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Abstract—Crest line extraction remains a hard task in image
processing. Indeed, these roof edges represent narrow edges on
the image surface and whatever undesirable pixel close to or
on the crest line may disturb the detection. This communication
presents a new crest line detection overall evaluation. Comparing
the ground truth contour image and the candidate crest line
image, the proposed algorithm is based upon a new criterion that
take into account the list of ground truth, the recall and their
associated spacial nearness. Doubtlessly, an efficient evaluation
penalizes a misplaced edge point proportionally to the distance
to the true contour.

This quantitative performance evaluation proves its efficiency
on several crest line images of different types, bringing a
favorable indicator for tow closest edge images or a poor in
the presence of a degraded/distorted candidate edge image.

I. INTRODUCTION

In computer science, all the systems, especially automated
information processing structures, must be evaluated before
being developed in the industry or the medical data for princi-
pal examples. Image processing is no exception to this rule. In
image segmentation, all these methods have to be tested and
their quality must be measured, whether it is edge detection,
point matching, region segmentation or image restoration
(using the well known measures: PSNR or Similarity [1]).

In image processing applications, edge detection remains
a key point as it can provide geometrical information [2][3].
Moreover, effective and precise edge detection [4] can prove
highly useful. In most cases, due to the undesirable noise,
textures, some other disturbances or parameters of the edge
extractor themselves, most of edge detectors do not lead
directly to object edges; then contours must be searched
among numerous contour points. Furthermore, as shown in
[5], crossing edges and corners which are cornerstone in
image processing are not well detected with most of edge
extractors. Nevertheless, evaluation of all image segmentation
method type is an important labor. To perform this task, error
measures must be quantified between the ground truth solution
and a candidate edge image. These measures could be either
quantitative or qualitative.

Qualitative assessments require interaction with human ob-
servers, and the performance indicators are based on subjective
evaluation of the quality of the detected contours [6]. How-
ever, evaluations made by different human beings judging the
quality of contour detector outputs might be very diverse.

Considering the error quantified as the difference between
a truth solution and a candidate edge image, quantitative

measures are assigned numerical values. As described in [7],
quantitative assessments are generally missing in proposed
methods on edge detection. Nevertheless, in literature, some
authors suggest [8][9] or compare different performance eval-
uations of contour detector measures [10][11].

Digital images embody different type of edges. Crest lines
(or called roof edges) represent a special type of contours,
as shown in Fig. 1. Classical edge detectors are optimized to
extract step or ramp edges [4]; however, they fail to detect
crest lines in images. Indeed, a step/ramp edge extractor will
return two edges of both sides of the crest line because crest
lines in an image represent narrow ridges or valleys on the
image surface. Roof edges are defined as thin nets inside
the image; describing roads [12] or rivers in satellite images,
blood vessels in medical images [13] or roots in underground
images. Therefore, finding these dense and thin structures is a
significant task in image processing [14][15][16][17][18][19].

Concerning a curve in a grey level image I , ridges cor-
respond maxima, valleys to minima [20][21]. Indeed, con-
sidering the image surface S, in the Cartesian space, ~S
defines all pixel coordinates: ~S(x, y) = (x y I(x, y))T .
Let ST (x, y) = { ~Sx(x, y), ~Sy(x, y)} be the tangent plan of
the surface ~S(x, y) in all points where:{

~Sx(x, y) = ∂~S(x,y)
∂x = (1 0 Ix(x, y))T

~Sy(x, y) = ∂~S(x,y)
∂y = (0 1 Iy(x, y))T,

with Ix and Iy the partial derivatives of I respectively, along
the x and the y axis. Ridges and valleys are given by the
points where the values of ~S(x, y) are maxima or, respectively,
minima in the orthogonal direction of the curve at (x, y).

Even though the evaluation of crest lines lingers an open
problem as it is for edge detection, some formulas sug-
gest efficient ways to evaluate edge detection. Note that the
main difference between step/ramp edge detection and roof
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Fig. 1. Crest lines in an image.



(a) Crest line detected (b) Ts (c) DC (d) Ts∪DC

Fig. 2. Crest lines extracted in red on the image in Fig. 1, and illustration of
TP (green), FP (red) and FN (blue) points. In (c), DC is contaminated with
6 FPs ans 4 FNs, illustrated in (d). Note that FN ∪ TP = Ts.

edge/crest line extraction is that, in the first case, edges are
chosen between two pixels, whereas in the second crest lines
site in the middle of the ridge/valley (single pixel: maxima -top
of ridges- or minima -bottom of valleys-). A non exhaustive
review is proposed in the following Section, leading to a
contour/crest line detectors assessment.

II. A REVIEW OF DISTANCE-BASED ERROR MEASURES

To provide an overall evaluation of the error assessment of
edge detectors, the measure has to take into account both the
amount of false positive points, false negative, but also of the
displacement or distortion between the candidate edge image
and the ground truth.

A. Image Pixel Positions Assessment
Position is the first criterion to be assessed over an edge

image. Its basic evaluation is compounded of statistics. To that
effect, ground truth edge image or ground true skeleton (Ts)
and detected contours/crest lines (DC) are merged. Afterward,
all points are partitioned into three sets:
• True Positive points (TPs), common points of Ts and DC,
• False Positive points (FPs), spurious detected edges of DC,
• False Negative points (FNs), missing skeleton points of DC.
First, FPs appear in the presence of noise, texture or other
contours influencing the detection in the image. Then, FNs
represent a hole in a contour of DC (i.e. a discontinuous edge),
generally caused by a blur or a poor pronounced edge/crest
line in the original image I . Finally, a failing threshold of the
segmentation could create both FPs and FNs. Computing only
FPs and FNs [19][22] or combining these two statistics allows
to display evaluations like Receiver Operating Characteristic
(ROC) [23] or Precision-Recall (PR) [6]. As illustrated in Fig.
7 (top left), these procedures do not use spatial interpretation
because they consider only a one-to-one matching process.

In the results, presented in Section IV, TPs, FPs and FNs
(respectively represented in green, red and blue, see illustra-
tions in Fig. 2 (b), (c) and (d) for more details) are outlined the
proportions of points by color set within the resultant image.
Regardless the image dimension and non spatial tolerance, an
indicator reflecting the spacial precision of points called KPIp
can be created:

KPIp = 1− 1
Pb

1+εFN
+ 1−Pb

1+εFP

, with Pb ∈ [0, 1], (1)

where εFN and εFP represent, respectively the proportion of
FNs and FPs in the union of Ts and DC (denoted by the
usual set-theoretic operation Ts ∪DC) and Pb represents the
weight of FNs (in our experiments, Pb=0.5). Finally, this type
of formula is called Key Performance Indicator (KPI), with
KPI ∈ [0, 1]. For a given experiment, a KPI value close
to 1 means a poor segmentation. Alternatively, a KPI value
close to 0 translates a good segmentation.

B. Pratt’s Figure of Merit criterion

In literature, a widely used similarity measure [24] between
ground truth contours and detected edges, in respect with these
criteria, is Pratt’s Figure of Merit (FoM ):

FoM =
1

max(card(Ts), card(DC))
·
∑
p∈DC

1

1 + k · d2Ts
(p)

,

(2)
with dTs

the distance between the pth pixel of DC and the
nearest pixel of Ts and k ∈ R∗+ a positive real. The edge
detection is considered as good if FoM is close to 1 and
poor when this value tends to 0.

This measure, however, behaves abnormally, as shown in
[25] and recalled in [11], two different edge candidate images
produce the same FoM , whereas one is visually closer to the
ground truth. Moreover, as pointed out in [11] and illustrated
in Fig. 3, FoM is particularly sensitive to displacements, i.e.
the errors grow up very fast when a small translation of the
detected edges appears.

C. Baddeley’s Delta Metric (BDM)

Inspired by Haudorff distance, Baddeleys Delta Metric
(BDM) [8] is a measure which intends to estimate the dis-
similarity between each element of two edge images:

∆k
w(Ts, DC) =

1

|I|
·

∑
p∈I
|w(dTs(p))− w(dDC(p))|k

1/k

,

(3)
where k ∈ R∗+ and w represents a weighting concave function
(in general w(x) = min(

√
n2 +m2, x) for an image of size

m×n, with m and n ∈ N∗ [26]).
The main drawback of the BDM is its hypersensitivity to

false positive points, i.e. this measure tends to over penalize
images with false detections. Indeed, when a false positive
pixel is far from the true edge, the |w(dTs(p))−w(dDC(p))|
value creates a high impact on the evaluation, thus penalizing
the measure.
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Fig. 3. FoM is very sensitive to the translations, here, card(DC) = 200.
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Fig. 4. Evolution of the KPI{1,2,3} in function of the distance of the mistake points, with both different card(Ts) and card(FP ∪ FN).

III. IMAGE SHAPE RESPECT ASSESSMENT

Even though the evaluation of crest lines lingers an open
problem as it is for edge detection, some formulas suggest
efficient ways to evaluate edge detection (see above). An
evaluation of spatial position is far from being enough, since
a dispersion (FP/FN points) around well-detected points (TP
points) might be observed in the resultant image (see Fig. 8
for superposition of ground truth and segmentation/candidate
images). To evaluate this dispersion on respect of image shape,
a measure must be regarded. To that effect, we considered the
Yasnoff et al. [27] measure as a start:

MYAS =
100

card(FP ∪ TP )
·
√ ∑
p∈FP

d2Ts
(p). (4)

This measure has been used for binary images in pattern
recognition, compared to other methods and thus proving its
efficiency. The first noticeable fact is the possible values of
this measure are between zero and infinity. Because it is not
plain to draw out conclusions about this measure within its
value window, we perform a transformation to only observe
values between zero and one and build a KPI (see Section
II-A) so that one would correspond to infinity in the distance
and error:

KPI : [0;∞[ → [0; 1[
u → 1− 1

1+k·uh ,
(5)

where k ∈ R∗+ and h represents a power for observation.
The parameter out of this formula corresponds to the distance√∑

d2Ts
represented by u.

In this work, a displaced edge expects to be penalized in
function of the false pixels number (i.e. card(FP ∪FN)) and
in function of the distance to the position it should be located
at. Indeed, since FN ∩FP = ∅, using the Euclidian distance,
the dTs is defined as: ∀ p ∈ FP ∪ FN,

dTs
(p) =

{
Inf{ ||p− t||, t ∈ Ts}, if p ∈ FP
Inf{ ||p− t||, t ∈ TP}, if p ∈ FN.

Inspired by Eq. 4, the first KPI formulation for shape
respect is the following:

KPI1 = 1− 1

1 +

(√∑
p∈FP∪FN d2Ts

(p)

card(FP∪FN)

)h . (6)

The latter by considering the whole image area, return non
observable values by virtue of the image area importance. For

example, two different images I1 and I2 both containing only
one FP point at a same distance of Ts (Ts = 10 in I1 and
Ts = 100 in I2) obtain a common KPI1 value (according to
the formula) through the evaluation interpretation is different,
because of the unlike ratio values.

This led the optimum KPI research to a second formu-
lation. That is the reason why we approached a formula to
quantitatively observe dispersion regardless the image nature.
This new term measures a pure dispersion of misplaced points
compared to the cardinality of the ground truth Ts:

KPI2 = 1− 1

1 +

(√∑
p∈FP∪FN d2Ts

(p)

card(TS)

)h . (7)

Thereafter, this consideration partially resolves the problem
stated above. Indeed, considering two images with identical
ground truth points Ts and dispersion distance, but different
ratio, so that in one image a single FP point behaves as n FP
points (n>1) on another image; these images have the same
interpretation in terms of KPI2 which is not the case with
ratios 1/100 and 90/100. The table I illustrates this drawback.
A same reasoning is applicable to FN points. That means the
distance divided by the cardinality of Ts must be balanced
with the proportion of misplaced points, i.e. card(FP ∪FN).

As demonstrated above and illustrated in Fig. 4, KPI1
and KPI2 suffer from different drawbacks. In edge/crest line
detection assessment, a performing KPI has to take into
account all the following input parameters Ts, FP , FN and
d2Ts

(p) (∀ p ∈ FP ∪ FN ). Ultimately, this new KPI is
proposed by the following formula:

KPI3 = 1− 1

1 +

(√∑
p∈FP∪FN d2Ts

(p)

card(TS) · card(FP∪FN)
card(TS)

)h .
(8)

This last formulation takes into consideration all observable
cases and theoretically observable. Since distance evaluation
remains local so that there is no difference in the evaluation
of these two images, it is to be noticed that image dimensions

TABLE I
ERROR QUANTIFIED BY KPI2 ON TWO DIFFERENT CANDIDATE EDGE

IMAGES COMPARED TO THE SAME GROUND TRUTH

card(TS) d card(FP ∪ FN) KPI2

100 5 90 0.2462
100 50 1 0.2616
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Fig. 5. Evolution of the KPI3 in function of the mistake points distance and card(FP ∪ FN), for different card(Ts) and fixing h = φ.

are not considered. Moreover, a huge image may contain
a skeleton with a small number of pixels. On the graphs
presented in Fig. 4, we can notice how KPI3 evolves with the
image characteristics (number of ground truth and misplaced
points), compared to KPI1 and KPI2.

An undeniable parameter of KPI3 formula is the power of
the denominator term. It may be called a power of observation.
Inasmuch as KPI3 depends on its value, it evolves more or
less quickly around 0.5 and embodies a range of observable
cases. We determined average values for the distance term dTs .
The advice to choose values between 1 and 2 can be easily
checked. Otherwise, the more KPI3 evolution will be abrupt,
the less the transition between 0.5 and 1 will be marked (i.e.
the slope of the KPI3 curve, for example h = 1 in Fig. 6).
Moreover, fixing h = 1, KPI3 stagnates far from 1 when
dTs becomes high. Additionally, when h = 2, KPI3 starts
to increase slowly and the slope becomes sharp around 0.5 to
converge quickly towards 1. Finally, to fix the power at the
golden ratio φ ' 1.6180339887 in order to ensure an evolution
of KPI3 that would not be too abrupt from 0 to 1 and also
not penalize when dTs is not elevated (contrary to KPI3 with
h = 1, see Fig. 6). Fig. 5 illustrates KPI3 values in function
of the distance of the mistake points and card(FP ∪ FN).
For a small skeleton Ts = 200, it shows that KPI3 draws
near 1 quickly when card(FP ∪ FN) and dTs

are growing.
Alternatively, for a bigger skeleton, KPI3 rises slower. These
three evolution surfaces show the coherence and robustness of
KPI3 regarding our starting conditions: a displaced edge is
penalized in function of the false pixel number and also of the
distance to the position it should be located at.
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Fig. 6. Evolution of the KPI3 in function of the mistake points distance, for
different powers h, with card(FP ∪ FN) = 4000 and card(TS) = 2200.

IV. EXPERIMENTAL RESULTS

In natural images, obtaining true contours or crest lines
is not trivial, for this reason, some authors create their own
benchmark and then evaluate the detection. New crest line
images are proposed in the rest of this paper to evaluate roof
edge extractors1.

A. Construction of Test Images

Images are first created by building elementary shapes like
lines or circles, since a skeleton can be decomposed into lines
or arcs. Then, to create more complex images, we sum, then
concatenate elementary images. Here is an example Fig. 7, a
vertical line, a set of circular arcs and a tree.

B. Results of Quality Measures

In the proposed experiments, to create candidate images,
ground truth images are progressively degraded with FNs
(i.e. substitution of pixels in Ts), adding FPs (i.e. randomly
noise pixels) or a displacement of each edge point of Ts and
then compared with the initial image. Indeed, Fig. 7 shows
KPI{p,2,3} values in function of these 3 different deteriora-
tions. Note that shape evaluation measurements (KPI{2,3})
depend on the image nature, i.e. edge geometry, especially
for displacements and the edge shapes can be interpreted as
decent. Curves presented in Fig. 7 and values available in
Table II indicate that KPIp (precision) is accurate and grows
along the importance of the translations. It is the same for
for KPI{2,3} (shape). However, on the one hand, KPI2 is
sensitive to displacements and FPs but, on the other hand,
does not penalize enough FNs addition (particularly visible
for the vertical line case and in Fig. 9 (Arch vs Circle).

Fig. 8 and 9 present other images with their evaluations in
Table II. Circle vs line and Comb images show how KPI3
behaves in the presence of two spatially distant edges and also
contours images having DC and Ts close enough. Building
Circle arc and Tree images with multiple sub images where
each sub image possesses a valley which is different, thus a
specific morphological operation is applied to the binary image

1These images and the edge detection quality assess-
ment are created using Matlab software and available on:
http://www.mathworks.com/matlabcentral/fileexchange/58415-evaluation-
of-roof-edge-detectors-with-a-quantitative-error-measure
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Fig. 7. Evolution of the KPI{p,2,3} in function of the FPs, FNs and displacements. card(Ts) = 100, for the top image (100×101), card(Ts) = 2176, for
the middle image (300×300) and card(Ts) = 2200, for the bottom image (580×300). Note that KPI2 and KPI3 curves are the same for pixel translation
evaluation of the first image because card(Ts) = card(DC). FNs are created by adding horizontal lines of null pixel values and FPs by randomly adding
isolated pixels of value 1. For a better visualization, black and white colors are inverted and the reader is referred to the web version of this article.

until obtaining an image skeleton (involving a 8-connected
neighborhood center element). Then, this skeleton is compared
to ground truth valley images (presented in Fig. 7 left) and
evaluated through the proposed KPI{p,2,3}. Table II states
also when Circle arc and Tree images endure a translation be-
fore the morphological operation, obviously, KPI2 penalizes
sharply edge displacements (contrary to KPI3).

Results presented in these experiments illustrate the impor-
tance of a coherent evaluation. Indeed, penalizing a detected
edge/crest line having either FPs and FNs or a small displace-
ment is necessary proportionally to both the number of the
mistake points and distance from ground truth. However, this
penalty must not have a great influence in the presence of
weak errors. Furthermore, the edge detector evaluation process
must evolve from a good criterion to a poor criterion without

Circle vs line Comb Arch vs circle

Fig. 9. Representation and ratio of TPs, FPs and FNs in: Circle vs line
100×100, Comb 100×100 and Arch vs line 201×201 pixels.

steep translations. KPI3 formula portrays better this state,
and the use of this criterion enables to say whether a crest
line extractor algorithm is efficient. Eventually, this crest line
detector evaluation adapts to step/ramp edge detection evalu-
ation, taking into account a spatial distance of the candidate
edge from the true contours, contrary to the crest line where
there is no distance (more details at the end of Section I).

V. CONCLUSION AND FUTURE WORKS

This work aimed at a roof edge extraction evaluation using
ground truth contour image and candidate edge image. Com-
bining the number of true pixels compared to the total number
of false pixels and their distances to the ground truth enable
to build a criterion which predicts if an image is correctly
segmented or not. The proposed algorithm allows to evaluate
precisely the efficiency of a crest line detection method for
different types of images of different sizes. Additionally, the
method proves its efficiency to measure under- and over-edge
detection. This approach could be employed to determine the
best fitting crest line detectors parameters, like thresholds in
the last stage of the detection.

Future works suggest an evaluation of several methods used
in the crest lines detections. Another work consists of a multi-
scale roof edge detection evaluation [22][21][16][18]. Indeed,
adapting the proposed evaluation would measure the accuracy
of crest line scale detection of multi-scale images.



Circle arcs TPs, FPs and FNs Tree TPs, FPs and FNs

Fig. 8. Representation and ratio of TPs, FPs and FNs in: Circle arcs image 300×300 and Tree image 580×300. For a better visualization and an interpretation
of the reference to color in legend, the reader is referred to the web version of this article.

TABLE II
DIFFERENT KPI{p,2,3} VALUES AND FOR THE IMAGES IN FIG. 8 AND 9

Image x translation y translation %TP %FP %FN card(Ts) card(FP∪FN)
√∑

d2 KPIP KPI2 KPI3
0 0 51.20 24.15 24.64 2176 1400 76 0.244 0.002 0.004

Circle +1 +2 10.79 44.35 44.86 2176 3488 519 0.446 0.174 0.089
arcs -2 +2 5.40 47.04 47.55 2176 3887 816 0.473 0.343 0.169

+30 +20 1.22 47.10 51.69 2176 4063 1286 0.495 0.540 0.299
0 0 47.22 24.16 28.61 2200 1531 153 0.265 0.007 0.013

Tree -5 +10 1.03 46.96 52.00 2200 4105 1811 0.496 0.667 0.422
+5 +10 1.59 46.92 51.48 2200 4079 1927 0.493 0.687 0.447

+50 +100 0.49 42.95 56.56 2200 3837 3175 0.507 0.817 0.644
circle/line 0 0 0.26 74.02 25.71 100 828 384 0.620 0.996 0.968

Comb 0 0 64.90 19.50 15.60 124 54 23 0.176 0.016 0.060
arch/circle 0 0 50.10 0 49.90 1012 505 1531 0.5 0.388 0.661
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