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1 INTRODUCTION

In recent years, Fourier-based methods, originally intoedl by [Moulinec and Suquet, 1994], have
become ubiquitous for computing numerically the propertiecomposite materials, with applications
in domains ranging from linear elasticity [Willot et al., @8}, viscoplasticity [Lebensohn, 2001], crack
propagation [Li et al., 2011], to thermal and electrical [@fiet al., 2013, Willot and Jeulin, 2011],
but also optical properties [Azzimonti et al., 2013]. Thesess of the method resides in its ability to
cope with arbitrarily complex and often very large micrastures, supplied as segmented images of
real materials, e.g., multi-scale nano-composites [Jeah,2011], austenitic steel [Belkhabbaz et al.,
2011], granular media [Willot et al., 2013] or polycrystf§irakash and Lebensohn, 2009, Rollett
et al., 2010, Lebensohn et al., 2005]. This technique allmaps of the local fields to be computed
in realistic microstructures. Such fields are represemtatf the material behavior if the resolution is
small enough, and if the system size is large enough, compaita the typical length scale of the
heterogeneities. Contrary to finite-element methods wheagix pre-conditioning often necessitates
additional memory occupation, Fast-Fourier-Transforil(Fmethods are limited only by the amount
of RAM or fast-access computer memory required to store diedi

The use of an image and of its underlying equispaced grid hWemames with drawbacks not seen in
finite-element methods. First, FFT methods will ultimatiety/less efficient when dealing with highly
porous media like foams, where voids need to be discret&edond, interfaces are crudely rendered
when using voxel grids, although smoothness can be someetmtered by introducing intermedi-
ate properties between the phases [Dunant et al., 201&r8rad Dormieux, 2010]. This matter is
most important for ideal microstructure models where fiatzs are completely known ; less so when
dealing with experimental images where such informatiamsigally absent. Third, the representation
of the fields in terms of harmonic functions introduce ostitins around interfaces, which is akin
to Gibbs’s phenomenon. High-frequency artifacts are coagps in many field maps where oscilla-
tions are visible. Fourth, the Fourier representationygpeses periodicity, i.e., the microstructure is
seen as the elementary cell of an infinite, periodic mediuowéVer, finite-size effects associated to
periodic boundary conditions are generally smaller tha ¢ uniform boundary conditions used in
finite-element methods [Kanit et al., 2003].

2 PROBLEM SETUP AND LIPPMANN-SCHWINGER’S EQUATION

In this course, we investigate the numerical computatiothefstrain tensor field;;(x) and stress
tensor fields;;(x) (4, j = 1, ...,d), in ad-dimensional cubic domaift = [—L/2, L/2]¢ of width L for
d = 2 or 3. The fields verify

Oioij(x) =0, ey5(x) = =(1/2) [0iu;(x) + jui(x)],  045(x) = Cjjux)en(x), (1)
whereu;(x) is the displacement vector field afitix) is the local linear elastic tensor of the material

phase at point. Edges of? are aligned with Cartesian axis of unit vect0gs), <;<,. Periodic boundary
conditions are employed, in the form

o(x)-n —#, wu;j(x+Le)=uj(x)—E;L, x, x+ Le; €01, (2)
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where—# denotes anti-periodicityy is the outer normal along the boundai$ of 2 andE is the
applied electric field. They ensure that the stress and thmsields verify Eq. (1) along the boundary
09 of the periodic medium. Note théi represents a macroscopic electric field so thatx)) = Ej,
where(-) is the volume average over.

All FFT methods proceed from Lippmann-Schwinger’s equafidilton, 2002]

em = B — Giuj * Tijy  Tig = 045 — Cz‘ojjglgklu 3)
whereC' is an arbitrary reference stiffness,andG" are the associated polarization field and Green
operator, respectively, andis the convolution product. An equivalent “dual” formulati stems from
writing the problem in terms of the stress field, as

0 = Sij — Hs % v, v = e — SR04 (4)
whereS" = [(CO]’1 is the reference compliance tensor aads the prescribed macroscopic stress and
HZOJM is the Green operator associated to the governing equationg stress. The FFT algorithms rest
on evaluating the convolution product in Egs. (3) or (4) i@ Bourier domain, using FFT libraries.

3 FFT METHODS

Although some FFT methods have been introduced in the coofesonductivity, their adaptation

to elastic problems is straightforward. Hereafter all FRGoathms are formulated in this setting.
Equation (3) is the basis of the simplest method, the “direcheme [Moulinec and Suquet, 1994].
Iterations consist in applying :

e =E-G"« [(C-C"): €] (5)

whereEF is the strain field at iteratioh.

Over time, refined FFT algorithms with faster convergen@perties have been devised, notably the

“accelerated” [Eyre and Milton, 1999] and “augmented-laangjian” [Michel et al., 2001] schemes.

Both ]algorithms can be encapsulated in the formula [Mori@md Bonnet, 2012, Moulinec and Silva,

2013

C’: [E— (") — BG "« (C: )] —H° x € 6)
a(C + pCo)

wherea = = 1 for the "augmented-Lagrangian” scheme ang- —1/2, § = —1 for the “accel-
erated” one. Our formula differs from Eq. (13) in [MoulineedaSilva, 2013] because of a different
definition of C°. Another scheme, the so-called “polarization” scheme w/tey is prescribed instead
of (¢), can be described by an equation similar to (6) [MonchietBmnet, 2012].

The alternative “variational” algorithm [Brisard and Daeux, 2010] relies on two distinct ideas. First,
Eqg. (3) is written as :

et =¢gh 4

[(C - CO)_l(S(X)lkl7ij + Ggl,lj] * T = Ek;l- (7)

Upon discretization, the above is transformed into a lirs@temM - 7 = E, which is solved by
conjugate-gradient descent. The operdtodis never computed. Instead, FFTs are used to pravide

7 for anyr, which is sufficient for applying the descent method. Sectimeldiscretization employed
amounts to using constant-per-voxel trial polarizatiofd§eThis leads to a rule for computin@ —
C%~1 . 7 on voxels that lie on interfaces, and to a representatiohe@f3reen operator as a slowly-
converging series for which approximations have been mep¢Brisard and Dormieux, 2012].

Other FFT methods have been proposed, including an aliegrfabnjugate-gradient” scheme [Zeman
et al., 2010, Vontkjc et al., 2012] different from the “variational” one, aypet another one in which
the convolution product is carried out in the direct spacedihet, 2012]. For conciseness, these and
the “polarization” scheme alluded to above will not be désad in the course.
The dual formulation (4) allows one to derive dual algorithfor all FFT methods. For instance,
substitutings, G° andC° by o, H° andS® in Eq. (6) the dual “augmented-Lagrangian” scheme reads :

SO [2—(o") —H  (S: o")] —Go*ak.

K+l _ _k
o =0t S+ S

(8)



All of the above methods involve a reference stiffn&s or a reference complian&®. Whereas
the final result is in principle independent of these quassjttheir value have a dramatic influence
on the convergence properties of the algorithms. Notablybinary locally isotropic media, optimal
convergence of the “accelerated” scheme is obtained weétlchioice

MO = TV H1l2; K = —V K1k2, 9)
for the bulk and shear reference moduli. The use of a negatagic moduli (devoid of physical
meaning) is warranted by the arbitrary character of theeefee medium. In this connection, we point
out that in [Moulinec and Silva, 2013], the reference s&f#a moduli have their sign changed, which

avoids dealing with negative values.
For the “direct” scheme, optimal convergence propertiad f#oulinec and Suquet, 1998]

o %(@1 +Cy). (10)

4 CLASSICAL GREEN OPERATOR

In practice, the domaif® is discretized as a two-dimensional (2D) pixel image, oe¢hdimensional
(3D) voxel image. The convolution prodtﬁ?@lvij * 7;; In (3) is evaluated in the Fourier domain as

/Qddx’G?j(x—x 7:5(x") LdZG q)7i;(q)e™, (11)

where the Fourier mode components take on vajyes (2r/L)(—L/2,...,L/2 — 1) (i = 1, ...,d),
andL is measured in pixel/voxel size units. The tensgfq) is the Fourier transform

7i;(d Z Tij (@ o (12)

where the sum is over all pixels/voxetsn €). Classically, the Fourier transform of the Green operator
used in (11) is approximated by its continuum expressiomfuch simple analytical expressions are

available
le z]( ) /ddXle z]( ) Iq-x’ (13)

where the integration is over the infinite domain agd= /qxqx.-
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