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INTRODUCTION

In recent years, Fourier-based methods, originally introduced by [START_REF] Moulinec | A fast numerical method for computing the linear and non linear mechanical properties of the composites[END_REF], have become ubiquitous for computing numerically the properties of composite materials, with applications in domains ranging from linear elasticity [START_REF] Willot | Effective-medium theory for infinite-contrast two-dimensionally periodic linear composites with strongly anisotropic matrix behavior : dilute limit and crossover behavior[END_REF], viscoplasticity [START_REF] Lebensohn | N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform[END_REF], crack propagation [START_REF] Li | A non-local fracture model for composite laminates and numerical simulations by using the fft method[END_REF], to thermal and electrical [START_REF] Willot | Microstructure-induced hotspots in the thermal and elastic responses of granular media[END_REF]Jeulin, 2011], but also optical properties [START_REF] Azzimonti | Optical properties of deposit models for paints :full-fields FFT computations and representative volume element[END_REF]. The success of the method resides in its ability to cope with arbitrarily complex and often very large microstructures, supplied as segmented images of real materials, e.g., multi-scale nano-composites [START_REF] Jean | Large-scale computations of effective elastic properties of rubber with carbon black fillers[END_REF], austenitic steel [START_REF] Belkhabbaz | Prediction of the overall behavior of a 3d microstructure of austenitic steel by using fft numerical scheme[END_REF], granular media [START_REF] Willot | Microstructure-induced hotspots in the thermal and elastic responses of granular media[END_REF] or polycrystals [START_REF] Prakash | Simulation of micromechanical behavior of polycristals : finite element versus fast Fourier transforms[END_REF][START_REF] Rollett | Stress hot spots in viscoplastic deformation of polycristals[END_REF][START_REF] Ra Lebensohn | Study of the antiplane deformation of linear 2-d polycrystals with different microstructures[END_REF]. This technique allows maps of the local fields to be computed in realistic microstructures. Such fields are representative of the material behavior if the resolution is small enough, and if the system size is large enough, compared with the typical length scale of the heterogeneities. Contrary to finite-element methods where matrix pre-conditioning often necessitates additional memory occupation, Fast-Fourier-Transform (FFT) methods are limited only by the amount of RAM or fast-access computer memory required to store the fields. The use of an image and of its underlying equispaced grid however comes with drawbacks not seen in finite-element methods. First, FFT methods will ultimately be less efficient when dealing with highly porous media like foams, where voids need to be discretized. Second, interfaces are crudely rendered when using voxel grids, although smoothness can be somewhat recovered by introducing intermediate properties between the phases [Dunant et al., 2013, Brisard and[START_REF] Brisard | FFT-based methods for the mechanics pf composites : A general variational framework[END_REF]. This matter is most important for ideal microstructure models where interfaces are completely known ; less so when dealing with experimental images where such information is usually absent. Third, the representation of the fields in terms of harmonic functions introduce oscillations around interfaces, which is akin to Gibbs's phenomenon. High-frequency artifacts are conspicuous in many field maps where oscillations are visible. Fourth, the Fourier representation presupposes periodicity, i.e., the microstructure is seen as the elementary cell of an infinite, periodic medium. However, finite-size effects associated to periodic boundary conditions are generally smaller than that of uniform boundary conditions used in finite-element methods [START_REF] Kanit | Determination of the size of the representative volume element for random composites : statistical and numerical approach[END_REF].

PROBLEM SETUP AND LIPPMANN-SCHWINGER'S EQUATION

In this course, we investigate the numerical computation of the strain tensor field ε ij (x) and stress tensor field

σ ij (x) (i, j = 1, ..., d), in a d-dimensional cubic domain Ω = [-L/2, L/2] d of width L for d = 2 or 3. The fields verify ∂ i σ ij (x) = 0, ε ij (x) = -(1/2) [∂ i u j (x) + ∂ j u i (x)] , σ ij (x) = C ij,kl (x)ε kl (x), (1) 
where u i (x) is the displacement vector field and C(x) is the local linear elastic tensor of the material phase at point x. Edges of Ω are aligned with Cartesian axis of unit vectors (e i ) 1≤i≤d . Periodic boundary conditions are employed, in the form

σ(x) • n -#, u j (x + Le i ) ≡ u j (x) -E ij L, x, x + Le i ∈ ∂Ω, (2) 
where -# denotes anti-periodicity, n is the outer normal along the boundary ∂Ω of Ω and E is the applied electric field. They ensure that the stress and the strain fields verify Eq. ( 1) along the boundary ∂Ω of the periodic medium. Note that E represents a macroscopic electric field so that ε kl (x) = E kl , where • is the volume average over Ω.

All FFT methods proceed from Lippmann-Schwinger's equation [START_REF] Milton | The Theory of Composites[END_REF] 

ε kl = E kl -G 0 kl,ij * τ ij , τ ij = σ ij -C 0 ij,kl ε kl , (3) 
where C 0 is an arbitrary reference stiffness, τ and G 0 are the associated polarization field and Green operator, respectively, and * is the convolution product. An equivalent "dual" formulation stems from writing the problem in terms of the stress field, as

σ ij = Σ ij -H 0 ij,kl * ν kl , ν kl = ε kl -S 0 kl,ij σ ij , (4) 
where

S 0 = [C 0 ]
-1 is the reference compliance tensor and Σ is the prescribed macroscopic stress and H 0 ij,kl is the Green operator associated to the governing equation for the stress. The FFT algorithms rest on evaluating the convolution product in Eqs. ( 3) or (4) in the Fourier domain, using FFT libraries.

FFT METHODS

Although some FFT methods have been introduced in the context of conductivity, their adaptation to elastic problems is straightforward. Hereafter all FFT algorithms are formulated in this setting. Equation ( 3) is the basis of the simplest method, the "direct" scheme [START_REF] Moulinec | A fast numerical method for computing the linear and non linear mechanical properties of the composites[END_REF]. Iterations consist in applying :

ε k+1 = E -G 0 * (C -C 0 ) : ε k (5)
where E k is the strain field at iteration k.

Over time, refined FFT algorithms with faster convergence properties have been devised, notably the "accelerated" [START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid refinement[END_REF] and "augmented-Lagrangian" [START_REF] Michel | A computational scheme for linear and non-linear composites with arbitrary phase contrast[END_REF] schemes. Both algorithms can be encapsulated in the formula [START_REF] Monchiet | A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast[END_REF]Bonnet, 2012, Moulinec and[START_REF] Moulinec | Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials[END_REF]]

ε k+1 = ε k + C 0 : E -ε k -βG 0 * (C : ε k ) -H 0 * ε k α(C + βC 0 ) (6)
where α = β = 1 for the "augmented-Lagrangian" scheme and α = -1/2, β = -1 for the "accelerated" one. Our formula differs from Eq. ( 13) in [START_REF] Moulinec | Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials[END_REF] because of a different definition of C 0 . Another scheme, the so-called "polarization" scheme where τ is prescribed instead of ε , can be described by an equation similar to (6) [START_REF] Monchiet | A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast[END_REF].

The alternative "variational" algorithm [START_REF] Brisard | FFT-based methods for the mechanics pf composites : A general variational framework[END_REF] relies on two distinct ideas. First, Eq. ( 3) is written as :

(C -C 0 ) -1 δ(x)1 kl,ij + G 0 kl,ij * τ ij = E kl . ( 7 
)
Upon discretization, the above is transformed into a linear system M • τ = E, which is solved by conjugate-gradient descent. The operator M is never computed. Instead, FFTs are used to provide M • τ for any τ , which is sufficient for applying the descent method. Second, the discretization employed amounts to using constant-per-voxel trial polarization fields. This leads to a rule for computing (C -C 0 ) -1 : τ on voxels that lie on interfaces, and to a representation of the Green operator as a slowlyconverging series for which approximations have been proposed [START_REF] Brisard | Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites[END_REF].

Other FFT methods have been proposed, including an alternative "conjugate-gradient" scheme [START_REF] Zeman | Accelerating a FFT-based solver for numerical homogenization of a periodic media by conjugate gradients[END_REF][START_REF] Vondřejc | Analysis of a fast Fourier transform based method for modeling of heterogeneous materials[END_REF] different from the "variational" one, and yet another one in which the convolution product is carried out in the direct space [START_REF] Yvonnet | A fast method for solving microstructural problems defined by digital images : a space Lippmann-Schwinger scheme[END_REF]. For conciseness, these and the "polarization" scheme alluded to above will not be discussed in the course. The dual formulation (4) allows one to derive dual algorithms for all FFT methods. For instance, substituting ε, G 0 and C 0 by σ, H 0 and S 0 in Eq. ( 6) the dual "augmented-Lagrangian" scheme reads :

σ k+1 = σ k + S 0 : Σ -σ k -H 0 * S : σ k -G 0 * σ k S + S 0 . ( 8 
)
All of the above methods involve a reference stiffness C 0 , or a reference compliance S 0 . Whereas the final result is in principle independent of these quantities, their value have a dramatic influence on the convergence properties of the algorithms. Notably, for binary locally isotropic media, optimal convergence of the "accelerated" scheme is obtained with the choice

µ 0 = - √ µ 1 µ 2 , κ 0 = - √ κ 1 κ 2 , (9) 
for the bulk and shear reference moduli. The use of a negative elastic moduli (devoid of physical meaning) is warranted by the arbitrary character of the reference medium. In this connection, we point out that in [START_REF] Moulinec | Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials[END_REF], the reference stiffness moduli have their sign changed, which avoids dealing with negative values.

For the "direct" scheme, optimal convergence properties read [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF]]

C 0 ≈ 1 2 (C 1 + C 2 ). (10) 

CLASSICAL GREEN OPERATOR

In practice, the domain Ω is discretized as a two-dimensional (2D) pixel image, or three-dimensional (3D) voxel image. The convolution product G 0 kl,ij * τ ij in (3) is evaluated in the Fourier domain as

Ω d d x ′ G 0 ij (x -x ′ )τ ij (x ′ ) ≈ 1 L d q G 0 ij (q)τ ij (q)e iq•x , (11) 
where the Fourier mode components take on values q i = (2π/L)(-L/2, ..., L/2 -1) (i = 1, ..., d), and L is measured in pixel/voxel size units. The tensor τ ij (q) is the Fourier transform

τ ij (q) = x τ ij (x)e -iq•x , (12) 
where the sum is over all pixels/voxels x in Ω. Classically, the Fourier transform of the Green operator used in ( 11) is approximated by its continuum expression for which simple analytical expressions are available G 0 kl,ij (q) = d d x G 0 kl,ij (x)e -iq•x ,

where the integration is over the infinite domain and |q| = √ q k q k .
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