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ABSTRACT This paper proposes a new mathematical model to map the rotational speed and angle of
attack (pitch) of small-size propellers typically used in multirotors and the aerodynamic thrust force and
drag moment produced by the propeller itself. The new model is inspired by standard models using the
blade-element and momentum theories, which have been suitably modified in order to allow for explicit fast
computation of the direct and inversemap (useful for high-frequency control) and obtain a better adherence to
experimental data. The newmodel allows and captures all themain nonlinear characteristics of the thrust/drag
generation. An extensive experimental comparison shows that the prediction capability of the proposed
model outperforms the most commonly used models at date. In the second part of the paper, two optimization
methods are proposed in order to exploit the redundancy of the inputs of variable-pitch propellers to decrease
the power consumption due to the drag dissipation. The first method deals with the optimal allocation for
thrust generation on a single propeller, while the second method is aimed at solving the optimal allocation of
the rotational speed and pitch of all the propellers in a multi-rotor with any number of propellers. Simulations
results show the viability and effectiveness of the proposed methods.

INDEX TERMS Aerial vehicles, variable-pitch propellers, systems identification, multirotors.

I. INTRODUCTION
The fast growing of research in aerial robotics generates
several new challenges that demand new approaches, such as,
e.g., the one needed in physical interaction tasks with multi-
rotors, see, e.g., [1]–[3]. In this paper we explore alternative
models and solutions for the aerodynamic thrust generation
problem faced in such emerging fields.

The use of variable pitch (VP) propellers is an alternative
to the standard fixed-pitch (FP) propellers for several reasons.
They are capable of changing the value of the thrust from
positive to negative by using a combination of pitch angle
and motor velocity. Therefore the set of admissible forces is
enlarged, In fact, if we consider a standard quadrotor with FP
propellers, the vehicle is not able to apply an arbitrary desired
force downwards or even flip upside down; the maximum
force that the vehicle can apply downwards corresponds to
its own weight and perhaps less due to the minimum velocity
required by the motors. However, thanks to the simplicity of

building and controlling FP propellers, they are more popular
for multirotors than the VP propellers.

The use of VP propellers in multirotors is not a new
approach, they have been studied and implemented in the last
years [4]–[8] as an alternative to the FP propellers. In [4],
a comparison between FP propellers and VP propellers is
done, they conclude that the VP propeller has a fundamental
advantage of being able to change the direction of the thrust
vector very fast. Also, they have found that VP propellers
can track more accurately the velocity and acceleration com-
mands. A complete study done by the same authors is pre-
sented in [6]. They analyze the effects of addingVP propellers
in a quadrotor from the analytic part to the experimental part
as well. They mention that the VP propellers are a quick
method to reverse thrust. Similar conclusions and develop-
ments are presented in [5] and [8].

Mathematical models that describe the aerodynamic
effects of VP propellers have been developed in [8] and [9].
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Nevertheless, other approaches [10] have shown that the
experimental results do not fit well with the mathematical
models developed in these papers. In [10] an experimen-
tal model is proposed that claims to be more precise than
the common models in the literature. However, the vali-
dation of the proposed model is only given for the thrust
equation. Then, an approximation of the power consumed
by the propeller is given and supported by experimental
data.

On the other hand, one of the most known disadvantages
of multirotors is the autonomy. VP propellers present one
main advantage: they can save energy by allocating in a
strategic way the pitch angle and the motor velocity. There-
fore some approaches have been proposed to minimize the
power consumption of the propeller using VP mechanism,
see [10]–[12].

Despite the presence of these works, basic experimental
research steps in the modeling of VP propellers are still
strongly needed by the aerial vehicle community. In this
paper, we aim at filling this gap by proposing a new math-
ematical model that is experimentally driven and validated.
In Section II, we our proposed model and its theoretical
basis. In Section III, the description of the experimental
platform is given, and the parametric identification procedure
is described. For sake of comparison, other models from
the literature were identified as well. The comparison shows
that the proposed model fits much better than the other
models while having almost the same level of complexity.
In Section IV, the drag optimization problem is stated. The
optimization framework is tested in simulation on a fully-
actuated hexa-rotor. Finally, the conclusions and the future
work are presented in Section V.

II. VARIABLE-PITCH PROPELLER AERODYNAMIC MODEL
A. THEORETICAL IMPLICIT MODEL FOR A
VARIABLE-PITCH PROPELLER
A VP propeller is a type of propeller which has a mechanism
that allows varying the pitch angle θ of the rotor blades.
This capability allows changing the thrust direction in both
upward and downward directions by varying the pitch angle
from positive to negative values. The thrust generated by a
rotor is varied by changing either the blade pitch angle of
the propeller or the spinning velocity. The relation between
the lift (force) and the drag (moment) is derived using the
blade element theory (BET) together with momentum theory,
which is discussed in detail in [13] and [14]. A scheme show-
ing an element of the blade with its resultant forces is shown
in Fig. 1. For helicopter rotors (see, e.g., [13]) one can assume
that the out-of-plane velocity Up is much smaller than the in-
plane velocity UT , and therefore U ≈ UT , leading to the fact
that the angle φ is small. Therefore, a good approximation
is that the increment in thrust (dT ) and drag moment (dD)
are approximately the increments in lift (dL) and torque (dQ)
along the blade, respectively. By integrating the expressions
for the thrust and the drag it is possible to derive the following

FIGURE 1. Variable-Pitch scheme, where dL and dD are the resultant
incremental lift and drag per unit span at the blade element, respectively;
α is the angle of attack (AoA); φ is the relative inflow angle at the blade
element.

model:

T = ρCtA(ωR)2 (1)

Q = ρCqA(ωR)2R (2)

where T (in N) is the lift force (thrust); Q (in N m) is
the drag moment (or rotor-torque, simply called drag in the
following); ω (in revolutions per second or better said in Hz)
is the intensity of the angular velocity of the motor; R is the
rotor radius; A is the area swept by the propeller; ρ is the air
density (in kg m−3); Ct is the thrust coefficient; Cq is the
drag coefficient. This model has been used in some papers
like [7], [15], and it will be used as a guideline for the
derivation of our the proposed model.

The thrust coefficient Ct is related to the shape of the pro-
peller. Usually, the blades of FP propellers have a twist along
the blade which lets the pitch angle change at each blade
section. This is done to increase efficiency exploiting the fact
that the induced velocity varies along the blade. However,
in a VP propeller the blades are untwisted, i.e., θ is constant
along the blade. Therefore, for blades with zero twist and
considering uniform inflow velocity, the thrust coefficient is
given implicitly by, see [13],

θ =
6Ct
σClα

+
3
2

√
|Ct |
2

sgn(Ct ) (3)

where θ is the pitch angle (in rad); Clα is the 2D lift-curve-
slope of the airfoil section(s) comprising the rotor; σ = Nbc

πR
is the blade solidity, where Nb is the number of blades, and
c is the chord length. A plot using different values of blade
solidity values is shown in Fig. 2a. Although the behavior
of Ct is almost linear for high values of pitch angle, it can
be seen the presence of a nonlinearity around zero, mainly
due to the second term in (3), this term is the additional
pitch required to compensate for the inflow resulting from
the generated thrust.

Notice the absolute value in the squared root, this is neces-
sary to account for negative values of thrust, the sign value
of Ct is kept by the sign function. Furthermore, it can be
seen that (3) is nonlinear, with no closed form inverse. Hence,
in real-world applications, its inverse needs to be computed
iteratively on-board, which may result unfeasible, since the
control commands are sent at high frequency.
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FIGURE 2. a) Thrust coefficient Ct using the following values: N = 2, and
Clα = 5.73. b) Drag coefficient Cq curve using the same values for Ct and
the zero-lift coefficient Cd0

= 0.01.

On the other hand, the drag coefficient is related to the
thrust coefficient Ct , as follows,

Cq =
|Ct |3/2
√
2
+

1
8
σCd0 (4)

where Cd0 is the zero-lift drag coefficient, this is caused by
parasitic drag depending on the shape of the propeller. This
term models the fact that even with zero pitch angle there is
a drag moment, in contrast with what assumed in [6], where
the drag value is considered proportional to the thrust. A plot
of (4) using different values of blade solidity values is shown
in Fig. 2b.

From (1)-(2) and (3)-(4) it can be seen that the computation
of the thrust and drag, both essential for controlling a multi-
rotor, is not straightforward, e.g., because (3) has be solved
iteratively. Moreover, no force/torque sensors are considered
in a UAV design due to the weight that would imply, and
the high difficulty in properly filtering the noise induced by
the vibrations. Therefore, a simpler model has to be used
to precisely compute the thrust and drag generated by the
propeller without the need of a sensorial feedback.

B. PROPOSED EXPLICIT HEURISTIC MODEL
In this section, the proposed experimental VP propeller model
is introduced. We shall take as a guideline the theoretical
model described in Section II-A. The motivation of arriving
at a new model is mainly the simplicity for computing the
thrust and drag generated by the VP propeller in real-world
applications without the need of measuring the force/torque
online with additional onboard sensors. Therefore, the pro-
posed model should be simpler and equally precise, and
highly reliable for predicting thrust and drag values from the
knowledge of the spinning velocity and the pitch angle.

1) EXPERIMENTAL THRUST MODEL
According to [16], the quadratic approximation of the thrust
equation of a FP propeller commonly used in theory does
not fit quite well with the experimental data. Therefore, they
propose to approximate this thrust equation with a second-
order polynomial in ω. However, in order to give physical
sense to the equation, we can neglect the independent term.

Hence, equation (1) can be rewritten as,

T = fCt (.)(ω
2
+ ω) (5)

where fCt (.) is a function of the physical shape of the propeller
and the pitch angle.

In the following we propose a new model of the thrust
taking into account the pitch angle contribution. First of all,
it can be seen that (3) is unbounded. However, this does not fit
properly with reality, i.e., beyond a certain pitch angle value
the lift begins to decrease, as it enters the stall condition.
Hence, the equation to be found must possess the following
characteristics:
• fCt (.) ∈ R
• fCt (θ ) = 0, θ = 0
• fCt (θ ) = −fCt (−θ ) due to the reverse thrust.
• fCt (.) ∈ [C t ,C t ]
The function fCt (.) proposed to model the thrust coefficient

is the following:

fCt (θ ) = β1| sinθ | sinθ +β2 sinθ (6)

where sinθ = sin (θ). Notice that the first term of (6) is a
quadratic-like term which, however, has negative and posi-
tive values. Furthermore, the equation proposed has all the
characteristics mentioned above.

Finally, the experimental thrust model that we propose has
the following form:

T = (β1| sinθ | sinθ +β2 sinθ )ω2

+ (β3| sinθ | sinθ +β4 sinθ )ω (7)

Equation (7) is slightly more complex than the one presented
in [10]. However, the proposed equation will show to bemuch
more precise and possessing a better prediction ability.

2) EXPERIMENTAL DRAG MODEL
We take a similar approach to find an equation that relates the
pitch angle and the drag moment. Taking (4), we replace the
first term that it is related to the thrust coefficient Ct with a
function dependent on the pitch angle. The function fCq to be
found must possess the following characteristics:
• fCq (.) ∈ R.
• fCq (θ ) = Cq,0, θ = 0 due to the zero-lift coefficient.
• fCq (θ ) = fCq (−θ )
• fCq (.) ∈ [Cq,Cq]

The function fCq (.) proposed is the following:

fCq (θ ) = γ1 sin
4
θ +γ2 sin

2
θ +γ3. (8)

Notice that (8) is always convex (in the region of interest)
and it is nonzero at any point, in order to model the zero-lift
effect. Furthermore, the proposed model has all the charac-
teristics mentioned above. Inspired by the relation between T
and Q highlighted in (2) the proposed drag model takes the
following form:

Q = − sgn(ω)fCq (.)(ω
2
+ ω)
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TABLE 1. Principal VP models for multirotors reported in the literature.

The term − sgn(ω) accounts for the spinning direction of the
propeller since it will generate torque in the opposite direction
when the spinning direction changes its sign.

Rewriting the above equation and gathering all the constant
terms in lumped coefficients, we obtain:

Q = − sgn(ω)[(γ1 sin4θ +γ2 sin
2
θ +γ3)ω

2

+ (γ4 sin4θ +γ5 sin
2
θ +γ6)ω]. (9)

III. EXPERIMENTAL VALIDATION OF THE PROPOSED
MODEL
A. DESCRIPTION OF THE EXPERIMENTAL SETUP
The experimental platform that we used for the testing and
comparison is shown in Fig. 3 and its general characteris-
tics are provided in Table 2. It consists of a brushless (BL)
motor,1 a VPmechanism2 with a ten-inch propeller3 attached
and a micro servo with feedback.4 The control is done in
MatlabTM by using a BL controller and an ArduinoTM board
for the micro servo. We used a Force/Torque (FT) sensor in
order to measure the force and the moment generated by the
VP propeller. The FT sensor is a SI-145-5, the full list of
characteristics of the sensor can be found on its webpage.5

The FT sensor was attached at the bottom of the platform as
it is shown in Fig. 3-right. The angular velocity is measured
using the zero crossings of the counter-electromotive force in
the BL controller [17], which gives a precision of less than
±0.1 Hz. The pitch angle is measured by the servo encoder.

For controlling the pitch angle, a micro-servo with a link-
age is used. A PI controller was implemented to precisely
drive the blade pitch to its desired value. On the other hand,
for controlling the rotational speed, a robust closed-loop con-
troller presented in [17] was used. This controller provides
a very good insensitivity to the perturbations caused by the
pitch variations. In order to show its capability, we provide the
results of the following stress test: a desired spinning velocity
is kept constant at 40 Hz while the desired pitch angle is a
sinusoidal trajectory going from its minimum to its maximum
value (−20deg and 20deg) in less than 0.8 s. This corresponds

1http://wiki.mikrokopter.de/MK2832-35
2https://hobbyking.com/en_us/4d-hollow-variable-pitch-unit-without-

motor-3mm-motor-shaft.html
3https://hobbyking.com/en_us/10-inch-replacement-blades-for-variable-

pitch-motor-assembly.html
4https://www.adafruit.com/product/1404
5http://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini45

TABLE 2. Experimental platform specifications.

FIGURE 3. Variable Pitch Testbed. The complete system is attached to a
base by dampers in order to reduce vibrations. The main characteristics of
the system are shown in Table 2.

FIGURE 4. Velocity tracking while pitch angle tracks a sinusoidal.

to an extremely large and fast variation of the disturbance
torque for the motor controller. Despite such big disturbance,
as we can see in Fig. 4, the motor controller [17] is capable
of compensating these extreme perturbations and keep the
tracking error within ±1 Hz.6 Clearly, during the identifica-
tion procedure, a much less aggressive trajectory was used,

6The units in all the plots were changed from radians to degrees in order
to facilitate the reading of the results.
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TABLE 3. Identification RMSE values for thrust and drag of all the models.

TABLE 4. Identified coefficients of the five models.

explained later, where the tracking error is a decimal fraction
of the one seen in this stress test.

The relation between the blade pitch and the servo angle is
non-linear, however, a proper function is defined to correlate
both angles, this function works for calibrating the platform.
The calibration was made using a special software for image
analysis called Tracker.7 Using this software different angular
positions given to the micro-servo were recorded to find the
counterpart for the blade pitch angle. After that, a proper
function was approximated to find the relation between the
two angles.

B. PARAMETER IDENTIFICATION PROCEDURE
The identification is made offline using the least squares (LS)
algorithm with outlier rejection in order to compute the coef-
ficients for the different models in (7)-(9). The experiments
were carried out in the following way: constant spinning
velocities from 40 Hz to 80 Hz with steps of 10 Hz were
set; in each step, while the spinning velocity was constant,
the pitch angle tracked a ramp from−20deg to 20deg in 20 s.
For the sake of comparison, four more VP models from the
literature were also identified, a summary of these mod-
els is shown in the first four lines of Table 1. Since the
LS algorithm cannot be applied to model iii) because of its
complexity, a stochastic optimization technique can be used
to find the unknown coefficients; in particular, an evolution-
ary algorithm was used [18].

C. IDENTIFICATION RESULTS AND MODEL COMPARISON
After carrying out all the experiments, the parametric identi-
fication of the five models was performed. In the following,
we present the numerical results. It is worth to mention that

7https://physlets.org/tracker/

model i) is arguably the most used model in real applications.
However, as it will be shown, its capability to predict the
thrust and drag of the propeller is not fully satisfactory.
The Root Mean Square Error (RMSE) was computed as a
statistical indicator to have a fitness index for each model.
They are gathered for the thrust and the drag of models i-v
in Table 3. The coefficients identified for the five models are
listed in Table 4.

In order to provide a visual understanding the predic-
tions and residual errors of the models i), ii), iii), and the
proposed model v) are shown in two summarizing tables
in Figs. 17 and 18, at the end of the paper. The predicted
lift force of model iv) is very similar to the one of model iii)
and therefore it is not reported here (quantitative results are
reported in Table 3).

Model i) is arguably themost popularmodel formultirotors
at the date. However, from the RMSE and the plots it is
clear that the experimental results agree with model i) neither
quantitatively nor qualitatively. In fact, at constant spinning
velocity model i) predicts a linear behavior on the thrust with
respect to the pitch angle, however, a nonlinear behavior is
clearly seen experimentally. Although the linear approxima-
tion of the pitch angle could be useful for applications in
which larger angles of the pitch are required and just a quick
switch through zero is needed, for other applications, it is
mandatory to have a precise prediction of the thrust and drag
around the zero pitch. Also, the shape of the predicted drag
fits unsatisfactorily with the experimental data. The proposed
model v) fits much better both for thrust and drag. In fact,
thanks to its nonlinearity, the region around zero is predicted
very nicely.

The good quality of the model proposed can be also com-
pared with the other three common models ii), iii), and iv),
by observing the RMSE values reported in Table 3. It is
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FIGURE 5. Thrust evaluation using the proposed model v).

FIGURE 6. Drag evaluation using the proposed model v).

possible to see how the RMSE values of the proposed model
are significantly smaller than the others, despite its equivalent
complexity.8

Finally, Figs. 5 and 6 provide a global overview of the pow-
erfulness of the proposed model by showing the experimental
data superimposed to the full 3D surfaces for models (7)
and (9), respectively, as functions of ω and θ .

IV. DRAG OPTIMIZATION
A. POWER DISSIPATION
Brushless Direct Current (BLDC) motors are the most com-
mon type of motors used in multirotors. BLDC motors have
high efficiency, high torque-to-weight ratio, increased relia-
bility, reduced noise and longer lifetime. Although the mathe-
matical model of a BLDCmotor has three equations due to its
three-phase permanent magnet motor, it can be approximated
by a permanent magnet direct current motor. A simplified
model of a DC motor is the following

Em(t) = Raia(t)+ Keω(t) (10)

ia(t) =
1
KT

[(Jm + JL)ω̇(t)+ Tm + TL] (11)

where Em(t) [ V] is the supply voltage; ia(t) [ A] is the current
trough the motor coils; Ra [ �] is the armature resistance;

8Notice that model iii) is even more complex than the proposed one, since
it needs to solve three equations in order to compute the thrust and drag.

Ke is the motor back EMF constant [ V s rad−1];
KT [ N m A−1] is the motor torque constant; ω(t) [ rad s−1]
is the angular velocity of the motor that coincides with the
velocity of the load; Jm and JL are themoment of inertia of the
motor and the load, respectively; Tm is the opposing torque
due to the Coulomb and viscous friction, and TL is the torque
due to the load. According to [19], the motor torque constant
KT [ N m A−1] is theoretically equal to Ke.
The input power to the motor Pi(t) is given by,

Pi(t) = i2a(t)Ra + Keωia(t)

= i2a(t)Ra + ω(t)Tm + ω(t)TL
+ (Jm + JL)ω(t)ω̇(t). (12)

Therefore, we can identify three terms that can be consid-
ered as power losses in a DC motor on the right-hand-side
of (12). These can be due to electrical or mechanical reasons,

• i2a(t)Ra - Winding resistive loss.
• ω(t)Tm - Coulomb friction and viscous friction.
• ω(t)TL - Load dissipation.

Notice that the last term in (12) can be ignored when either
the velocity is constant (or slowly varying) or where the final
velocity and the initial velocity are equal over an interval.

By definition, the propeller drag is considered as the load
of the motor TL , therefore, if the load is minimized, the part
of the power due to load dissipation, which constitutes a large
portion of the total power, will be minimized as well.

Supported by the previous analysis, in the following,
we tackle the problem of minimizing the VP-propeller drag
Q while producing the desired thrust for a single rotor
(Sec. IV-B) or a desired total wrench (Sec. IV-C) for a fully-
actuated multi-rotor system.

B. OPTIMAL DRAG PROBLEM FOR A SINGLE ROTOR
Figure 7 shows the isothrust and isodrag curves in the plane
ω-θ for the identified setup of Figure 3. Such curves are
defined as the level curves of the functions T and Q in (7)
and (9) respectively. It can be seen that many isodrag curves
intersect an isothrust curve, i.e., several values of drag can
be generated for one value of thrust. Motivated by the power
consumption discussion in the previous section we consider
then the problem of choosing the spinning velocity ω and
the pitch angle θ in order to obtain a desired thrust T∗ while
minimizing the absolute value of the drag |Q|, according to
the proposed and validated model.

The VP-propeller drag is characterized by (9), that we
validated and compared experimentally. The identified coef-
ficients for our experimental platform are shown in Table 4.
In Fig. 8 we show the corresponding drag curves for constant
values of thrust ranging from 0.5 N to 5 N. The curves are
obtained from (9) by varying θ ∈ (0, 20] continuously and
computing ω from (7) for the particular θ and the given
constant value of T . It can be seen that such curves are convex
with respect to θ in that range. Moreover, the unconstrained
minimum value is always close 10deg, for the particular setup

68160 VOLUME 6, 2018
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FIGURE 7. Isothrust and isodrag curves. Isothrust curves have a step
of 0.2 N from 0.2 N to 5 N. Isodrag curves have a step of 0.005 N m from
0.005 N m to 0.1 N m.

FIGURE 8. Isothrust drag curves. The thrust step is 0.5 N.

in Figure 3. Other setup might present different behaviors,
while convexity is always preserved.

In this case, one single motor-propeller is considered.
We are interested in finding the combination of pitch angle
θ and the motor velocity ω that generate a desired value of
thrust T∗ such that (9) is minimum. The problem is multi-
variable, however, it can be rewritten as a single variable
optimization problem by doing some algebra.

Let be given a desired thrust T∗ > 0 (if T∗ < 0 then the
problem can be solved for−T∗ and then the sign of the found
θ∗ can be flipped; if T∗ = 0 the solution is ω = 0 with any
θ ). The goal is to find θ∗ and ω∗ that realize T = T∗ and
minimize |Q|.
First of all since Q(ω, θ) = Q(−ω, θ) any minimum

that can be reached with a ω < 0 can also be reached
with the opposite positive ω. Second of all since T (ω, θ) =
T (−ω,−θ ) any thrust that can be realized with ω < 0
can also be realized with the opposite (positive) ω and the
opposite θ . Therefore, considering also that T∗ > 0 and
observing the shape of T w.r.t. θ we can restrict the optimiza-
tion problem to case in which ω > 0 and 0 < θ < π/2.
Given this assumption we have that,

T = (β1| sinθ | sinθ +β2 sinθ )ω2

+ (β3| sinθ | sinθ +β4 sinθ )ω

= gT1 (θ )ω
2
+ gT2 (θ )ω, (13)

Algorithm 1 Single Rotor Optimization

1 Compute ω∗(θ ) with T∗ using (13);
2 Substitute ω∗(θ ) in (14);
3 Solve θa and θb with T∗ using (13) and the constraints in
ω;

4 Define the constraints θ1 and θ2;
5 Solve the optimization problem (16);

Q = −(γ1 sin4θ +γ2 sin
2
θ +γ3)ω

2

− (γ4 sin4θ +γ5 sin
2
θ +γ6)ω

= gQ1 (θ )ω
2
+ gQ2ω, (14)

where gT1 (θ ) , gT2 (θ ) and gQ1 (θ ) , gQ2 (θ ) are positive and
monotone functions in the domain of interest. The problem
to solve is then,

min
θ,ω

Q(ω, θ)

s.t θ ≤ θ ≤ θ

ω ≤ ω ≤ ω

T (ω, θ) = T∗ (15)

where 0 < θ < θ < π/2 and 0 < ω < ω.
Solving for ω∗(θ ) with T = T∗ in (13) and substituting in

Qwe can eliminate the variable ω and the equality constraint.
Furthermore we can replace the inequality constraint on ω in
an inequality constraint on θ by imposing that ω ≤ ω∗(θ ) ≤
ω. We solve for θa in (13) with T∗ and ω, and θb with T∗ and
ω. Denoting with θ1 = max(θa, θ) and θ2 = min(θb, θ ) we
can reformulate the minimization as

min θQ(ω, θ)

s.t θ1 ≤ θ ≤ θ2 (16)

notice that T∗ does not play any role in the cost function but
only in the definition of the constraints on θ .

Now, problem (16) can be solved with a single-
variable unconstrained optimization method, for instance,
the dichotomy algorithm. This algorithm is simple but effi-
cient for solving a problem in which the function is convex
and unimodal. Moreover, it does not require either gradi-
ent or Hessian information, and allow computing the required
iterations given the step and tolerance. This last is useful for
real-applications since the exact number of iterations need to
ensure the convergence of the algorithm is set. InAlgorithm 1,
the pseudo-code is shown.
Results: In order to show that the algorithm is able to

find the minimum value of Q for, e.g., the identified setup
of Figure 3, the algorithm has been tested for fixed values
of thrust Td = [0.2, 0.4, 0.6, 0.8, 1], and then the isothrust
curves will be plotted together with the isocurves found by
the algorithm, see Fig. 9.

VOLUME 6, 2018 68161



V. M. Arellano-Quintana et al.: Novel Experimental Model and a Drag-Optimal Allocation Method for Variable-Pitch Propellers

FIGURE 9. Isothrust curves and the isodrag curves found by the algorithm
with the following values of desired thrust Td = [0.2,0.4,0.6,0.8,1].

FIGURE 10. Isothrust curves and the isodrag curves found by the
algorithm with the following values of desired thrust
Td = [1.5,2,3,4,4.5].

The vector of optimal pitch angles, the vector of motor
velocities and the vector of the functionQwere the following,

Td = [0.2, 0.4, 0.6, 0.8, 1]

θ∗ = [9.3630, 9.3767, 9.4107, 9.4392, 9.4623]

ω = [29.7823, 43.7286, 54.3084, 63.1875, 70.9899]

|Q|∗ = [0.0053, 0.0089, 0.0122, 0.0154, 0.0184]

Furthermore, the optimal values of pitch angles and motor
velocities for higher values of thrust are presented,

Td = [1.5, 2, 3, 4, 4.5]

θ∗ = [9.5604, 11.0602, 13.5764, 15.6976, 16.6580]

ω = [87.0964, 88.7046, 90.8413, 92.2991, 92.8909]

|Q|∗ = [0.0257, 0.0507, 0.0531, 0.0781, 0.0926].

As it can be seen from Fig. 10, the drag values found by the
algorithm for higher values of thrust would be suboptimal for
the unconstrained problem, in fact, the isothrust and isodrag
curves found by the algorithm are not tangent. However the
values found are optimal for the constrained problem. If the
upper bound of the motor velocity was higher, for instance,
20 < ω < 150, the optimal values of pitch angles would be
located around 11deg.

FIGURE 11. Single VP propeller optimization.

Now, two sinusoidal signals are taken as desired thrust
Td1 = sint and Td2 = 4 sint , to analyze the behavior of the
commanded pitch angle and motor velocity.

In the first case, the pitch angle remains almost the same
around 10deg since the required motor velocity is within its
valid range. On the other hand, in the second case the pitch
angle changes at the moment in which the motor velocity
reaches its upper bound, leading to an increment in the pitch
angle to achieve the desired thrust, while still minimizing the
drag, see Fig. 11. In other words, the pitch angle remains
almost constant if the motor velocity values are within its
limits, otherwise, the motor velocity goes up to upper limit
and the pitch angle finishes the job.

C. OPTIMAL DRAG FOR A FULLY-ACTUATED MULTI-ROTOR
The dynamics of an n-rotor can be described by the following
matrix equation,[

mI3 03
03 J

]
︸ ︷︷ ︸

M

[
p̈
ω̇

]
︸︷︷︸
a

=

[
−mgẑ
−ω × Jω

]
︸ ︷︷ ︸

f

+

[
Rr 03
03 I3

]
︸ ︷︷ ︸

B

[
F1
F2

]
︸ ︷︷ ︸
F

u

(17)

where n is the number of rotors. Matrix F is the allocation
matrix of the total wrench applied to the multirotor; matrices
F1 and F2 are the force and moment matrices, respectively.
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FIGURE 12. Trajectory tracking by a hexa-rotor with VP-propellers using
the proposed optimization strategy.

Matrix F1 ∈ R3×n is made by unit vectors vi ∈ R3×1 that
define the orientation of the propeller i, ||vi|| = 1. Matrix
F2 ∈ R3×n is made by the vectors wi ∈ R3×1 that define
the sum of the torque due to thrust and the torque due to
drag moment, i.e. wi = σikdivi + ri × vi, where ri is the
position vector of propeller i to the center of gravity of the
vehicle; km is a coefficient that relates the spinning velocity
with the torque produced around the rotation axis, and σi is the
direction of rotation σi ∈ {−1, 1}. To compensate the torque
(drag moment) of each propeller the value of σi is defined
as σi = −1i. The control input is the force generated by
the propeller u = [f1, .., f6]T . Following the parametrization
presented in [20], the propeller angles used in this work are
α = ±35 deg and β = 10 deg.
The control allocation matrix F maps from the propellers

thrust to the forces and torques applied to the hexa-rotor.
Therefore, the matrix F can be expressed as follows,

F =
[
F1
F2

]
=

[
F1

P× F1 +Q

]
(18)

FIGURE 13. Optimal values of the pitch, the motor velocities and the drag
for each rotor using the proposed optimization strategy.

where F1 is a matrix made by the propellers orientation; F2 is
the moment allocation matrix; P is the matrix that contains
the position of the propellers and Q is the drag due the
VP propellers, defined as,

Q =
[
kd1v1, . . . , kd6v6

]
(19)

where kdi is the relation between the drag generated by the
VP-propeller and the force, kdi = Q∗i /(fi + γ ) where γ is
for avoiding indetermination, sufficiently small to not affect
the value of Q∗i . The controller used in this simulations is
a Feedback Linearization with a PID controller. The PID
controller is defined as follows,

wd = −f−Kpep −Kd ėp −Ki

∫ tf

t0
epdt + ad (20)

where matrices Kp,Kd ,Ki ∈ R6×6 are diagonal matri-
ces with proper proportional, derivative and integral gains,
respectively; the errors in translation and orientation are
defined as follows,

ep =
[
epos
eatt

]
=

[
p− pr

1
2 (R

T
dRr − RT

r Rd )

]
(21)
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FIGURE 14. Trajectory tracking by a hexa-rotor with VP-propellers,
without using the optimization strategy (constant speed).

ėp =
[
ėpos
eω

]
=

[
ṗ− ṗr

ω − RT
r Rd ω̂r

]
(22)

(23)

where ˆ(.) is the hat operator; ωr = RT
d Ṙd .

The control allocation strategy is simple since the matrix F
is full rank, the control allocation is made by just inverting it
as follows,

u = (M−1BF)−1w∗. (24)

Using this controller, the matrix F is required to have inverse
in order to know the force required by each propeller. The
approach we propose to solve the problem of the fully-
actuated hexa-rotor with VP-propellers in an optimal sense
is to find the matrix F iteratively by using single rotor opti-
mization problem presented in Section IV-B for each motor,
this algorithmwas inspired by the one proposed in [16]. First-
of-all, the algorithm initiate by computing the total thrust
desired f , in this case, we assume that the total thrust is
defined as f = mg, where m is the hexa-rotor mass. Then,
we compute the initial force needed by each VP-propeller
as f1,...,6 = (M−1BF)−1w∗ with w∗ = [0, 0,mg, 0, 0, 0]T .

FIGURE 15. Pitch and drag values by the VP-propellers, without using the
optimization strategy (constant speed).

FIGURE 16. Performance indexes of the two cases.

Algorithm 2Matrix F Computation

1 Compute initial forces f1,...,6 = (M−1BF)−1w∗ with
w∗ = [0, 0,mg, 0, 0, 0]T ;

2 for k = 1 to kend do
3 Solve optimization problem from Section IV-B for

each fi and save the optimal values of Q∗i ;
4 Compute matrix F using Q∗i values ;
5 Compute F−1 and find the required forces for the

desired total thrust fd and the desired torquesMd ;
6 end

After that, six optimization problems are solved having as
desired thrust the forces found in the previous step. By solv-
ing the six optimization problems we get the (minimum)
drag produced by each propeller, Q∗1, . . . ,Q

∗

6, these values
are substituted in matrix F and then its inverse is computed,
finally the forces values now become the initial forces, and the
algorithm starts again, see Algorithm 2 for the pseudocode.
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FIGURE 17. Prediction vs measurements of the lift force (thrust) for models i), ii), iii), and the proposed model. The
predicted lift of model iv) is very similar to the one of model iii) (see RMSE in Table 3) and is not reported here for
space considerations.
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FIGURE 18. Prediction vs measurements of the drag moment for models i), ii), iii), and the proposed model. Model
iv) has no drag moment.
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After a few steps, the propeller forces converge to the
proper values to produce the required total thrust and the
required torques, minimizing the drag. The algorithm is suit-
able to be implemented online, since the time required to
compute Algorithm 2 is lower than the typical control period
of 2 ms.

D. RESULTS
In this section we present a comparison with themain strategy
used in the literature in which the velocity is kept constantly
at its maximum value [5], [6], [8], [11]. Such strategy gen-
erates the desired thrust by varying the pitch angle, and the
relation between force and pitch becomes one to one. The
same simulation with the same trajectory, parameters and
control gains with such strategy is run and compared with
our method. In order to have more realistic simulation results,
we added Gaussian white noise to the measurements. In addi-
tion, to show the effectiveness of the method, we defined the
following performance index,

Jq =
∫ tf

t0

6∑
i=1

|Qi|dt. (25)

This is equivalent to sum the absolute values of the drag of
the six VP-propellers over time.

In Figs. 12-14, it can be seen, that the tracking is similar in
the two cases, and the forces demanded by the controller are
similar as well. In Figs. 13-15, it can be seen that the opti-
mization strategies minimize the drag consumption, going
to almost zero values in some points. On the other hand,
in the non-optimized case (constant speed) it is not possible
to reduce the drag below a certain value, even if a zero force
is required.

However, the performance indexes are different between
the two methods, see Fig. 16. Taking the final values,
i.e. the total drag over time, the difference is around
2.9834 N m s.

V. CONCLUSIONS AND FUTURE WORK
Making use of the commonly accepted blade element theory,
we proposed a mathematical model for variable-pitch pro-
pellers employed in multirotors. The main goal was to get a
simpler model, that is fast enough to be solved in real-time
applications and precise enough to predict the thrust/drag
values without the necessity of force/torque sensors onboard.
The proposed model was experimentally compared with the
four most popular models in the literature. Despite the fact
that the proposedmodel is equivalent to themost popular ones
in terms of complexity, the comparison has shown that it is
significantly more precise in terms of fitting and force/torque
prediction. The RMSE values obtained with the proposed
model are less than 0.18 N in all the cases for the thrust and
less than 0.0045 N m for the drag, for the identified setup
of Figure 3. Furthermore, we proposed an algorithm that
optimizes the power loss due to the drag of the propellers,

the algorithm was successfully tested in simulation on single
propeller and on a fully-actuated hexa-rotor; this kind of
platforms are more suitable for having optimization strategies
with VP propellers, since even in hover condition the required
thrust variation is larger than in a quadrotor. Based on this
fundamental building block, in the future, we will work on
control laws for energy efficient consumption strategies and
use this proposed model to drive multirotors in physically
interactive tasks.
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