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ABSTRACT

Edge detection remains a crucial stage in numerous image processing applications. Thus, an edge detection tech-
nique needs to be assessed before use it in a computer vision task. As dissimilarity evaluations depend strongly
of a ground truth edge map, an inaccurate datum in terms of localization could advantage inaccurate precise edge
detectors or/and favor inappropriate a dissimilarity evaluation measure. Hence, in this work, we demonstrate how
to label these ground truth data in a semi-automatic way. Moreover, several referenced-based boundary detection
evaluations are detailed and applied toward an objective assessment. Thus, each measure is compared by varying
the threshold of the thin edges. Indeed, theoretically, the minimum score of the measure corresponds to the best
edge map, compared to the ground truth. Finally, experiments on many images using six edge detectors show that
the new ground truth database allows an objective comparison of numerous dissimilarity measures.
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1 INTRODUCTION between a segmentation result and a ground truth ob-

. i tained from synthetic data or a human judgment [2].
Over the last decades, edge detection remains a

crucial role in the computer vision community In this paper, we detail several edge dissimilarity mea-

(300 (281 [T (22 (2 (&1 8], This segmentation is SUreS and present how to evaluate filtering edge detec-
tion technique involving these considerate measures.

In a second time, we demonstrate how to build a new
ground truth database which can be used in supervised
contour detection evaluation. Indeed, results presented
show the importance of the choice of the ground truth.
Finally, considering these new ground truth images, re-
sults obtained by the measures are exposed.

considered as a fundamental step in many image pro-
cessing applications or analysis, pattern recognition, as
well as in human vision. Moreover, contours include
the most important structures in the image. Typically,
edges occur on the boundary between two different
regions in an image. In other words, an edge is the
boundary between an object and the background or
between two different objects.

2 SUPERVISED ERROR MEASURES
To assess an edge detector, the confusion matrix
remains a cornerstone in boundary detection evalua-
tion methods. Let G; be the reference contour map
corresponding to ground truth and D, the detected
contour map of an original image /. Comparing pixel
per pixel G; and D,, the first criterion to be assessed

There exist many different edge detection methods.
Nevertheless, an important problem in image process-
ing remains an efficient edge detector comparison and
which parameter(s) correspond(s) to the best setting to
obtain an accurate edge detection results. Indeed, a ro-
bust boundary detection method should create a contour
image containing edges at their correct locations with
a minimum of misclassified pixels. In order to objec-

tively quantify the performance of an edge detector, a (1]

supervised measure computes a similarity/dissimilarity # |:| TP pixel
Hn . FP pixel
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Table 1: List of error measures involving only statistics.

Complemented Per formance measure [3] [4]

P (G,D;)=1— ————
w (GiDe) TP+FP+FN
Complemented ® measure [S]
TPR - TN
o* D)=1————
(6D =1 - T
Complemented y? measure [6]
TPR—TP—FP TP+FP+FPR
17 (G, D) = 1— :
1-TP—-FP TP+FP
Complemented F; measure [7]
PREC - TPR
F} (G;,D.)=1— ,
« (G De) a - TPR+(1—a)-PREC

with PREC = and o €]0;1]

TP+FP

is the common presence of edge/non-edge points, as
illustrated in Fig. [1} A basic evaluation is compounded
from statistics; to that effect, G; and D, are combined.
Afterwards, denoting |- | as the cardinality of a set, all
points are divided into four sets:

- True Positive points (TPs), common points of G;
and D.: TP = |D.NGy|,

- False Positive points (FPs), spurious detected edges:
FP=|D.N—-Gyl,

- False Negative points (FNs), missing boundary
points of D.: FN = |=D.N G|,

- True Negative points (TNs), common non-edge
points of G; and D.: TN = |=D.N—G;|.

Computing only FPs and FNs enables a segmentation
assessment to be performed [8]. The complemented
Performance measure P, presented in Table [I| con-
siders directly and simultaneously the three entities
TP, FP and FN to assess a binary image [3] [4]. The
measure is normalized and decreases with improved
quality of detection, with P, = 0 qualifying perfect
segmentation.

By combining FP, FN, TP and TN, another way to dis-
play evaluations is to create Receiver Operating Char-
acteristic (ROC) [9] curves or Precision-Recall (PR)
[[7], involving True Positive Rates (T PR) and False Pos-
itive Rates (FPR): TPR = 75t and FPR = Fh.
Derived from T PR and F PR, the three measures P, 752
and Fy, (detailed in Table|l)) are frequently used in edge
detection assessment. Using the complement of these
measures, a score close to 1 indicates a poor segmen-
tation, whereas a value close to 0 a good segmentation.
Among these three measures, F, remains the most sta-
ble because it does not consider the TNs, which are
dominant in edge maps. Indeed, taking into considera-
tion TN in @ and x? influences solely the measurement
(as is the case in huge images).

These measures evaluate the comparison of two edge
images, pixel per pixel, tending to severely penalize a
(even slightly) misplaced contour, as illustrated in Fig.
E] (g) and (h). Thus, to perform an edge evaluation, the
assessment should penalize a misplaced edge point pro-
portionally to the distance from its true location.

Table 2: List of normalized error measures compared in
this work, with the parameter x € ]0; 1].

Figure of Merit (FoM) [10]
FoM (G;,D,) =1

max(‘Gz‘ 5 |DL'|) peD, 1+ K‘d%;, ([7)

FoM of over-segmentation [11]

1 1
FoM, (G;,D;)=1— —————- _
e(Gi,De) max (e~ FP FP) peDerG, | +K~d(2;r(p)

FoM revisited [12]

1
F(Gi.De) =1~ 1oipy -
1, De 1G,UD.] pezélwodﬁ_(l’)

Combination of FoM and statistics [13]
ds(Gy,De) = - \/S+FoM (G, D)
(TP —max (|G,|,|D.|))* + FN? + FP?
(max (|G|, D))’

with § =

Symmetric Figure of Merit [14]
SFoM (G;,D.) = X - FoM (G;,D.) + % - FoM (D, G;)

Maximum Figure of Merit [14]
MFoM (G;,D,) = max (FoM (G, D.) ,FoM (D, G;))

Edge map quality measure [15]
D,(G.D) = gl L + 2R

L=Y1 ! and R= Y 1-

_—
peD, 1+ K'd(;,([’) peG,

1
I+ K'dém[_)(.([’)

A reference-based edge map quality measure requires
that a displaced edge should be penalized in function
not only of FPs and/or FNs but also of the distance from
the position where it should be located. Tables 2] and 3]
review the most relevant measures in the literature. The
common feature between these evaluators corresponds
to the error distance dg, (p) or/and dp,(p). Indeed, for
a pixel belonging to the desired contour p € D, dg, (p)
represents the minimal euclidian distance between p
and G;. On the contrary, if a pixel p belongs to the
ground truth Gy, dp_.(p) is the minimal euclidian dis-
tance between p and D.. On the one hand, some dis-
tance measures are specified in the evaluation of over-
segmentation (i.e. presence of FPs), like: FoM,, Y, DK,
® and I (see also [26]). On the other hand, Q measure
assesses an edge detection by computing only an under
segmentation (i.e. missing ground truth points, see also
[26]]). Other edge detection evaluation measures con-
sider both FPs and FNs.

First, to achieve a quantitative index of edge detector
performance, one of the most popular descriptors is the
Figure of Merit (FoM). This distance measure ranges
from O to 1, where O corresponds to a perfect segmenta-
tion [10]. Widely utilized for comparing several dif-
ferent segmentation methods, in particular thanks to
its normalization criterion, this assessment approach
nonetheless suffers from a main drawback. Whenever
FNs are created, the distance of FNs (dp,(p)) are not
recorded. Indeed, FoM can be rewritten as:
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Figure 2: Evolution of dissimilarity measures in function of the the distance of the false positive/negative points.
A vertical line of false positive points (b) or false negative points (d) is shifted by a maximum distance of 16 pixels
and the measure scores are plotted in function of the displacement of the desired/undesired contour.

1 1

— + e —
 pebanGy 1*""%, (P)  pever-6, 1+K'd(2;, (p)

FoM (G,,D;) = 1 maqur‘-‘Drl)
TP+ T+x-d2 (p)
= 1- peper-G, 1 K- dg, (p)
—= max (|G [[De)
1)
2 _ D U
because, for p€ D NGy, dg, (p) =0 and e

Knowing that TP = |G,| — FN, for the extreme cases,
the FoM measures takes the following values:

TP
if FP=0:FoM (G, D) =1——,
|G|
1
if FN=0:FoM (G;,D;)=1— — L . T
max([Gy[,[Dc) pél);ﬁGz 14+ K~d(2;r (p)

2)
When FP = 0, FoM behaves like matrix-based error

1
assessments. Moreover, for FP > 0, as TTdZ (7) <1,

the FoM measure penalizes the over-detection very low
compared to the under-detection. The curve in Fig. [2]
shows that the penalization of missing points (FNs) be-
comes higher whereas it is weaker concerning FP. On

the contrary, the F' measure computes the distances of
FNs:

1
TP+ Y, ————
1+x-d3 (p)
F(G D)=1— pE—DeNGy c 3
(GrnDo) G, UD| @
F behaves inversely to FoM:
1
De| + —
1+x-d3 (p)
. _n. 1 pe—~DcNGy D¢
if FP=0:F(G,,D.) =1 T @

it FN=0:F(G,De) = 1— gtk

Also, d4 measure depends particularly on TP, FP, FN
and FoM. Nonetheless, this measure penalizes FNs
like the FoM measure, as shown in Fig. 2] (j). SFoM
and MFoM take into account both distances of FNS
and FPs, so they can compute a global evaluation of
a contour image, but as illustrated in Figs. |Z| (i) and
(j), MFoM does not considers FPs and FNs a the same
time, contrary to SFoM. Another way to compute a
global measure is presented in [15] with the edge map



Table 3: List of non-normalized error measures. In the
literature, the most common values are k =1 or k = 2.

Yasnoff measure [|16]
Y(Gr.De) =P+ | ¥ dg (p)
peED,

Hausdorff distance [17]

H (G;,D.;) = max (mdxd(, (p), made (p )>
PEDC PEG,

Distance to G; [18] [17][19][20]
D(Gi.De) = g ¢ 2 d"c( ),

keRY, k=1 for[lSj

Maximum distance [19]

f2d6(G,7DC)—maX<£'Z G, (), |G| -y dp, P))

<l peD, peG;

Oversegmentation [21][22]
dg, (p) \*

®(G,,D, —=== ),
( L (%)

1
C):ﬁ.p orH
k€ R and 87y € RS [22], k = 87y = 1 for [21]

Undersegmentation [21][22]
k
G0 =y T (%)

PEG;
k€ R" and 87y € RS [22], k Ory = 1 for [21]
Baddeley’s Delta Metric [23]

A(G,De) = ¢/ 1p ~I))£I\W(da, (p)) —w(dp, ()|,
k€ R* and a convex function w: R — R
Symmetric distance [[19][20]

| % d )+ 5 db ()
k D.) = PEDe PeGy
S (Gh L‘) ‘D(Uth
keR*, k=1 for 9]

Magnier et al. measure [24]

FP+FN
I'(G;,D.) = W ’ /pEZD‘dé, (p)

Symmetric distance measure [25] [14]

FP+FN
\P(Gtthr) = 2 r d12)r (P) + X d(z;, (p)
‘Gl‘ peGy pED,

quality measure D,. The over-segmentation measure
(left term) evaluates dp_, the distances between the FPs
and G;. The under-segmentation measure (right term)
computes the distances of the FNs between the closest
correctly detected edge pixel, i.e. G; N D.. That means
that FNs and their distances are not counted without the
presence of TP(s), and D), is more sensitive to FNs than
FPs, see Figs. 2] (i) and (j).

A second measure widely computed in matching
techniques is represented by the Hausdorff distance
H, which measures the mismatch of two sets of points
[[L7]. This max-min distance could be strongly deviated
by only one pixel which can be positioned sufficiently
far from the pattern. To improve the measure, one idea
is to compute H with a proportion of the maximum
distances (for example 5% of the values [17]); let us
note Hsq, this measure. Nevertheless, as pointed out in

[19], an average distance from the edge pixels in the
candidate image to those in the ground truth is more
appropriate for matching purposes than H and H,¢,. To
achieve this task, D, Y, ® and I which represent errors
of distance only in function of dg,, they correspond to a
measure of over-segmentation (only FPs), as indicated
by the curves in Figs. [2] (1) where the curves stagnate at
0. On the contrary, the sole use of a distance dp, instead
of dg, enables an estimation of the FN divergences,
representing an under-segmentation (as in Q). Never-
theless, as concluded in [27], a complete and optimum
edge detection evaluation measure should combine
assessments of both over- and under-segmentation,
as frdg, SK and W. Also, combining both dp. and
dg,, Baddeley’s Delta Metric (AY) 23] is a measure
derived from the Hausdorff distance which is intended
to estimate the dissimilarity between each element of
two binary images. Finally, curves in Figs. 2| (k) and (1)
illustrate that H, Hse,, A¥, f>de and S* behave similarly
in function of the FPs or FNs distances. Note that the
Y measure is more sensitive to the distance of the FPs.
The scores of the non-normalized measures in Figs. [2]
(k) and (1) are normalized using the following equation
for easy visual comparison. Denoting by f € [0;4oo|
the score vectors of a distance measure such that:

min(f(Gl Dy ))7 min(f(G%DZ)))v
ax(f(G1,D1)),max(f(Gz,D2)));

then the normalization .#” of a measure is computed by:

0 itM=m=0
1 if M=m#0
N (f) = f—m if M>1landm+#0 ©
M—m
f otherwise.

Other details and behaviors of the different measures
are available in [25]] and [14]. In the rest of this com-
munication and the supplementary materiaﬂ, the val-
ues indicated in the Tables or curves correspond to the
true scores of each measure.

3 HOW TO CREATE PRECISE
GROUND TRUTH IMAGES?
HOW TO EVALUATE A FILTERING
TECHNIQUE?

An edge detector is considered as robust when the eval-
uation score of the dissimilarity with a given G; is close
to 0. Table in Fig[3| reports different assessments for
four edge detection methods on a real image (color):
Sobel, Canny [30], Steerable Filters (S-F) [28]] and Half
Gaussian Kernels (H-K) [8]. Only the comparison of
D, with a Gy is studied here. Segmentations are clas-
sified together by comparing the scores of the dissimi-

The supplementary material is available at

http://media.wix.com/ugd/c95124_
p9338752ae3a4e47852e0fa7bccb8b28.pdf}
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(d) Canny edge detection [30]

(b) G, weak consensus image [29]

Sobel Canny S-F H-K

0.908 0.908 0.988 = 0.893
0.766 0.777 0.799  0.779
0987 0986 0988 0979
0.831 0.831 0.838 = 0.807
0399 0.381 0.408 0.344
0.705 0.679 0.649 = 0.6148
1.007 1.041 1.058 1.025

4323 4369 4.852 4.577
2783 1721 = 1410 1.640
19.76 = 1845 19.56  20.89
9454  7.019 8517 11.13
5799 @ 5421 5.626 5.776
0499 0486 0465 0.393
0.584 0499 0.471 0.402

Figure 3: Edge detection after the non-maximum suppression [31] and comparison with a ground truth image.

larity measures and the smallest score for a given mea-
sure indicates the best segmentation. Indeed, for ex-
ample, Sobel corresponds to the best edge detector for
T, Canny for Ak S-F for Q and H-F for FoM. How-
ever, this assessment suffers from two main drawbacks.
Firstly, segmentations are compared using the thresh-
old (voluntary) chosen by the user, this evaluation is
very subjective and not reproducible [[14]]. Secondly,
some deficiencies appear in real ground truth contour
maps, which could disturb the evaluation of efficient
segmentation methods, or, on the contrary, advantage
weak/biased edge detectors. Thus, according to the
used measure or threshold any detector is classified the
first one or the last one.

3.1 Ground truth images

In edge detection assessment, the ground truth is con-
sidered as a perfect segmentation. The most common
method for ground-truth definition in natural images re-
mains manual labeling by humans [2] [32]. These data
sets are not optimal in the context of the definition of
low-level segmentation. Firstly, labelers have marked
mainly edges of salient objects, whereas equally strong
edges in the background or around less important ob-
jects are missing. Moreover, errors may be created by
human labels (oversights or supplements); indeed, an
inaccurate ground truth contour map in terms of local-
ization penalizes precise edge detectors and/or advan-
tages the rough algorithms. There is another problem

(a) Step

Il Original signal
e CONVOIUtION With
[-1 0 1] mask

(f) Legend

(d) Peak edge (e) Roof edge
Figure 4: The different types of edges and result of a
convolution with a [—1 01 ] mask (absolute value).

with the perception. In human perception, images can
be ambiguous [33]], image structures tend to retain their
initial reference (desired shapes) frames, even when ro-
tated or with scale variation(s). In manual segmenta-
tion, the perception is influenced by the effects of the
particular expectations, the labeler tends to mark eas-
ier the contours of a desired object which should be
labeled and it influences the result. Finally, in [34],
the question is raised concerning the reliability of the
datasets regarded as ground truths for novel edge de-
tection methods. Thus, an incomplete ground truth pe-
nalizes an algorithm detecting true boundaries and ef-
ficient edge detection algorithms obtain between 30%
and 40% of errors. Furthermore, when G; maps are
built from a consensus which consists in the combina-
tion of several human-labelled images [35][27][29], the
deficiencies recalled above remain present. These rea-
sons accentuate the importance of the relevant develop-
ment of the ground truth labeling.

In real digital images, various profile edge types deter-
mine contours such as: step, ramp, roof of peaks. Pure
step edges are seldom present in real image scenes, but
they can be created in synthetic data. As illustrated
in Fig. [} edge positions correspond to the points of
the higher gradient magnitude. For a 2D signal, pixels
of contours are measured having the higher slope and
are localized in the perpendicular direction of the slope
of the image function. Considering synthetic data, true
edges are positioned between two different colors/gray
levels. Nevertheless, the edge position of an object

() Image 270x238

(b) Zoom in (a) (c) Position of the detected contour
Figure 5: Synthetic data with a 1 pixel width gray
around each shape: value of white pixels = 1, values

of black pixels = 0, values of gray pixels = 0.5.



(a) Original image

(b) Thin edges with [—1 01] mask

(c) Adjustment by hand

Common edge
points

Edge points of
(b) and not in (c)

Edge points of
(c) and not in (b)

Common non
edge points

(d) Image in (b) vs image in (c) (e) Legend

Figure 6: Image of our database are built after an edge detection involving a [—1 01] mask and concluded by hand.

could be interpreted in different ways: for a vertical
step edge, an edge can be located either on the left, or
on the right. In Fig. [3] several white shapes are im-
mersed in a black background, creating step edges. To
avoid the problem of edge pixel placements, a blur must
be voluntary created by adding a 1 pixel width of gray
around each shape. Thus, the ground truth corresponds
to the points where the slope of the image surface is
maximum, i.e. to this gray. These points could be ex-
tracted involving odd filters (derivative filters of order
1). In the one hand, a [—1 01 ] mask allows to extract
the edges at the correct position, i.e. the gray pixels in
Fig. [5 contrary to edge detector involving smoothing
parameters which delocalize edge positions (especially
corners and small objects [1]). In the other hand, us-
ing an odd filter, two edges are extracted corresponding
to the two boundaries of the roof/peak (see Fig. [ and
[24]); however, human labelers, in majority, indicate
only one edge. The new database of contour images is-
sued of real images takes into account all these proper-
ties. This paper presents ground truth edge maps which
are labeled in a semi-automatic way in order to evaluate
the performance of filtering step/ramp edge detectors.
Therefore, the motivations to create new ground truth
edge images are:

1. To obtain contours accurately localized,

2. To extract edges of the secondary objects or in the
background,

3. To exclude boundaries inside noisy/textured regions.

In fact, this new label processes in return to hand made
ground truth. Indeed, in a first time, the contours are
detected involving the convolution of the image with
[-101] vertical and horizontal masks followed by a
computation of a gradient magnitude and a suppres-

sion of local non-maxima in the gradient direction [31].
Concerning color images, [—101] vertical and hori-
zontal masks are applied to each channel of the image
followed by a structure tensor [36]. In a second time,
undesirable edges are deleted while missing points are
added both by hand. Fig. [6]illustrates the steps to obtain
new ground truth images. Using the [—1 01 ] mask en-
ables to capture the majority of edge points and corners
without deforming small objects, contrary to edge de-
tectors involving Gaussian filters (see for example Fig.
6 in [37]). Moreover, this process enables to detect the
good positions of the contours while avoiding the ad-
dition of too much imprecise ground truth points, as
shown in Fig. @ and Fig. [5}

3.2 Minimum of the measure

Instead of thresholding manually or automatically
[38][39] and then comparing the segmentation of
several edge detectors, as in Fig. |§| (c¢) and (d),
the dissimilarity measures are used for an objective
assessment. Indeed, the purpose is to compute the
minimal value of a dissimilarity measure by varying
the threshold Th of the thin edges computed by
an edge detector (thin edges are created after the
non-maximum suppression of the absolute gradient
[31]). Indeed, compared to a ground truth contour
map, the ideal edge map for a measure corresponds
to the desired contour at which the evaluation obtains
the minimum score for the considered measure among
the thresholded gradient images. Theoretically, this
score corresponds to the threshold at which the edge
detection represents the best edge map, compared to
the ground truth contour map [40][27][25]. Fig. [7]
illustrates all this process. Since a small threshold leads

//wdb

Gradient image

B =
B N[=[=

Ground truth edge map

Scores of a measure

1
[ —— ideal threshold = 0.4 score =0.15272] |

Normalized thin edges,
after non-maximum
suppression of the
absolute gradient and
before thresholding.

N

Gradient an
image

truth image.

Research of the ideal
edge map for a measure
corresponings to the
segmentation at which
the evaluation obtains the
minimum score among
the thresholded images,
compared to the ground
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edge map quality
measure, with
Th=04.
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Figure 7: The most relevant edge map for a dissimilarity measure is indicated by its minimum score.



(c) Otsu [38]]
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Figure 8: Scores of the measures depending on the threshold of the thin gradient image [30].

to heavy over-segmentation and a strong threshold may
create numerous false negative pixels, the minimum
score of an edge detection evaluation should be a
compromise between under- and over-segmentation.
As illustrated in Fig. [§] (e) the best score for the
under-segmentation evaluation corresponds to 7h = 0,
because false negative points penalize the Q measure.
On the contrary, false positive points penalize over-
segmentation dissimilarity measures, as FoM,, T, D,
O and I" measures, see Fig. [§](g). Consequently, the
best score concerning an over-segmentation measure
corresponds to Th ~ 1. As G; are not the same for
the evaluation in Fig. |§| (g) and (h), the two curves are
different.

4 EXPERIMENTAL RESULTS

The purpose of the experiments presented here is to ob-
tain the best edge map in a supervised way. In order
to study the performance of the contour detection eval-
uation measures, each measure is compared by vary-
ing the threshold of the thin edges computed by until
six edge detectors: Sobel, Canny [30], Steerable Fil-
ters of order 1 (SF}) [28]], Steerable Filters of order 5
(SFs) [41], Anisotropic Gaussian Kernels (AGK) [42]]
and Half Gaussian Kernels (HK) [8]. In the one hand,
experiments are led on two synthetic noisy images. In
the other hand, contour detection evaluations are com-
pared on seven real images where G; edge maps are la-
belled by a semi-automatic way (section [3.I). Finally,
compared to a ground truth contour map, the ideal edge
map for a measure corresponds to the desired contour at
which the evaluation obtains the minimum score for the

considered measure among the thresholded thin gradi-
ent images [30].

Firstly, to evaluate the performances of the dissimilar-
ity measures, the original image in Fig. [a) is dis-
turbed with random Gaussian noise and edges are ex-
tracted from the noisy images (4dB and 3.3dB, see sup-
plementary material). Generally, the scores of ®*, dy
and D, measures allow to correctly extract the edges at
the price of numerous FPs. Moreover, AF is more sen-
sitive to FPs than the other dissimilarity measures and
the best score corresponds to a contour edge map with
many discontinuous contours. As pointed out in section
2] concerning the image corrupted by a noise at a level
of 4dB, FoM penalizes strongly FNs to the detriment of
FPs apparitions, and it considers that anisotropic edge
detectors are less performant than the Canny edge de-
tector. Other measures classify the Sobel method as the
less efficient one and the H-K as the best one.

The second experiment concerns a real image presented
in Fig. [6(a); G; is available in Fig. [f[c). The best edge
maps based on minimum of the scores of different mea-
sures are presented in Fig. [9] Statistical measures and
dy4 consider that Sobel is the best edge detector for this
image because edges are well localized. Even though
edge maps are different, the scores obtained by FoM
and F are similar for the different filtering techniques.
Oriented kernels, however, are qualified as reliable by
distance measures and edge maps corresponding to the
minimum scores are less noisy. In the supplementary
material are compared the best edge maps obtains with
our G; and G; of Berkeley segmentation image (Fig.
b)). Excepted for ®*, d4 and D, measures, the best
edge map for all the other measures contains many



holes in the contour chains and it is clearly impossible
to conclude which edge detector is the most efficient.
Table ] mentions scores involving the two different G;:
by hand made, and semi-automatic. It is important to
note that the scores for each measure is smaller con-
cerning G; built in a semi-automatic way.

Other results presented in the supplementary material
show that the minimum scores concerning the distance
measures. When objects appear clear, like in image 56
and buildings, most of the measure scores indicate that
the edge detectors are equivalent. By contrast, as soon
as images contain blur or/and noise, as in image 109
and parkingmeter, the evaluation measures involving
error distances considerate that oriented and anisotropic
filters produce better-defined contours. Finally, image
109 is a noisy image, however AF and D, evaluate
that Sobel detects better edge, whereas it creates many
undesirable contour points, contrary to filtering tech-
niques involving smoothing effects.

Numerous experiments show that S_, ., and ¥
dissimilarity measures are best fitted in the problem
of supervised edge evaluation. Indeed, the minimum
evaluation scores are coherent and the edge detectors
are qualified as best when the filtering technique is
adapted to the image structure (blur, noise, small ob-
jects). Moreover, the edge map corresponding to the
minimum score delimit correctly the object with a ma-
jority of continuous contours points without much un-
desirable points.

5 CONCLUSION

This study presents a review of supervised edge detec-
tion assessment methods in details. Moreover, based
on the theory of these dissimilarity evaluations, a tech-
nique is proposed to evaluate filtering edge detection
methods involving the minimum score of the consid-
erate measures. Indeed, to evaluate an edge detection
technique, the result which obtains the minimum score

Table 4: Comparison of scores of dissimilarity mea-
sures using a ground truth from [2] (Fig. [3] (b)) im-
age and a constructed ground truth by a semi-automatic
way. Contour images and curves for all the measures
are available in the supplementary material.

Sobel Canny SFy |28 AGK [42 H-K[8
ey G, OUF Gy | peneiys, OUr Gy | peneieys, | OUr Gy | seaiey, | Our Gy | mewiss, — Our Gy
P 0738 0.298 | 0.757 0.430 | 0971 | 0447 | 0.813 | 0496 | 0.761 0.504
X 0979  0.635 | 0975 0.725 | 0983 | 0.712 | 0982 | 0.759 | 0.973  0.502
P 0.901 0.530 | 0.901  0.603 | 0.909 | 0.594 | 0917 | 0.637 | 0.893  0.778
Fy 0.820 0360 | 0.819 0432 | 0.834 | 0422 | 0.847 | 0468 | 0.808  0.483
FoM | 0303  0.168 | 0310 0.147 | 0309 | 0.164 | 0.299 | 0.154 | 0277  0.146
F 0592 0346 | 0579 0352 | 0.572 | 0.310 | 0.589 | 0.337 | 0.589  0.367
dy 0.675 0333 | 0.671 0379 | 0.687 | 0.375 | 0.695 | 0412 | 0.667  0.424
SFoM | 0297  0.145 | 0289  0.134 | 0270 | 0.111 | 0.271 0.119 | 0.268  0.128
Dp 0.173  0.036 | 0.184 0.058 | 0.193 | 0.056 | 0.208 | 0.065 | 0.183  0.072
H 40.02 29.52 1941 15.175 | 1897 | 18.02 | 3535 14.76 | 36.87 15.03
Hsq, 1372 9.406 11.89  9.142 | 11.53 | 6.781 14.18 | 6.048 | 1456  7.165
A 6.632 4094 | 5.039 3.000 | 4.844 | 2462 | 6.044 | 2.040 | 6.562  2.576
ds | 2851 1.066 | 2.498 1.294 | 2.467 | 0.900 | 2.625 | 0.895 | 2.582  0.983
2.584 1.005 | 2.315 0990 | 2.316 | 0.877 | 2471 0.866 | 2432  0.966
4270 2323 | 3725 2361 | 3.690 | 1.819 | 4.172 1.667 | 4.281 2.029
0213 0.041 0.181  0.044 | 0.173 | 0.032 | 0224 | 0.032 | 0.222  0.038

Meas.

Ll ||

"‘:‘HQ (i

of a measure is considerate as the best one and repre-
sents an objective evaluation. Theoretically and with
the backing of many experiments is demonstrated that
the minimum score of the S¥_, ., and ¥ dissimi-
larity measures correspond to the best edge quality map
evaluations. These two measures take into account both
the distances of false positive and false negative points.
Many experiments of edge detection on synthetic and
real images involving several edge detectors illustrate
this conclusion. Experiments show the significance of
the ground truth map choice: an inaccurate ground truth
contour map in terms of localization penalizes precise
edge detectors and/or advantages the rough algorithms.
That is the reason why is described in this conversation
how to build a new ground truth edge map labelled in
semi-automatic way in real images. Firstly, the con-
tours are detected involving the convolution of the im-
age with [—101 | masks. Secondly, undesirable edges
are removed while missing points are added both by
hand, thus a more accuracy ground truth edge map im-
age is built and can be used for supervised contour de-
tection evaluation. By comparison with a real image
where contours points are not precisely labelled, exper-
iments illustrate that the new ground truth database al-
lows to evaluate the performance of edge detectors by
filtering. Finally, the advantage to compute the min-
imum score of a measure involving this new ground
truth database is that it does not require tuning parame-
ters. For this purpose, we plan in a future study to com-
pare the robustness several edge detection algorithms
by adding noise and blur on real images presented in
the supplementary material and then using the optimum
threshold computed by the minimum of the evaluation.
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