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ABSTRACT
In the latest years, there has been a huge e�ort to deploy large
amounts of data, making it available in the form of RDF data thanks,
among others, to the Linked Data initiative. In this context, using
shared ontologies has been crucial to gain interoperability, and to
be able to integrate and exploit third party datasets. However, using
the same ontology does not su�ce to successfully query or integrate
external data within your own dataset: the actual usage of the vo-
cabulary (e.g., which concepts have instances, which properties are
actually populated and how, etc.) is crucial for these tasks. Being able
to compare di�erent RDF graphs at the actual usage level would in-
deed help in such situations. Unfortunately, the complexity of graph
comparison is an obstacle to the scalability of many approaches.

In this article, we present our structural similarity measure, de-
signed to compare structural similarity of low-level data between
two di�erent RDF graphs according to the pa�erns they share. To
obtain such pa�erns, we leverage a data mining method (KRIMP)
which allows to extract the most descriptive pa�erns appearing in
a transactional database. We adapt this method to the particularities
of RDF data, proposing two di�erent conversions for an RDF graph.
Once we have the descriptive pa�erns, we evaluate how much two
graphs can compress each other to give a numerical measure de-
pending on the common data structures they share. We have carried
out several experiments to show its ability to capture the structural
di�erences of actual vocabulary usage.
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1 INTRODUCTION
In the last years, the amount of data available in RDF kept growing
both in size and diversity. Di�erent initiatives, such as the Linked
Open Data, and the progressive adoption of semantic annotations
within web pages [7] are fueling this growth making available do-
main speci�c datasets which are (re)using the same ontologies. Such
use of a common vocabulary and the interlinking between those
datasets are the direct application of the Linked Data principles. �is
way of publishing data greatly increases their interoperability, and
enable a number of new applications based on the integration and
exploitation of new RDF data. However, sharing a common vocabu-
lary by itself helps, but does not guarantee smooth data integration
and interoperability. Two datasets using the same ontologies as
background schema can use their common vocabulary in di�erent
ways. For example, instances may be distributed di�erently among
the class hierarchy (i.e., the used part of the ontologies could be dis-
joint), or even when using the same concepts, the properties of the
instances in each dataset may be di�erently populated. �erefore,
when confronted to a new dataset, it is necessary to be able to check
if its usage of the vocabulary (i.e., the actual structure of the data)
is similar to the other datasets used in your application.

In the case of RDF data, this checking involves the comparison
of two RDF graphs, which is in turn closely related to the problem
of the evaluation of the distance between two graphs. Such distance
has been extensively studied for generic graphs concluding that
graph edit distances are very expensive and does not scale well, as the
survey by Gao et al. [2] shows. Moreover, as RDF graphs can be seen
as multi-dimensional graphs with semantics a�ached, it is di�cult
to devise an adapted edit cost function. �us, the particularities of
RDF graphs and the recent explosion in the quantity of low-level
RDF data accessible pose new challenges for measures of similarity
between knowledge bases.

In this paper, we propose a similarity measure based on the de-
tection of common structural regularities between two RDF graphs.
�is measure, which we have called the structural similaritymeasure,
is asymmetrical, grows monotonically with the number of di�er-
ences between the datasets, and can detect structural inclusion (i.e., if
a dataset has the same structure as a part of the other). Our approach
leverages a data mining approach called KRIMP [18] to extract a set
of important and descriptive pa�erns from RDF graphs. With this
set of pa�erns, the KRIMP approach makes it possible to calculate
the compressed size of a database. Our approach adapts this feature
of KRIMP to compute a similarity measure which compares two RDF
graphs according to the frequent pa�erns they share. As KRIMP uses
transactional databases as input, we propose two di�erent conver-
sions from RDF graph to transactional database. Such conversions
provide di�erent levels of structural information, depending on the
presence of properties and types in the neighborhood of instances in
an RDF graph. To derive our measure, we revisit and reinterpret the
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measure proposed by Vreeken et al. [17], where they just focused
on the general similarity of the extensions of databases where the
schema is completely �xed. We tested our approach using both
conversions in three di�erent experiments using the Scholarly Data
dataset [19] showing the potential of our proposal.

�e rest of paper is as follows. In Section 2, we brie�y describe the
KRIMP algorithm and some particular aspects especially relevant
for understanding our proposal. Section 3 presents both the RDF
graph conversions we propose, and the structural similarity measure
calculated out from the compression ratios obtained with KRIMP.
�en, in Section 4, we present the experimentation we have carried
out to show di�erent properties of our proposed measure. Finally,
Section 5 discusses the related work, and we present our conclusions
and future work in Section 6.

2 PRELIMINARIES: FREQUENT ITEMSET
MININGANDTHEKRIMPALGORITHM

In data mining, the pa�ern mining �eld aims at extracting interest-
ing subsets of a database. For this purpose, one of the most used
instances of this problem is frequent pa�ern mining, whose goal is
to extract all interesting subsets of a given database. Formally, let I
a set of items. A databaseD in pa�ern mining is a set of transactions
such as each transaction t is a non-empty subset ofI. �e interesting
subsets ofD are itemsets, which are de�ned as suchX such as there
isX ⊂I andX ,∅. In frequent pa�ern mining, the “interestingness”
of an itemsetX depends on its support among the transactions, i.e.
the number of transactions that containX .

suppD (X )= |{t ∈D|X ⊆ t}| (1)
�e itemsets with a support above the minimal support threshold
minsup are called frequent itemsets. A major problem in frequent pat-
tern mining is the very high number of frequent itemsets extracted,
which is usually reduced by imposing additional constraints on the
select itemsets. A common approach is to limit the search of frequent
itemsets to the closed frequent itemsets, which are de�ned as such
itemsets X such as there is no other itemset Y which holds X ⊂ Y
and suppD (X )=suppD (Y ).

However, imposing constraints on itemsets is usually not enough
to obtain a manageable amount of them, so further criteria are used
to limit the explosion of possible pa�erns. In this regard, the KRIMP
algorithm [18] is a pa�ern mining approach based on frequent pat-
tern mining aiming at selecting the most descriptive pa�erns of the
database by adopting the Minimal Description Length principle [14].
Citing the authors, the idea of KRIMP is to �nd “the set of frequent
itemsets that yield the best lossless compression of the database”.
One of the advantages of this approach is that there is no param-
eters needed. However, as �nding the optimal set is known to be
NP-complete, KRIMP algorithm is based on greedy heuristics.

�us, the goal of the KRIMP algorithm is to �nd a code table giving
an optimal description of a database. Such code table is a two column
translation table associating itemsets with codes (see Figure 1). �e
set of itemsets contained in the code table is its coding set, and it con-
tains the most describing pa�erns for a databaseD. Besides, for com-
pleteness, the coding set always contains the singleton itemsets con-
taining each individual item. In particular, the code table containing
only the singleton itemsets of databaseD is called its standard code
table. It gives the simplest set of pa�erns representing a database.

Figure1: Exampleof code table inadatabasewithI= {A,B,C},
extracted from [18]. �e gray scale indicates di�erent codes,
while the length of the boxes is related to their length.

To encode a transaction t with a code tableCT , KRIMP uses the
cover function, cover (CT ,t), which assigns a set of disjoint itemsets
from the coding setCS to t . Such set of itemsets is called the cover
of the transaction, and is a set of non-overlapping itemsets which
hold that:

t =
⋃

X ∈cover (CT ,t )
X (2)

�us, the encoding of a database is done by replacing each trans-
action by the codes of the itemsets of their cover. To guarantee an
optimal code size, Vreeken et al. [18] gives a code length measure
in bits based on the notion of usage. �e usage of a codeX from the
coding tableCT of a databaseD is de�ned as:

usaдeD (X )= |{t ∈D|X ∈cover (CT ,t)}| (3)

From this de�nition, the length of the code codeCT (X ) ofX ,X ∈CT
is de�ned as:

L(codeCT (X ))=−loд
(

usaдeD (X )∑
Y ∈CTusaдeD (Y )

)
(4)

Hence, the encoded length of a transaction is de�ned as:

L(t |CT )=
∑

X ∈cover (CT ,t )
L(codeCT (X )) (5)

�e encoded size of a databaseD is de�ned as:

L(D|CT )=
∑
t ∈D

L(t |CT )) (6)

�e size of a code tableCT of databaseD, with a standard code table
ST , is de�ned as:

L(CT |D)=
∑

X ∈CT :usaдeD (X ),∅
L(codeST (X ))+L(codeCT (X )) (7)

�e total encoded size of a databaseD and its code tableCT is de�ned
as:

L(D,CT )=L(D|CT )+L(CT |D) (8)
�e encoded size of a base can be seen as a reduction of the size

of the base according to its regularities. Hence the ratio between the
encoded size of a database according to its code table and its encoded
size according to the standard code table gives a measure of its the
regularity. In Section 4, we will call this ratio the KRIMP compression
ratio de�ned as:

ratioKRIMP =
L(D,CT )
L(D,ST ) (9)

�e closer this ratio is close to 0, the more regular the base is. On the
other hand, it gets closer to 1 if the base contain few regularities.
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�e KRIMP algorithm takes as input a set of candidate itemsets
and a set of transactions (i.e., the database), and uses an heuristic
based on the size, usage and support of each the candidate itemsets
to �nd a code table minimizing the encoded size of the transactions
in a best e�ort manner. Usually the candidate itemsets are frequent
itemsets extracted by another algorithm from the set of transactions,
such as in our experiments in Section 4 where we used all closed fre-
quent itemsets extracted with FPClose [4]. �e code table obtained
by the KRIMP algorithm can be seen as an ordered set of descriptive
itemsets, according to the KRIMP heuristic, which can be used to
compress the set of transactions.

3 MEASURING
SIMILARITIES BETWEENRDFGRAPHS

Depending on the source of the data (e.g., data publishers, human
contributors, or automated data extractors), the contents of a knowl-
edge base can be described in di�erent ways even when using the
same vocabulary. �is can happen due to many factors, such as the
availability of data for populating the properties, the focus of the
subject of the base, or the modeling skills and habits of the people
responsible for making the data available.

Di�erences in the way the vocabularies are used are a problem
when it comes to integrating data from di�erent sources. We propose
an approach to detect them by taking into account the pa�ern shar-
ing degree derived from the exploitation of KRIMP code tables. To
achieve this, we �rst propose a way to convert RDF data into trans-
actional data which keeps the structural elements of an instance
description that can be used in pa�erns; and then, we move onto our
proposed similarity measure.

3.1 FromRDF to Transactions
As seen in Section 2, frequent itemsets mining approaches are applied
over sets of transactions. �us, to be able to apply KRIMP on RDF
data, our approach needs to convert the graph-based RDF data to that
kind of input. Such a conversion must provide a description of the
instances in the RDF graph that can be useful to detect structural pat-
terns. For this purpose, we propose to transform the description of
individuals to sets of items indicating the apparition of di�erent RDF
elements in their neighborhood (e.g., RDF resources or structures).

In particular, we propose two conversions depending on the
amount of information included in the transactions, namelyproperty-
based, and property-class-based conversions (PB and PCB from now
on, respectively). We build such conversions on the notion of de-
scription of a resource, which is de�ned as follows:

De�nition 3.1. Let be r a resource included in an RDF graph B,
we de�ne its description desc(r ) as

desc(r )= {(a, R, b) | (a, R, b) ∈B∧(a=r∨b=r )} (10)
In a transaction associated to an instance, PB conversion includes

items representing the asserted types of the instance, and the usage
of properties in the ingoing and outgoing triples of the instance
neighborhood. �us, the items used in PB conversion depend on the
classes and properties used in the vocabulary of an RDF graph, and
are de�ned as follows:

De�nition 3.2. Let O be the vocabulary of a given RDF graph B.
LetNC ,NR , andND the concept, role, and data property names used

inO. �en, in PB conversion, we de�ne its itemset vocabulary IPB as
IPB =IT ∪IPI N ∪IPOUT (11)

with
IT = {ic |c ∈NC }
IPI N = {ipin |p ∈NR }

IPOUT = {ipout |p ∈ (NR∪ND )}
�en, we de�ne the transaction associated to an instance accord-

ing to the PB conversion as follows:

De�nition 3.3. �e PB conversion of a resource r in an RDF graph
B is the transaction trPB generated by the application of the follow-
ing PB-conversion rules until no new item is added to trPB :

(a) ∃ (r , rdf:type, c) ∈desc(r )∧c ∈NC =⇒ ic ∈ trPB
(b) ∃ (r , p, r ′) ∈desc(r )∧p ∈ (NR∪ND ) =⇒ ipout ∈ trPB
(c) ∃ (r ′, p, r ) ∈desc(r )∧p ∈NR =⇒ ipin ∈ trPB

�e PCB conversion extends the PB conversion by adding items
which represent combinations of the properties and the types of
the other resources that a resource is linked to. In particular, PCB
conversion extends the list of items used in PB conversion as follows:

De�nition3.4. LetO be thevocabularyofagivenRDFgraphB. Let
NC ,NR , andND the concept, role, and data property names used inO.
�en, in PCB conversion, we de�ne its itemset vocabulary IPCB as

IPCB =IPB∪IT ,PI N ∪IT ,POUT (12)
with IPB as de�ned in De�nition 3.3 and

IT ,PI N = {ic,pin |(c,p) ∈NC×NR }
IT ,POUT = {ic,pout |(c,p) ∈NC×(NR∪ND )}

Obviously,IT ,IPI N ,IPOUT ,IT ,PI N andIT ,POUT are forced to be
disjoint. Again, we de�ne the transaction associated to an instance
according to the PCB conversion as follows:

De�nition 3.5. �e PCB conversion of a resource r in a graph
B is the transaction trPCB generated by the application of the PB-
conversion rules along with the following PCB-conversion rules
until no new item is added to trPCB :

(d) ∃{(r , p, r ′), (r ′, rdf:type, c)} ⊂ desc(r ) ∧ c ∈ NC ∧ p ∈
(NR∪ND ) =⇒ ic,pout ∈ trPCB

(e) ∃{(r ′, p, r ), (r ′, rdf:type, c)} ⊂ desc(r ) ∧ c ∈ NC ∧ p ∈
NR =⇒ ic,pin ∈ trPCB

PB and PCB conversions transcribe the distribution of types and
properties in the neighborhood of the instances of an RDF graph.
In a sense, PB conversion is similar to the notion of individual type
proposed by Glimm et al. [3]; however, our conversion also re�ects
the data distribution. PCB conversion extends such description with
a description of the actual interconnection between instances of
di�erent types.

We acknowledge that other conversions could be applied, provid-
ing further structural information to the pa�ern mining algorithm.
However, we have to take into account also that usually the data
mining algorithms increase their cost mainly with the number of
possible items, so we have focused on proposing and studying the
usefulness of these conversions. PB and PCB transcribe important
structural features for the description of instances while limiting the
number of items used.
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3.2 Measuring Similarity�roughCompression
As above mentioned, the KRIMP algorithm extracts the most descrip-
tive pa�erns from a database of transactions. Besides, its compres-
sion capabilities allows to measure the regularity of such database
as we have introduced in Section 2. We propose to exploit such com-
pression capabilities (i.e., compute the encoded size depending on
the pa�erns appearing in the data) to propose a measure of similarity
between the data structure of two RDF graphs. In particular, our
measure is de�ned as:

De�nition 3.6. Let B1 and B2 be two given RDF bases, and D1
andD2 their respective conversions into transaction databases. �e
structural similarity measure to compare B1 to B2, regardless the
particular conversion applied, is de�ned as:

sim(B1 |B2)=
L(D1 |CTD2 )
L(D1 |CTD1 )

(13)

In other words, when comparing B1 against B2, our measure
compares how well the code table of D2 is able to compress the
transactions inD1 regarding the compression achieved by the code
table ofD1. It is a variation of the measure proposed by Vreeken et
al. [17] to compare database extensions, adapted to our needs (see
Section 5 for further discussion).

When comparing one RDF graph according to the other, our struc-
tural similarity measure indicates that a graph contains frequent
data structures that also appear in the other graph. �e main idea is
that the more RDF graphs share pa�erns, the structurally closer they
are, as KRIMP has selected such pa�erns independently for both
of them. �e comparison is done calculating the ratio between the
encoded sizes ofD1 using such both code tables. Note that it can
be asymmetrical due to the inclusion of one code table into another
(i.e., one graph may contain most of the other’s pa�erns but not the
opposite). Besides, when the datasets use di�erent vocabulariesV1
andV2, the actual used vocabulary isV =V1∪V2 as, when compress-
ing the graphs, we update the usages of the each code tables to get
the fairest code length for both.

As our measure is a ratio, close structural similarity appears as
its value gets close to 1. However, we have to remark that, as KRIMP
applies a heuristic, it might not �nd the optimal code table and we
can witness a structural similarity measure below 1. Such values
indicate important structural similarity to a point where descriptive
pa�erns for the evaluated RDF graph appear in the reference code
table but not in its own code table.

Our measure has the advantage that it only needs to compute
the code table and the transaction conversion once for any given
RDF graph to enable it to be compared to any other RDF graph. In
its current state, we need to make available the conversion index
from RDF element to item to be able to share an RDF graph code
table. However, it could be possible in future works to include code
table in RDF format as meta-data associated to an RDF graph, for
example using a notation inspired by the Shapes from the SHACL
W3C recommendation [5].

4 EXPERIMENTAL EVALUATION
In this section, we present the evaluation we have carried out to
evaluate how our approach captures of di�erences between datasets.

First, we present the experimental se�ings and the details of the pro-
totype implemented; then, we move onto the di�erent experimental
results and their analysis.

4.1 Experimental Settings
We have gathered eleven RDF datasets describing di�erent con-
ferences related to the Semantic Web from the ScholarlyData [19]
dataset, a refactoring of the Semantic Web Dog Food (SWDF) ini-
tiative. �ese datasets have been selected taking into account their
size in terms of triples (see Table 1) to check the independence of our
measure from the size of the datasets being compared. Besides, we
specially selected two of them because they are datasets published
a�er the refactoring from SWDF to ScholarlyData. �is was done to
check whether our approach could detect a change in the way that the
data has been published despite using the same vocabulary. �e set of
eleven datasets will be referred to as the Real Collection from now on.

Table 1: Size of the scholar datasets used in the experiments
(in increasing order of RDF triples).

Conference #RDF triples #Transactions
EKAW’16X∗ 11,278 1,866

ISWC’12 12,211 2,694
ISWC’10 12,809 2,436

ESWC’12∗ 13,147 2,314
ESWC’15 13,826 2,533

WWW’11∗ 16,689 3,137
ISWC’13∗ 21,128 4,679
ESWC’14 21,509 3,851

ESWC’17X 23,053 4,021
LREC’08 38,248 7,304

WWW’12∗ 39,650 7,076
X Dataset released a�er the Semantic Web Dog Food refactoring.

∗ Dataset included in the Evolution Collection.

Taking the Real Collection as starting point, we have built some
derived collections to test how our measure values varies with the
number of di�erences, and if it can detect structurally included
datasets. To test these two points, we have used two collections,
named the Evolution and Inclusion Collection, respectively.

�e Evolution Collection contained modi�ed versions of a sub-
set of the Real Collection (see Table 1). �e modi�cations applied
were: 1) randomly delete a class assertion of a randomly selected
resource (i.e., removing a (a, rdf:type, T) triple); 2) randomly delete
a property assertion of a randomly selected resource (i.e, removing
a (a, R, b) triple); 3) randomly modify the value of a property for a
randomly selected resource (i.e., modifying b in an existing (a, R, b)
triple). �e new value was randomly selected from the values already
present in the RDF graph for that property. Using such modi�ca-
tions, we built three groups of synthetic datasets: a) applying only
class assertion deletions, b) applying only property deletions and
modi�cations, and c) applying the three types of modi�cations. For
each original dataset, each group contained three versions of �ve
modi�ed containing an increasing number of triples up to 50%, in 10%
steps, leading to 45 derived datasets for each original one.

�e Inclusion Collection was derived by selecting the smallest and
the biggest datasets (resp. EKAW’16, WWW’12) of the Real Collec-
tion. We also selected the most similar dataset to the others (i.e.,
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Figure 2: Averaged values of the di�erencesmeasured by our
approach with the two di�erent proposed conversions.

ISWC’12) according to our measure in our �rst experiments (see
Figure 4). We merged each of the selected datasets into the other
datasets from Real Collection. For each of the selected datasets, we
obtained ten datasets including them.

We have implemented our measure using Java 1.8, and used
Jena 3.1.1 to handle the RDF data. We want to remark that we have
focused our experiments on the ability of our approach to capture
the structural di�erences between datasets, as the scalability of the
KRIMP algorithm has been already thoroughly analyzed and shown
by Vreeken et al. [18]. We note that the complexity of the KRIMP
algorithm is function of the number of transactions and the num-
ber of candidates itemsets given. In our experiments, we used as
candidate itemsets all closed frequent itemsets. Finally, we want to
remark that we focus on graphs large enough to be used with data
mining techniques where other approaches do not scale well.

4.2 Capturing Di�erences
Our �rst experiments aimed at evaluating the behavior of our mea-
sure during the comparison of increasingly di�erent versions of the
same dataset, using the Evolution Collection. Figure 2 and Figure 3
show the averaged results of the measure for the whole Evolution
Collection, and the detail for ISWC’13 (averaged over its 45 derived
datasets).

We can see how the structural similarity measure increases along
with the percentage of modi�ed triples. However, in Figure 2, we can
see that when it reaches the 50%, it begins to stall. �e explanation
for these values can be found in the combination and nature of the
modi�cations and the conversion. In our datasets, we interpret the
decrease in the growth of our measure as the sign that our modi�ca-
tions changed the repartition of items less signi�cantly than before,
and thus did not make appear new pa�erns. When the dataset is
smaller, this behavior appeared earlier1. Regarding the conversion
employed, we can see how the addition of more detailed structural
elements makes our approach detect more clearly the di�erences
between the datasets. �is allows us to be able to put a trade-o� in
the conversion we want to use: �e more important it is for a given

1�e rest of detailed graphs can be found at h�p://sid.cps.unizar.es/projects/simStruct/
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Figure 3: Averaged values of the di�erencesmeasured by our
approachwith the two di�erent proposed conversion for the
ISWC’13 dataset.

application to capture �ne-grained details, the more information
should be added in the conversion step; however, this comes at the
cost of adding more potential codes to the KRIMP algorithm.

�is evolution scenario is very usual in semantic annotations
(e.g., using JSON-LD) deployment and Linked Data endpoints: we
can have an evolving dataset and, using our approach, we can as-
sess the structural di�erences between versions. Besides, in these
experiments we made sure that our modi�cations do not use new
concepts or properties, which is the most challenging scenario for
our approach. If we considered new concepts or properties in the
compared dataset, the di�erence will be directly increased as by no
means the initial code table can codify them.

4.3 Measuring Real Datasets
Our next experiments aimed at observing the behavior of our mea-
sure in a real se�ing by comparing the 11 datasets in the Real Col-
lection against each other.

In Figure 4, we can see the results for the cross comparison for both
conversions. �e ScholarlyData datasets have been arranged in al-
phabetical and increasing year order, except for the two conferences
that were released a�er the refactoring from SWDF (i.e., EKAW’16
and ESWC’17). �e le�most column displays the dataset against
which the dataset in the column has been compared. �e diagonal
shows the KRIMP compression ratio of the datasets (see De�nition 9);
the compared datasets are really compact, meaning that their code
tables contain pa�erns that can cover most of their data structures.

As expected, the usage of a �ner-detail conversion (PCB) increases
the di�erences. At �rst sight, we can see how the di�erence between
the two newest datasets (�rst two rows) and the rest clearly stands
out, especially when comparing the old ones against the new ones.
When comparing ESWC’17 against EKAW’16, the di�erence, while
asymmetric, is really close. When we compare the new datasets
against the old ones (�rst two columns), we can see how the di�er-
ences are lower, meaning that the code tables of the older datasets
compress part of the data really well. �is is explained by the dif-
ference of importance that some particular concepts and properties
have gained in the new data deployment: the importance of some
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Property Based (PB) EKAW'16 ESWC'17 ESWC'12 ESWC'14 ESWC'15 ISWC'10 ISWC'12 ISWC'13 LREC'08 WWW'11 WWW'12

EKAW'16 0.103 1.216 3.612 4.824 4.457 3.175 5.294 4.087 4.762 3.992 3.312

ESWC'17 3.283 0.095 5.427 5.144 5.059 5.449 4.697 4.178 6.358 6.047 5.111

ESWC'12 3.355 3.423 0.100 1.785 1.553 3.212 2.836 2.735 2.625 4.334 1.598

ESWC'14 3.270 3.281 2.238 0.104 1.413 2.934 2.815 2.637 2.638 3.364 2.177

ESWC'15 3.184 3.115 2.269 1.792 0.101 3.110 2.869 2.756 2.638 3.647 2.230

ISWC'10 2.922 2.887 1.060 1.684 1.561 0.118 2.760 2.604 2.625 1.113 1.427

ISWC'12 1.259 1.211 0.985 1.105 1.217 0.970 0.130 1.045 1.013 0.983 0.959

ISWC'13 1.380 1.314 1.207 1.289 1.459 1.132 1.031 0.141 1.011 1.041 1.096

LREC'08 2.170 1.936 2.120 1.943 1.874 2.101 2.415 2.178 0.094 1.991 1.850

WWW'11 2.163 2.174 1.649 2.689 1.939 1.701 1.610 1.842 1.041 0.100 1.678

WWW'12 1.486 1.653 1.001 1.782 1.474 1.503 1.822 1.807 1.603 2.213 0.111

Property Class Based (PCB) EKAW'16 ESWC'17 ESWC'12 ESWC'14 ESWC'15 ISWC'10 ISWC'12 ISWC'13 LREC'08 WWW'11 WWW'12

EKAW'16 0.059 1.555 6.845 7.977 7.285 5.986 8.918 6.493 10.843 6.301 6.177

ESWC'17 5.107 0.052 8.835 8.314 8.002 8.950 7.645 6.508 10.844 10.089 8.233

ESWC'12 5.916 6.772 0.059 2.299 2.040 4.641 4.195 3.789 4.163 6.298 2.035

ESWC'14 5.792 6.638 2.906 0.061 1.524 4.291 4.183 3.695 4.180 4.954 2.990

ESWC'15 5.675 6.423 2.967 2.236 0.062 4.487 4.237 3.816 4.179 5.257 3.051

ISWC'10 5.431 6.158 1.105 2.385 2.201 0.068 4.077 3.620 4.163 1.218 1.822

ISWC'12 2.236 2.818 0.986 1.295 1.606 0.977 0.073 1.110 1.025 0.998 1.045

ISWC'13 2.369 2.934 1.214 1.484 1.857 1.145 1.038 0.080 1.014 1.060 1.184

LREC'08 2.626 2.249 2.683 2.401 2.503 2.650 3.388 2.950 0.052 2.323 2.269

WWW'11 3.517 4.387 1.846 3.633 2.641 1.912 1.874 2.122 1.067 0.057 1.959

WWW'12 1.635 1.924 0.995 2.289 1.953 1.599 1.867 1.945 1.054 2.461 0.065

Figure 4: Structural similarity values for the analyzed datasets (the upper table contains the property-based conversion (PB)
values; while the lower one contains the property-class-based (PCB) values. �e values of in green (the diagonal) are the
compression ratios that KRIMP achieves for that particular dataset. �e other values are colored on a color scale fromwhite to
red with the lowest value in white and the highest in red.

data structures have changed, and this change has appeared in the
code tables. Note that this means that we could integrate the new
data into the older ones and expect that globally the structure of
the data is not going to change, while not the opposite. �is kind
of observation is particularly important when dealing with data
integration. Moreover, we can also say that a query that is able to
retrieve data when posed against the old datasets is likely to retrieve
data when posed to the newer ones, rather than the opposite.

Analyzing further the data, we now turn our a�ention to the sub-
matrix formed by ISWC conferences. In both conversion, we can see
how ISWC’12 and ISWC’13 are really similar in both directions with
structural similarity values close to 1. We observe that these two very
similar datasets also have similar similarity measures when both
of them are compared to another dataset. Besides, we can see how
these parallelisms in the values also happen among conferences. For
example, focusing on PCB (lower table) and comparing WWW’12
against ISWC’12 gives a value of 1.045. Hence, when comparing
other datasets which are close to WWW’12 against ISWC’12, their
values should be similar, which can be observed for example when
comparing ESWC’12 (0.995 against WWW’12) to ISWC’12. Note
that there will be a small variability as KRIMP applies a heuristic,
and it does not achieve the optimal result.

4.4 Inclusion Tests
Our �nal experiments aimed at observing the e�ciency of our mea-
sure in the detection of inclusion of a dataset into another, using use
the Inclusion Collection.

Due to space restrictions, in Figure 5, we only show the results
for ISWC’12 derived datasets and PCB conversion2. However, our
observations for this table can be generalized to the rest of our ex-
periments. �e le�most table contains the measures using ISWC’12
as reference dataset: the �rst column of values shows the compar-
ison with the other datasets alone, as in Figure 4; the last column
of values contains the comparison with the union of each dataset
with ISWC’12. �e rightmost table contains the measures using each
other dataset to measure the structural similarity with ISWC’12, in
the same way with the �rst column for the datasets alone and the
last column for the unions.

Analyzing these results, when the comparison of the reference
dataset and another dataset clearly indicated structural di�erences,
the union of this dataset with the reference is still detected as di�er-
ent. However, as expected, a decrease of the di�erence measure is
observed. A�er the union, the code table of the reference dataset is
not able to codify the structures speci�c to the other dataset. When
we compare the reference dataset to the union dataset (rightmost

2�e complete results for the whole Inclusion Collection can be found at
h�p://sid.cps.unizar.es/projects/simStruct/
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Property Class Based (PCB) [* <= ISWC'12]

EKAW'16 8.918 EKAW'16+Ref 1.038

ESWC'17 7.645 ESWC'17+Ref 1.038

ESWC'12 4.195 ESWC'12+Ref 1.007

ESWC'14 4.183 ESWC'14+Ref 1.038

ESWC'15 4.237 ESWC'15+Ref 1.038

ISWC'10 4.077 ISWC'10+Ref 1.002

ISWC'13 1.038 ISWC'13+Ref 1.038

LREC'08 3.388 LREC'08+Ref 1.002

WWW'11 1.874 WWW'11+Ref 1.000

WWW'12 1.867 WWW'12+Ref 1.005

Property Class Based (PCB) [ISWC'12 <= *]

EKAW'16 2.236 EKAW'16+Ref 1.405

ESWC'17 2.818 ESWC'17+Ref 1.972

ESWC'12 0.986 ESWC'12+Ref 0.921

ESWC'14 1.295 ESWC'14+Ref 1.136

ESWC'15 1.606 ESWC'15+Ref 1.260

ISWC'10 0.977 ISWC'10+Ref 0.914

ISWC'13 1.110 ISWC'13+Ref 1.061

LREC'08 1.025 LREC'08+Ref 0.966

WWW'11 0.998 WWW'11+Ref 0.931

WWW'12 1.045 WWW'12+Ref 0.971

[I SWC′12<=∗]Di�erence measures when comparing each dataset against ISWC’12

[∗<= I SWC′12]Di�erence measures when comparing ISWC’12 against each dataset

+Ref: Dataset integrated with ISWC’12 (i.e., the union of both)

Figure 5: Results of the inclusion experiments for the ISWC’12 dataset using PCB conversion.

table), we observe a strong similarity with measures very close to 1.
�is means that the pa�erns present in the union dataset code table
are able to codify almost optimally the contained dataset (i.e., it is
structurally contained within the other dataset). Inclusion can also
be observed in the comparison of the original data (see Figure 4) with
the conference ESWC’12 being structurally included in WWW’12.

As expected from the nature of our approach, the observed asym-
metry is a strong measure of structural inclusion of one dataset
into another, which indeed can be exploited in many scenarios as
before mentioned (i.e., updating, integrating, querying datasets).
�is behavior is independent of the relative size of the graphs as our
approach exploits heavily the detected structure of the graphs; in our
experiments the ratio of size of the inclusion datasets with their orig-
inals varies from 0.29 to 3.5. �e only restriction is to have enough
data so as to leverage them and obtain structural information; in the
case of testing particular instances, the inclusion test should be done
exploiting the KRIMP classi�cation properties [18], but we consider
this particular use case part of the future work of this paper.

5 RELATEDWORK
�e gap between data mining and the Semantic Web has been bridged
in several ways, either by using data mining as a source of data for
Semantic Web approaches or by using RDF data as background
knowledge to enhance data mining approaches. From the beginning
of the Semantic Web, the Semantic Web mining domain, a subdomain
of data mining, had as goal the extraction of RDF data from external
sources, as presented in the state-of-the-art by �boa and Saraee [13].
Outside of this �eld, other approaches have focused on using Se-
mantic Web technologies for knowledge discovery in databases, as
presented in the survey [15]. �ese approaches use RDF data and
ontologies to guide their data mining approaches. On the other hand,
several approaches tried to adapt pa�ern mining approaches to the
Semantic Web, such as association rule mining [9], or formal concept
analysis [1]. Our approach uses data mining techniques over RDF
data to assess RDF data, it is an application of pa�ern extraction and

pa�ern comparison tailored for the Semantic Web. To our knowl-
edge, no other approach has proposed to use data mining techniques
to measure structural similarity between RDF graphs.

In the Semantic Web, the notion of similarity generally concerns
the notion of semantic similarity between concepts or resources,
and is usually to improve knowledge mining [9], recommender
systems [10], or ontology matching systems [16]. Approaches for
semantic similarity, such as the ones proposed by Piao and Bres-
lin [10], or by Meymandpour et al. [8], focus on providing semantic
similarity measures between individual concepts. On the contrary,
our approach focuses on global structural aspects of the datasets,
providing a measure of how similar the whole datasets are. Besides,
our approach makes it possible to calculate measures without having
to index all the resources at every comparison: it su�ces to share
the code table and the resource-item index used in the conversion
in order to be able to compare e�ciently other datasets to ours.

Our approach is based on the same principles as the similarity
measure proposed by Vreeken et al. [17]. Instead of looking for a sym-
metric measure (i.e., a distance), we have revisited and reinterpreted
its natural asymmetry, and exploited it to be able to measure struc-
tural similarity and inclusion. Apart from adapting the algorithm
and their measure to RDF graphs, we have shown the capacities of
this approach regarding �exible data models. In another domain,
the notion of structural similarity appears in approaches for XML
document clustering [12]. �ese approaches use di�erent ways to
evaluate distances between XML documents, and use these distances
in clustering algorithms. In particular, Piernik et al. [11] propose to
count the number of shared pa�ern between documents as a distance.
Using only the number of shared pa�erns disregards the actual data
distribution, which is captured in our approach thanks to using the
codi�cation length of the converted databases. In fact, our approach
could be adapted to their problem.

Finally, regarding our proposed conversions, we can �nd other
approaches proposing similar abstractions of RDF graphs for di�er-
ent purposes. Glim et al. [3] propose an abstraction of ABoxes to
characterize individuals close to our PB and PCB conversions. �is
abstraction describes the asserted types and relations of individual
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to create a summary used for fast inferences over low-level data.
Nebot and Berlanga [9] propose a conversion from RDF graph to
transactions for association rules mining, based on the property
paths starting from an individual. �eir conversion could be adapted
to our approach to evaluate the similarity according the extended
neighborhood of the instances.

6 CONCLUSIONS AND FUTUREWORK
Structural similarity is an important property when dealing with
integrating, querying, or updating knowledge bases. However, its
measure requires o�en costly graph comparison, which makes it
di�cult to scale. To deal with this issue, we have proposed the
structural similarity measure, which makes it possible to evaluate
the data structures resemblance between RDF graphs exploiting
well-established data mining principles.

Our approach leverages a well-known data mining algorithm
to extract the most descriptive structural pa�erns, and uses com-
pression to give a measure expressing the pa�ern sharing degree
of the compared RDF graphs. It is aimed at processing graphs large
enough to be used with data mining techniques, where other ap-
proaches do not scale well. In addition, by sharing the code tables,
it can reuse great part of the computation required for the compar-
ison. To transform the RDF graph to the transactional data required,
we have proposed two di�erent conversions describing the set of
properties and classes used in the neighborhood of instances. �eir
level of detail have shown to be enough to capture di�erences in
vocabulary usages. Our experiments have shown that our measure
captures the di�erences between arti�cially modi�ed datasets and
between di�erent versions of real datasets. Besides, thanks to its in-
herent asymmetry, the experiments showed its capabilities to detect
inclusion of one dataset into another.

In future works, we plan to apply our measure to di�erent prob-
lems such as data integration [6] or document clustering as in [12].
Finally, we will work on formalizing the codi�cation of the code
tables to be included as metadata describing the di�erent datasets.
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