the probabilities that the joined nodes are one
infectious and the other susceptible.
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In the SAD model, the first terms are similar to the AD case, but the last term of the evolution equation,

β∆tSta
∫
da′a′

St
a′
N (s − 1) ×

∫
da′′

It
a′′
N (s − 2), corresponds to links joining nodes that are not active, of activity a

and a′′, but brought together in contact by a node of activity a′ that creates a simplex.
When the activities are not uniform, each of these different terms is modulated in a different way by the activities

of the linked nodes and weighted by the probabilities of these nodes being respectively susceptible and infectious. As
one focuses on nodes of activity a, one then integrates over the possible activities of the other nodes.

When the activities are uniform instead, each link corresponds potentially to a contagion in the same way as the
other links, independently from the activities of the nodes it joins: the probability that one is susceptible and the
other infectious is the same for all links. Hence all these terms have in the end the same type of contribution StIt/N ,
and the factor is simply the number of links created (m for the AD, s(s − 1)/2 for the SAD). As the eAD has by
definition the same number of links as the SAD at each timestep, the number of contagion opportunities at each step
are then the same and the evolution equations are the same. Obviously this holds for small It for which one can
ignore correlations due to the fact that the s(s− 1)/2 of the SAD join only s nodes.
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VII. CASCADE MODEL

A. Definition

We consider here the model of cascades introduced by D. Watts [33] and generalized to temporal networks in
Ref. [34]. In this model, designed to represent the adoption of a behavior or a product by individuals influenced
by their social contacts in a population, agents can be either in state 0 (non-adopters) or 1 (adopters). Agents in
state 0 can change state and become adopters if a fraction of their social contacts larger than φ ∈ [0, 1] (the model
parameter) are adopters. In a static network framework, the social contacts are simply the neighbors of an agent.
Starting from a certain fraction of adopters, for instance taken at random among all agents, the agents’ states evolve
until no non-adopter has a fraction of adopters among his/her neighbours larger than φ: such a configuration is
blocked and the cascade stops. The efficiency of the cascade can then be measured by the final fraction of adopters
in the population.

Two important modifications need to be considered when the social contacts evolve in time, so that the adoption
cascade occurs along a temporal network of interactions:

• First, the model depends on another parameter, namely the length θ of the time-window during which the social
contacts are considered: at time t, each non-adopter considers the time-window (t− θ, t] and becomes adopter
if the fraction of his/her number of contacts with adopters among all interactions s/he had in this time-window
is larger than φ (θ = 1 corresponds to taking into account only the interactions at time t).

• Second, as the contacts are changing over time, a non-adopter could always have the possibility to make enough
new contacts with adopters to change state and become adopter: no configuration in which some agents are still
non-adopters can be considered as blocked, and the cascade could a priori continue until all agents are adopters.
To measure the efficiency of the dynamics or compare various initial configurations or temporal networks, one
should thus for instance fix a maximum time limit for the cascade, or use empirical data of finite length [34].

While a full investigation of the model at varying φ, θ on the one hand and at different parameters of the SAD
temporal network on the other hand (either at fixed s or with a distribution of sizes p(s)) is beyond our scope, we
simply illustrate here some aspects of the complex phenomenology of the cascading processes. In particular, we show
that strong differences appear in the dynamical outcome of the process on SAD and AD temporal networks.

B. Cascades on AD and SAD temporal networks

Figure S8 shows the temporal evolution of the average fraction of adopters in SAD temporal networks with fixed
clique size s and in corresponding eAD networks, for θ = 1 and varying φ. In the AD case, the dynamics becomes
slower as φ increases, as can be expected since the fraction of interactions with adopters needed to become an adopter
increases, but the slowing down is very limited. In the SAD model in contrast, as φ increases, the dynamics becomes
extremely slow when φ increases.

The strong difference between the dynamics on AD and SAD networks can be understood as follows. Let us first
consider the AD case: at each time step, if an adopter is activated and contacts a non-adopter, then the fraction of
adopters that the non-adopter sees is 1, so s/he becomes adopter, whatever the value of φ. If instead the active node
is non-adopter, then s/he can become adopter if a fraction larger than φ of the

(
s
2

)
agents s/he contacts are adopters.

While the second mechanism becomes slower if φ increases, as at early times it is less probable that a non-adopter
nodes manages to contact enough adopters to change state, the first mechanism guarantees that the cascade can
continue at any value of φ. The situation is quite different for the SAD model. Indeed, at each time step a clique of
size s is created. So each agent has the same number s − 1 of interactions, and a non-adopter can become adopter
only if the clique contains more than (s − 1)φ adopters. For instance, if s = 5, for φ = 0.1 a non-adopter becomes
adopter as soon as one adopter is present in the same clique. For φ = 0.3 however the created clique needs to contain
at least two adopters, for φ = 0.5 it needs 3, etc: for φ ∈ [(n − 1)/(s − 1);n/(s − 1)[ a non-adopter needs to be
put in interaction with at least n adopters to change state. For any n integer, the dynamics is thus much slower for
φ ≥ n/(s− 1) than for φ < n/(s− 1).

C. Effect of the memory span θ

We have checked that this phenomenology is robust for θ > 1. As θ increases, the process becomes slower on both
AD and SAD networks. This is in agreement with the results of [34], who find that the final cascade size on empirical
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FIG. S8. Average fraction of adopters vs. time for cascades unfolding along AD (top plots) and SAD (bottom plots) temporal
networks with N = 500 nodes, with s = 5 (left column) and s = 8 (right column). Here θ = 1.

temporal networks of finite duration decreases when θ increases. This is due to the fact that the number of contacts
increases when the time-window to consider (t− θ, t] becomes larger, but, as the number of nodes in state 1 is small
at early times, their fraction during (t − θ, t] typically decreases and thus it is more difficult for this fraction to be
above φ.

D. Effect of the parameter s

Figure S9 compares the results of simulations of cascades on AD and SAD temporal networks for various values of
s at fixed values of φ, with θ = 1.

For the AD model, as s increases, the cascade dynamics gets faster. This is the result of a competition between 2
phenomena: at fixed φ, if s increases, the probability for an active node in status 0 to have a fraction at least φ of its
neighbors in state 1 is smaller, at least at short times. This would slow down the cascade. However, an active node in
status 1 is able to spread its opinion to all the nodes it contacts: in the eAD model, a single active node can change
the state of

(
s
2

)
other nodes, a number growing quadratically with s, so that this effect dominates and the cascade

becomes overall faster.
For the SAD model, the picture is more complicated. If s increases but the value of φ remains in [(n − 1)/(s −

1), n/(s − 1)[ with fixed n, then with increased s the spread becomes faster. Equivalently, this corresponds to s
increasing within [1 + (n− 1)/φ, 1 + n/φ[. When s crosses the value 1 + n/φ however, the number of nodes in state 1
needed to convince the other nodes in the cliques increases by 1, so the dynamics becomes much slower.

Let us take concrete examples. For φ = 0.1, increasing s leads to faster dynamics until s = 11. For φ = 0.3, the
intervals [1 + n/φ, 1 + (n+ 1)/φ[ to consider are [1, 4.33[, [4.33, 7.67[, [7.67, 11[, etc. So s = 4 leads to faster dynamics
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FIG. S9. Average fraction of adopters vs. time for cascades unfolding along eAD (left plots) and SAD (right plots) temporal
networks with N = 500 nodes, for various values of s and φ. Here θ = 1.

than s = 3 but s = 5 becomes slower at short times, s = 6 is faster than s = 5 and s = 8 becomes much slower (n = 3
is needed).

For φ = 0.5, the intervals [1 + (n − 1)/φ, 1 + n/φ[ to consider are [1, 3[, [3, 5[, [5, 7[, [7, 9[, etc. So s = 4 leads to
faster dynamics than s = 3, s = 5 is instead much slower, etc.

Overall, the cascade velocity is non-monotonic with respect to an increase in s for the dynamics on the SAD
temporal network.

E. Effect of the variability in clique size

We finally mention the effect of variability in the values of s. Let us assume a distribution p(s) centered on a
value s0 and with tunable fluctuations around s0, quantified by a coefficient of variation v (ratio between standard
deviation and average). On the AD model, an increased variability simply speeds up slightly the cascading process
(see Fig. S10). On the other hand, a much more dramatic effect with very strong speed-up of the dynamics can be
obtained when the dynamics takes place on the SAD model, as illustrated in Fig. S11. Indeed, let us assume that
φ ∈ [(n − 1)/(s0 − 1);n/(s0 − 1)[ with n not too small, meaning that the dynamics with fixed s0 is slow because a
node in state 0 needs to be in contact with at least n nodes in state 1 to change state. Variability in s means that
the clique formed can be sometimes smaller than s0, and φ could sometimes be smaller than (n− 1)/(s− 1), in which
case only n− 1 nodes in state 1 are required to change state, and the process becomes thus much faster.
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FIG. S10. Average fraction of adopters vs. time for cascades unfolding along eAD temporal networks with N = 500 nodes, for
various values of s0 (average of p(s)), v (coefficient of variation of p(s)) and φ. Here θ = 1.
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FIG. S11. Average fraction of adopters vs. time for cascades unfolding along SAD temporal networks with N = 500 nodes, for
various values of s0 (average of p(s)), v (coefficient of variation of p(s)) and φ. Here θ = 1.
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