
HAL Id: hal-01940437
https://hal.science/hal-01940437

Submitted on 30 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rapid Mixing of Local Dynamics on Graphs
Laurent Massoulié

To cite this version:
Laurent Massoulié. Rapid Mixing of Local Dynamics on Graphs. 31st International Symposium on
Distributed Computing (DISC 2017), Oct 2017, Vienna, Austria. �hal-01940437�

https://hal.science/hal-01940437
https://hal.archives-ouvertes.fr


Brief Announcement: Rapid Mixing of Local
Dynamics on Graphs
Laurent Massoulié1 and Rémi Varloot2

1 Inria, MSR-Inria Joint Centre, Palaiseau, France
laurent.massoulie@inria.fr

2 Inria, MSR-Inria Joint Centre, Palaiseau, France
remi.varloot@inria.fr

Abstract
In peer-to-peer networks, it is desirable that the logical topology of connections between the con-
stituting nodes make a well-connected graph, i.e., a graph with low diameter and high expansion.
At the same time, this graph should evolve only through local modifications. These requirements
prompt the following question: are there local graph dynamics that i) create a well-connected
graph in equilibrium, and ii) converge rapidly to this equilibrium?

In this paper we provide an affirmative answer by exhibiting a local graph dynamic that
mixes provably fast. Specifically, for a graph on N nodes, mixing has occurred after each node
has performed O(polylog(N)) operations. This is in contrast with previous results, which required
at least Ω(N polylog(N)) operations per node before the graph had properly mixed.
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1 Introduction

Peer-to-peer networks perform best if the graph describing their topology is well-connected.
Indeed, the diameter of the graph conditions the time required to broadcast information
from any one node to the rest of the network. The expansion of the graph conditions the
robustness of epidemic algorithms for maintaining content in the system. It also conditions
how quickly a random walk over the graph reaches stationarity, and as such determines the
performance of various distributed algorithms, e.g., for searching content over the network.

The distributed evolution of such networks, however, can potentially create ill-connected
graphs through an unlucky series of node arrivals and departures. This motivates our goal in
the present paper: identify local graph dynamics that create a well-connected graph in a
short amount of time, i.e., after each node has performed few operations (O(polylog(N)),
where N denotes the total number of nodes), and this regardless of how poorly connected
the initial graph is.

2 Related Work

Graph models meant to capture properties of real-life networks have been thoroughly studied
[7]. Important examples include the Barabási-Albert preferential attachment model, yielding
graphs with power law degree distribution [1], and random regular graphs, shown to have the
small-world property of social networks (i.e., a small diameter) with high probability [12, 15].
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Other papers address the design of dynamics meant to alter the overall structure of the
graph in a given way [13] or to minimize the convergence rate [9]. Closer to our present work,
these issues have been considered specifically for the construction of p2p networks in [6, 5, 8].

The speed of convergence to equilibrium of graph dynamics has been studied in different
contexts. [4] considers non-local dynamics. Local dynamics are considered in [14] and [10]
for the synthesis of cladograms and bipartite graphs respectively. Closer to our context, [2]
considers the local switch dynamic introduced in [8], and proves that it yields an expander
graph after O(N polylog(N)) operations per node. The analysis in [2] is very elaborate, and
the stated bound improves upon all previous results on local graph dynamics proposed for
peer-to-peer topology maintenance. Nevertheless, this bound is not yet satisfactory, as it
still increases quickly (at least linearly) with the system size.

3 Our Contribution

Consider the following setting: fix a vertex set [N ] = {1, . . . , N}, where N is a positive integer,
and connect the vertices in [N ] as follows. First, add a set of fixed edges (i, i+ 1) constituting
a cycle (N + 1 ≡ 1). Then, have each node n ∈ [N ] maintains two pointers: a blue pointer
to a node bn ∈ [N ], and a red one to rn ∈ [N ], such that each node n is the destination of
exactly one blue pointer and one red pointer. In essence, b and r constitute permutations
over [N ]. From these, we construct a set of undirected blue edges {(n, bn) : n ∈ [N ]}, and a
set of undirected red edges {(n, rn) : n ∈ [N ]}. The result is a 6-regular graph G over [N ]
composed of N cycle edges, N blue edges and N red edges.

The dynamic then proceeds as follows. The graph evolves through alternating red and
blue phases; during a blue phase, only the blue pointers are modified, while the red pointers
are kept fixed. The blue pointers slide along the graph Gr formed by the union of the cycle
edges and the undirected edges {(n, rn) : n ∈ [N ]} formed by the red pointers. For the red
phases, the roles of the blue and red pointers are swapped.

Formally, the dynamic for the blue edges over Gr is as follows: at each time step, pick
an edge (i, j) uniformly at random in Gr, and denote n and m the two nodes in [N ] such
that bn = i and bm = j. These two nodes swap their pointers: now bn = j and bm = i.
Notice that b is still a permutation over [N ]. This dynamic is known in the literature as the
interchange process [11, 3]. Our main result is then as follows:

I Theorem 1. Let T = N ln(N)a where a > 8 is a constant. Then with high probability,
after O(ln(N)) alternating phases of length T , the blue and red pointers constitute uniformly
and independently distributed permutations of [N ].

I Corollary 2. With the above process, G is an expander with high probability after each
node has performed only O(polylog(N)) operations.

4 Sketch of Proof

For any d-regular graph H over [N ], denote φk(H) = minS⊂[N ]:0<|S|≤k
|∂S|
d|S| , where ∂S is the

set of edges between a node in S and a node not in S. Exploiting properties of the interchange
process stated in [3], we show that, if φN/2(Gr) ≥ γ for a well chosen γ, dependent on N ,
then at the end of the following blue phase, the blue pointers are uniformly distributed with
high probability.

We then construct an increasing sequence (kt)t∈N such that i) at the end of the t-th
blue/red phase, φkt(Gb/r) ≥ γ and ii) there exists τ = O(log(N)) such that kτ = N/2.
Joining the dots proves the theorem.
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