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1 INTRODUCTION

In recent years, Fourier-based methods, originally introduced by [Moulinec and Suquet, 1994], have
become ubiquitous for computing numerically the properties of composite materials, with applications
in domains ranging from linear elasticity [Willot et al., 2008], viscoplasticity [Lebensohn, 2001], crack
propagation [Li et al., 2011], to thermal and electrical [Willot et al., 2013, Willot and Jeulin, 2011],
but also optical properties [Azzimonti et al., 2013]. The success of the method resides in its ability to
cope with arbitrarily complex and often very large microstructures, supplied as segmented images of
real materials, e.g., multi-scale nano-composites [Jean et al., 2011], austenitic steel [Belkhabbaz et al.,
2011], granular media [Willot et al., 2013] or polycrystals[Prakash and Lebensohn, 2009, Rollett
et al., 2010, Lebensohn et al., 2005]. This technique allowsmaps of the local fields to be computed
in realistic microstructures. Such fields are representative of the material behavior if the resolution is
small enough, and if the system size is large enough, compared with the typical length scale of the
heterogeneities. Contrary to finite-element methods wherematrix pre-conditioning often necessitates
additional memory occupation, Fast-Fourier-Transform (FFT) methods are limited only by the amount
of RAM or fast-access computer memory required to store the fields.
The use of an image and of its underlying equispaced grid however comes with drawbacks not seen in
finite-element methods. First, FFT methods will ultimatelybe less efficient when dealing with highly
porous media like foams, where voids need to be discretized.Second, interfaces are crudely rendered
when using voxel grids, although smoothness can be somewhatrecovered by introducing intermedi-
ate properties between the phases [Dunant et al., 2013, Brisard and Dormieux, 2010]. This matter is
most important for ideal microstructure models where interfaces are completely known ; less so when
dealing with experimental images where such information isusually absent. Third, the representation
of the fields in terms of harmonic functions introduce oscillations around interfaces, which is akin
to Gibbs’s phenomenon. High-frequency artifacts are conspicuous in many field maps where oscilla-
tions are visible. Fourth, the Fourier representation presupposes periodicity, i.e., the microstructure is
seen as the elementary cell of an infinite, periodic medium. However, finite-size effects associated to
periodic boundary conditions are generally smaller than that of uniform boundary conditions used in
finite-element methods [Kanit et al., 2003].

2 PROBLEM SETUP AND LIPPMANN-SCHWINGER’S EQUATION

In this course, we investigate the numerical computation ofthe strain tensor fieldεij(x) and stress
tensor fieldσij(x) (i, j = 1, ...,d), in ad-dimensional cubic domainΩ = [−L/2, L/2]d of widthL for
d = 2 or 3. The fields verify

∂iσij(x) = 0, εij(x) = −(1/2) [∂iuj(x) + ∂jui(x)] , σij(x) = Cij,kl(x)εkl(x), (1)

whereui(x) is the displacement vector field andC(x) is the local linear elastic tensor of the material
phase at pointx. Edges ofΩ are aligned with Cartesian axis of unit vectors(ei)1≤i≤d. Periodic boundary
conditions are employed, in the form

σ(x) · n −#, uj(x+ Lei) ≡ uj(x)−EijL, x, x+ Lei ∈ ∂Ω, (2)
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where−# denotes anti-periodicity,n is the outer normal along the boundary∂Ω of Ω andE is the
applied electric field. They ensure that the stress and the strain fields verify Eq. (1) along the boundary
∂Ω of the periodic medium. Note thatE represents a macroscopic electric field so that〈εkl(x)〉 = Ekl,
where〈·〉 is the volume average overΩ.
All FFT methods proceed from Lippmann-Schwinger’s equation [Milton, 2002]

εkl = Ekl −G0
kl,ij ∗ τij , τij = σij − C0

ij,klεkl, (3)

whereC0 is an arbitrary reference stiffness,τ andG0 are the associated polarization field and Green
operator, respectively, and∗ is the convolution product. An equivalent “dual” formulation stems from
writing the problem in terms of the stress field, as

σij = Σij −H0
ij,kl ∗ νkl, νkl = εkl − S0

kl,ijσij , (4)

whereS0 = [C0]
−1 is the reference compliance tensor andΣ is the prescribed macroscopic stress and

H0
ij,kl is the Green operator associated to the governing equation for the stress. The FFT algorithms rest

on evaluating the convolution product in Eqs. (3) or (4) in the Fourier domain, using FFT libraries.

3 FFT METHODS

Although some FFT methods have been introduced in the context of conductivity, their adaptation
to elastic problems is straightforward. Hereafter all FFT algorithms are formulated in this setting.
Equation (3) is the basis of the simplest method, the “direct" scheme [Moulinec and Suquet, 1994].
Iterations consist in applying :

ε
k+1 = E−G

0 ∗
[

(C− C
0) : εk

]

(5)

whereEk is the strain field at iterationk.
Over time, refined FFT algorithms with faster convergence properties have been devised, notably the
“accelerated” [Eyre and Milton, 1999] and “augmented-Lagrangian” [Michel et al., 2001] schemes.
Both algorithms can be encapsulated in the formula [Monchiet and Bonnet, 2012, Moulinec and Silva,
2013]

ε
k+1 = ε

k +
C0 :

[

E− 〈εk〉 − βG0 ∗ (C : εk)
]

−H0 ∗ εk
α(C+ βC0)

(6)

whereα = β = 1 for the “augmented-Lagrangian" scheme andα = −1/2, β = −1 for the “accel-
erated" one. Our formula differs from Eq. (13) in [Moulinec and Silva, 2013] because of a different
definition ofC0. Another scheme, the so-called “polarization" scheme where 〈τ 〉 is prescribed instead
of 〈ε〉, can be described by an equation similar to (6) [Monchiet andBonnet, 2012].
The alternative “variational” algorithm [Brisard and Dormieux, 2010] relies on two distinct ideas. First,
Eq. (3) is written as :

[

(C− C
0)−1δ(x)1kl,ij +G0

kl,ij

]

∗ τij = Ekl. (7)

Upon discretization, the above is transformed into a linearsystemM · τ = E, which is solved by
conjugate-gradient descent. The operatorM is never computed. Instead, FFTs are used to provideM·
τ for anyτ , which is sufficient for applying the descent method. Second, the discretization employed
amounts to using constant-per-voxel trial polarization fields. This leads to a rule for computing(C −
C0)−1 : τ on voxels that lie on interfaces, and to a representation of the Green operator as a slowly-
converging series for which approximations have been proposed [Brisard and Dormieux, 2012].
Other FFT methods have been proposed, including an alternative “conjugate-gradient" scheme [Zeman
et al., 2010, Vonďrejc et al., 2012] different from the “variational" one, andyet another one in which
the convolution product is carried out in the direct space [Yvonnet, 2012]. For conciseness, these and
the “polarization" scheme alluded to above will not be discussed in the course.
The dual formulation (4) allows one to derive dual algorithms for all FFT methods. For instance,
substitutingε, G0 andC0 byσ, H0 andS0 in Eq. (6) the dual “augmented-Lagrangian” scheme reads :

σ
k+1 = σ

k +
S
0 :

[

Σ− 〈σk〉 −H
0 ∗

(

S : σk
)]

−G
0 ∗ σk

S+ S0
. (8)
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All of the above methods involve a reference stiffnessC
0, or a reference complianceS0. Whereas

the final result is in principle independent of these quantities, their value have a dramatic influence
on the convergence properties of the algorithms. Notably, for binary locally isotropic media, optimal
convergence of the “accelerated” scheme is obtained with the choice

µ0 = −√
µ1µ2, κ0 = −√

κ1κ2, (9)

for the bulk and shear reference moduli. The use of a negativeelastic moduli (devoid of physical
meaning) is warranted by the arbitrary character of the reference medium. In this connection, we point
out that in [Moulinec and Silva, 2013], the reference stiffness moduli have their sign changed, which
avoids dealing with negative values.
For the “direct" scheme, optimal convergence properties read [Moulinec and Suquet, 1998]

C
0 ≈ 1

2
(C1 + C2). (10)

4 CLASSICAL GREEN OPERATOR

In practice, the domainΩ is discretized as a two-dimensional (2D) pixel image, or three-dimensional
(3D) voxel image. The convolution productG0

kl,ij ∗ τij in (3) is evaluated in the Fourier domain as

∫

Ω

dd x′G0
ij(x− x′)τij(x

′) ≈ 1

Ld

∑

q

G0
ij(q)τij(q)e

iq·x, (11)

where the Fourier mode components take on valuesqi = (2π/L)(−L/2, ..., L/2 − 1) (i = 1, ..., d),
andL is measured in pixel/voxel size units. The tensorτij(q) is the Fourier transform

τij(q) =
∑

x

τij(x)e
−iq·x, (12)

where the sum is over all pixels/voxelsx in Ω. Classically, the Fourier transform of the Green operator
used in (11) is approximated by its continuum expression forwhich simple analytical expressions are
available

G0
kl,ij(q) =

∫

ddxG0
kl,ij(x)e

−iq·x, (13)

where the integration is over the infinite domain and|q| = √
qkqk.

Acknowledgements

Part of this text is a revised version of Secs. 2 and 3 from [Willot et al, 2014] (to appear in Interna-
tional Journal for Numerical Methods in Engineering). The author is grateful to D. Jeulin for useful
discussions.

Références

D. Azzimonti, F. Willot, and D. Jeulin. Optical properties of deposit models for paints :full-fields FFT
computations and representative volume element.Journal of Modern Optics, 60(7) :519–528, 2013.

A. Belkhabbaz, R. Brenner, N. Rupin, B. Bacroix, and J. Fonseca. Prediction of the overall behavior
of a 3d microstructure of austenitic steel by using fft numerical scheme.Procedia Engineering, 10 :
1883–1888, 2011.

S. Brisard and L. Dormieux. FFT-based methods for the mechanics pf composites : A general varia-
tional framework.Computational Materials Science, 49(3) :663–671, 2010.

S. Brisard and L. Dormieux. Combining Galerkin approximation techniques with the principle of
Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of com-
posites.Computational Methods for Applied Mechanical Engineering, 217(220) :197–212, 2012.

3



C.F. Dunant, B. Bary, A.B. Giorla, C. PÃl’niguel, J. Sanahuja, C. Toulemonde, A.B. Tran, F. Willot, and
J. Yvonnet. A critical comparison of several numerical methods for computing effective properties
of highly heterogeneous materials.Advances in Engineering Software, 58 :1–12, 2013.

D.J. Eyre and G.W Milton. A fast numerical scheme for computing the response of composites using
grid refinement.The European Physical Journal Applied Physics, 6(1) :41–47, 1999.

A. Jean, F. Willot, S. Cantournet, S. Forest, and D. Jeulin. Large-scale computations of effective elastic
properties of rubber with carbon black fillers.International Journal for Multiscale Computational
Engineering, 9(3) :271–303, 2011.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin. Determination of the size of the represen-
tative volume element for random composites : statistical and numerical approach.International
Journal of Solids and Structures, 40(13–14) :3647–3679, 2003.

R. Lebensohn. N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform.Acta
Materialia, 49(14) :2723–2737, 2001.

RA Lebensohn, O Castelnau, R Brenner, and P Gilormini. Studyof the antiplane deformation of linear
2-d polycrystals with different microstructures.International journal of solids and structures, 42
(20) :5441–5459, 2005.

Jia Li, Songhe Meng, Xiaoxiao Tian, Fan Song, and Chiping Jiang. A non-local fracture model for
composite laminates and numerical simulations by using thefft method.Composites Part B : Engi-
neering, 43(3) :961–971, 2011.

J.-C. Michel, H. Moulinec, and P. Suquet. A computational scheme for linear and non-linear compos-
ites with arbitrary phase contrast.International Journal for Numerical Methods in Engineering, 52
(1-2) :139–160, 2001.

G. W. Milton. The Theory of Composites. Cambridge Univ. Press, Cambridge, 2002.

V. Monchiet and G. Bonnet. A polarization-based FFT iterative scheme for computing the effective
properties of elastic composites with arbitrary contrast.International Journal for Numerical Meth-
ods in Engineering, 89(11) :1410–1436, 2012.

H. Moulinec and F. Silva. Comparison of three accelerated FFT-based schemes for computing the
mechanical response of composite materials, 2013.

H. Moulinec and P. Suquet. A fast numerical method for computing the linear and non linear mechan-
ical properties of the composites.Comptes rendus de l’Academie des sciences, Série II, 318(11) :
1417–1423, 1994.

H Moulinec and P Suquet. A numerical method for computing theoverall response of nonlinear com-
posites with complex microstructure.Computer Methods in Applied Mechanics and Engineering,
157(1) :69–94, 1998.

A. Prakash and R.A. Lebensohn. Simulation of micromechanical behavior of polycristals : finite ele-
ment versus fast Fourier transforms.Modelling Simul. Mater. Sci. Eng., 17(6) :064010, 2009.

A.D. Rollett, R.A. Lebensohn, M. Groeber, Y. Choi, Li J., andRohrer G.S. Stress hot spots in viscoplas-
tic deformation of polycristals.Modelling and Simulation in Material Science and Engineering, 18
(7) :074005, 2010.
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