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A NEW NORMALIZED SUPERVISED EDGE
DETECTION EVALUATION

Hasan Abdulrahman, Baptiste Magnier, and Philippe Montesinos

Ecole des Mines d’Alès, Parc scientifique Georges Besse, 30000 Nı̂mes, France

Abstract. In digital images, edges characterize object boundaries, then
their detection remains a crucial stage in numerous applications. To
achieve this task, many edge detectors have been designed, producing
different results, with different qualities. Evaluating the response ob-
tained by these detectors has become a crucial task. In this paper, several
referenced-based boundary detection evaluations are detailed, pointing
their advantages and disadvantages through concrete examples of edge
images. Then, a new supervised edge map quality measure is proposed,
comparing a ground truth contour image, the candidate contour image
and their associated spacial nearness. Compared to other boundary de-
tection assessments, this new method has the advantage to be normalized
and remains a more reliable edge map quality measure.

Keywords: Edge detection, distance measure, supervised evaluation.

1 IMPORTANCE OF A NEW ERROR MEASURE

In image processing tasks, edge detection remains a key point in many applica-
tions. Boundaries include the most important structures of the image, and an
efficient boundary detection method should create a contour image containing
edges at their correct locations with a minimal of misclassified pixels. Different
algorithms have been developed in the past, but few of them give an objective
performance comparison. The evaluation process should produce a result that
correlates with the perceived quality of the edge image, which is relied on human
judgment. In other words, a reliable edge map should characterize all the rele-
vant structures of an image. On the other hand, a minimum of spurious pixels or
holes (oversights) must be created by the edge detector at the same time. There-
fore, an efficient evaluation can be used to assess and improve an algorithm, or
to optimize edge detector parameters [1].

The measurement process can be classified into either an unsupervised or a
supervised evaluation criteria. The first class of methods exploits only the input
contour image and gives a score of coherence that qualifies the result given by
the algorithm [1]. The second one computes a dissimilarity measure between
a segmentation result and a ground truth obtained from synthetic data or an
expert judgment (i.e. manual segmentation) [2][3][4]. This work focusses on com-
parisons of supervised assessment of edge detection evaluations. Furthermore, a
new supervised edge map quality measure based on the distances of misplaced
pixels is presented and compared to the others, using synthetic and real images.
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2 SUPERVISED IMAGE CONTOUR EVALUATIONS

As introduced above, a supervised evaluation process estimates scores between
a ground truth and a candidate edge map. In image processing, the Structural
Similarity Index (SSIM) corresponds to an image quality evaluation, which es-
timates the visual impact of gray scale shifts in an image [5]. Otherwise, contours
(binary images) could be evaluated counting the number of erroneous pixels, but
also throughout spatial distances of misplaced or oversights contours.

2.1 Error measures involving only the confusion matrix

Let Gt be the reference contour map corresponding to ground truth and Dc

the detected contour map of an image I. Comparing pixel per pixel Gt and
Dc, common positive or negative presence of points is the first criterion to be
assessed. A basic evaluation is compounded of statistics issued of a confusion
matrix. To that effect, Gt and Dc are combined. Afterward, denoting | · | the
cardinality of a set, all points are partitioned into four sets:

• True Positive points (TPs), common points of Gt and Dc: TP = |Dc ∩Gt|,
• False Positive points (FPs), spurious detected edges of Dc: FP = |Dc ∩ ¬Gt|,
• False Negative points (FNs), missing boundary points ofDc: FN = |¬Dc ∩Gt|,
• True Negative points (TNs), common non-edge points: TN = |¬Dc ∩ ¬Gt|.
In one hand, let us consider boundary detection of images, FPs appear in the
presence of noise, texture or other contours influencing the filter used by the
edge detection operator. In the other hand, FNs represent holes in a contour of
Dc. Finally, a wrong threshold of the segmentation could generate both FPs and
FNs. Computing only FPs and FNs enables a segmentation assessment [6][7],
and a reliable edge detection should minimize the following indicators [3]:

Over-detection error : Over(Gt, Dc) = FP
|I|+|Gt| ,

Under-detection error : Under(Gt, Dc) = FN
|Gt| ,

Localization-error : Loc(Gt, Dc) = FP+FN
|I| .

Additionally, the Performance measure P ∗m presented in Table 1 considers
directly at the same time the three entities TP , FP and FN to assess an a
binary image. The obtained score reflects the percentage of statistical errors.

Another way to display evaluations are Receiver Operating Characteristic
(ROC) [8] curves or Precision-Recall (PR) [9], involving True Positive Rates
(TPR = TP

TP+FN ) and False Positive Rates (FPR = FP
FP+TN ). Derived from

TPR and FPR, the three measures Φ, χ2 and Fα (see Table 1) are frequently
used in edge detection assessment.

(a) Gt, |Gt| = 68. (b) D1, FP = 54, (c) D2, FP = 54,

D1 ∩ Gt = ∅. D2 ∩ Gt = ∅.

Over(Gt, D{1,2}) = 0.1224

Under(Gt, D{1,2}) = 1

Loc(Gt, D{1,2}) = 0.2449

P ∗m(Gt, D{1,2}) = 1

Φ∗(Gt, D{1,2}) = 1

χ2∗(Gt, D{1,2}) = 0.983

F ∗α=0.5(Gt, D{1,2}) = 1

FoM(Gt, D1) = 0.22

FoM(Gt, D2) = 0.60

H(Gt, D1) = 1.41

H(Gt, D2) = 7.67

∆k
w(Gt, D1) = 0.96

∆k
w(Gt, D2) = 2.31

Fig. 1. Evaluations issued of a confusion matrix can be the same for different Dc. For
the two candidate edge images, number of FPs and number of FNs are the same.
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Table 1. List of error measures, k = 1 or k = 2 are the most common values.

Error measure name Formulation Parameters

Performance
measure [11]

P ∗m (Gt, Dc) = 1− TP

TP + FP + FN
None

Complemented Φ mea-
sure [12]

Φ∗ (Gt, Dc) = 1− TPR · TN
TN+FP

None

Complemented χ2

measure [13]
χ2∗ (Gt, Dc) = 1− TPR−TP−FP

1−TP−FP · TP+FP+FPR
TP+FP

None

Complemented Fα
measure [9]

F ∗α (Gt, Dc) = 1− PREC · TPR
α · TPR+(1−α)·PREC

, with PREC = TP
TP+FP

α ∈]0; 1]

Pratt’s FoM [14] FoM (Gt, Dc) = 1− 1

max (|Gt| , |Dc|)
·
∑
p∈Dc

1

1 + κ · d2Gt
(p)

κ ∈ ]0; 1]

FoM revisited [15] F (Gt, Dc) = 1− 1
|Gt|+β·FP ·

∑
p∈Gt

1

1 + κ · d2Dc
(p)

κ ∈ ]0; 1] and
β ∈ R+

Combination of FoM
and statistics [16]

d4 (Gt, Dc) = 1
2
·

√
(TP −max (|Gt| , |Dc|))2 + FN2 + FP 2

(max (|Gt| , |Dc|))2
+ FoM (Gt, Dc)

κ ∈ ]0; 1] and
β ∈ R+

Yasnoff measure [17] Υ (Gt, Dc) = 100
|I| ·

√ ∑
p∈Dc

d2Gt
(p) None

Hausdorff distance [18] H (Gt, Dc) = max

(
max
p∈Dc

(dGt(p)),max
p∈Gt

(dDc(p))

)
None

Maximum distance [2] f2d6 (Gt, Dc) = max

(
1

|Dc|
·
∑
p∈Dc

dGt (p),
1

|Gt|
·
∑
p∈Gt

dDc (p)

)
None

Distance to Gt [19][4] Dk (Gt, Dc) = 1
|Dc| · k

√ ∑
p∈Dc

dkGt
(p), k = 1 for [19] k ∈ R+

Oversegmentation
[20][21]

Θ (Gt, Dc) = 1
FP
·
∑
p∈Dc

(
dGt

(p)

δTH

)k
, k = δTH = 1 for [20]

for [21]: k ∈ R+

and δTH ∈ R∗+

Undersegmentation
[20][21]

Ω (Gt, Dc) = 1
FN
·
∑
p∈Gt

(
dDc (p)

δTH

)k
, k = δTH = 1 for [20]

for [21]: k ∈ R+

and δTH ∈ R∗+

Symmetric distance
[2][4]

Sk (Gt, Dc) =
k

√√√√ ∑
p∈Dc

dkGt
(p)) +

∑
p∈Gt

dkDc
(p)

|Dc ∪Gt|
, k = 1 for [2] k ∈ R+

Baddeley’s Delta Met-
ric [22]

∆k(Gt, Dc) = k

√
1
|I| ·

∑
p∈I
|w(dGt(p))− w(dDc(p))|k

k ∈ R+ and a
convex function
w : R 7→ R

Edge map quality
measure [23]

Dp (Gt, Dc) = 1/2
|I|−|Gt| ·

∑
p∈Dc

(
1− 1

1 + α·d2Gt
(p)

)
+ 1/2
|Gt| ·

∑
p∈Gt

(
1− 1

1 + α·d2Gt∩Dc
(p)

)
α ∈ ]0; 1]

Magnier et al. measure
[24]

Γ (Gt, Dc) = FP+FN
|Gt|2

·
√ ∑
p∈Dc

d2Gt
(p) None

P ∗m, Φ, χ2 and Fα measures are normalized and decrease with the quality of
the detection; a score equal to 0 qualifies a perfect segmentation. These measures
evaluate the comparison of two edge images, pixel per pixel, tending to penalize
severely a misplaced contour (even weak). So they do not indicate significant
variations of the desired contour shapes through an evaluation (as illustrated in
Fig. 1). As this penalization tends to be too severe, some evaluations issued from
the confusion matrix recommend a spatial tolerance, particularly for assimilation
of TPs [8] [9]. This inclusion could be carried by a distance threshold or a
dilation ofDc and/orGt. A such strategy of assimilation leads to counting several
near contours as parallel stripes to the desired boundary. Tolerating a distance
from the true contour and integrating several TPs for one detected contour are
opposite to the principle of unicity in edge detection expressed by the 3rd Canny
criteria: an optimal edge detector must produce a single response for one contour
[10]. Finally, to perform an edge evaluation, the assessment should penalize a
misplaced edge point proportionally to the distance to its true location.
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2.2 Assessment involving distances of misplaced pixels

Existing quality measures involving distances: A reference-based edge
map quality measure requires that a displaced edge expects to be penalized in
function not only of the FPs and/or FNs but also in function of the distance
to the position they should be located at. Table 1 reviews the most relevant ex-
isting measures. The common feature between these evaluators corresponds to
the error distance dGt(p) or dDc(p). Indeed, for a pixel p∈Dc, dGt (p) represents
the minimal distance between p and Gt, whereas if p∈Gt, dDc

(p) corresponds to
the minimal distance between p and Dc. This distance refers to the Euclidean
distance, even though some authors involve others, see [4]. Thus, a measure
computing an error distance only in function of dGt

estimates the divergence
of FPs, which corresponds to an over-segmentation (cases Υ , Dk, Θ, FoM and
Γ ). On the contrary, the sole use of a distance dDc

enables an estimation of the
FNs divergence, representing an under-segmentation, as Ω distance measure. A
measure widely computed in matching techniques is represented by the Haus-
dorff distance H which estimates the mismatch of two sets of points [18]. This
max-min distance could be strongly deviated by only one pixel which can be po-
sitioned sufficiently far from the pattern (illustrated in Fig. 2); so the measured
distance becomes that between the pattern and the (erroneous) point, disturbing
in that case the score of H. To improve H such that it becomes less sensitive to
outliers, an idea is to compute H with a proportion of the maximum distances
(for example 5% of the values [18]); let us note Hn% this measurement for n%
of values (n ∈ R+

∗ ). One of the most popular descriptor corresponds to Figure of
Merit (FoM). This distance measure ranges from 0 to 1, where 0 corresponds to
a perfect segmentation [14], but computes only distances of the FPs [22]. Thus,
some improvements have been developed as F and d4. Furthermore, as concluded
in [3], a complete and optimum edge detection evaluation measure should com-
bine assessments of both over- and under-segmentation, as in Sk, ∆k

w and Dp.
As an example, inspired by f2d6 [2], another way is to consider the combination
of both FoM (Gt, Dc) and FoM (Dc, Gt), as the two following formulas:

Symmetric FoM: SFoM (Gt, Dc) =
1

2
· FoM (Gt, Dc) +

1

2
· FoM (Dc, Gt) (1)

Maximum FoM: MFoM (Gt, Dc) = max (FoM (Gt, Dc) , FoM (Dc, Gt)) . (2)

Finally, SFoM and MFoM take into account both distances of FNs (i.e. dDc
)

and FPs (i.e. dGt), so they can compute a global evaluation of a contour image.
Another way to compute a global measure is presented in [23] with the nor-

malized edge map quality measure Dp. In fact, this distance measure seems

(a) Gt (b) Ic (b) It

Measure It Ic
FoM 0.63 0.17

F 0.72 0.18

d4 0.62 0.15

SFoM 0.64 0.17

MFoM 0.82 0.58

DP 0.33 0.007

Υ 1.14 3.30

H 109 130

H5% 10.39 11.01

Measure It Ic
Dk
k=2 0.39 0.47

θδTH=1 2.74 9.07

θδTH=5 0.37 3.35

ΩδTH=1 7.91 0

∆k 6.05 1.20

f2d6 5.79 1.60

Skk=2 5.97 2.84

Γ 0.19 0.12

Ψ 0.94 0.12

Fig. 2. The scores of the over-segmentation evaluations are higher for It whereas It is
more closer visually to Gt than Ic.
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similar to SFoM with different coefficients. However, both the left and the right
terms are composed of a 1

2 coefficient, so in the presence of only a pure under-
or over-segmentation, the score of Dp does not attain over 1

2 .

A new edge detection assessment measure: In [24] is developed a nor-
malized measure of the edge detection assessment, denoted Γ . This function
represents an over-segmentation measure which depends also of FN and FP .
As this measure is not sufficiently efficient concerning FNs because it does not
consider dDc

for false negative points (see Fig. 7). Thus, inspired by Sk, the new
measure Ψ holds different coefficients changing the behavior of the measure:

Ψ(Gt, Dc) =
FP + FN

|Gt|2
·
√∑
p∈Gt

d2Dc
(p) +

∑
p∈Dc

d2Gt
(p) (3)

Compared to Γ , Ψ improves the measurement by combining both dGt and dDc

(illustrated in Fig. 7). Authors of Γ have studied the influence of the coefficient
in different concrete cases [24]. They concluded that such a formulation must
take into consideration all observable cases and theoretically observable. In fact,
a performing measure has to take into account all the following input parameters
|Gt|, FN and FP whereas the image dimensions should not be considered. Thus,
the parameter FP+FN

|Gt|2 seems a good compromise and has been introduced to

the new formula of assessment Ψ .

2.3 Normalization of the edge detection evaluation:

In order to compare each boundary detection assessments, all measures must be
normalized, but also indicate the same information: an error measure close to 1
means a poor segmentation whereas a value close to 0 indicates a good segmen-
tation. Thereby, the values of FoM , F , d4 and Dp belongs to [0, 1]. However,
concerning other distance measures of table 1, a normalization is required. In-
troduced in [24], a formula called Key Performance Indicator (KPI) gives value
close to 1 for a poor segmentation; alternatively, a KPI value close to 0 translates
a good segmentation:

KPIu : [0;∞[ 7→ [0; 1[

u → 1− 1

1 + uh
.

(4)

where the parameter u represents a distance error and h a constant (h ∈ R+
∗ ).

An undeniable parameter of KPI formula is the power of the denominator
term called h. Inasmuch as KPI depends on its value, it evolves more or less
quickly around 0.5 and embodies a range of observable cases. The advice to
choose values between 1 and 2 can be easily checked. Otherwise, the more KPI
evolution will be abrupt, the less the transition between 0.5 and 1 will be marked.
As a compromise, fixing the power at the golden ratio φ ' 1.6180339887, the
measurement becomes not too strong in the presence a small measure score, but
increases to 1 for a high score of the distance measure, see [24].

3 EXPERIMENTAL RESULTS

Experiments realized in this part aim to be the most accomplished, thus the
more close and realistic of the reality. In respect of these directives, in a first
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(a) Gt: Line (b) Legend

(c) 30% of FPs (d) 100% of FPs
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Fig. 3. Measures scores in function of the over-segmentation in the contour area.
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Fig. 4. Evolution of the dissimilarity measures in function of the FPs addition.
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Fig. 5. Measure scores in function of the FNs addition and the edge translation.
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Fig. 6. Dissimilarity measure scores in function of addition of both the FNs and FPs.

time, considering a synthetic edge model (i.e. ground truth) the edge detec-
tion evaluation measures are subject to the following studies: addition of false
positive points close to the true contour, addition of false negative points (under-
segmentation), addition of false positive points (over-segmentation), addition of
both false negatives and false positive points, translation of the boundary. Thus,
24 measures and the new proposed method are tested and compared together.
The KPI in eq. 4 is computed for the non-normalized algorithms in Table 1.

The first experiment is to create an over-segmentation at a maximal distance
of 5 pixels, as illustrated in Fig. 3 (100% of over-segmentation represents a
dilatation of the vertical line with a structural element of size 1×6, corresponding
of a total saturation of the contour, see Fig. 3(d)). Curves presented here show
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(a) Gt

(b) C1

(c) GtvsC1

(d) C2

(e) GtvsC2
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Fig. 7. Dissimilarity measure scores in function of the size of the original square.

that Fα, d4, F , MFoM , H, H5%, ∆k, Dk, f2d6, and Sk are very sensitive
to FPs, whereas SSIM , Dp, Φ and Dk (which is not homogeneous) do not
penalize enough Dc. Ω remains constant at 0 because it corresponds to an under-
segmentation measure. Moreover, Υ and FoM are not too abrupt, even though
they stagnate, like Dk, SFoM , f2d6, and Sk. Finally, Γ and Ψ are not too abrupt
and penalize strongly Dc in the presence of many FPs.

The second test is to add random undesirable pixels to Gt until 100 FPs, as
represented in Fig. 4 top left. Globally, the curves in Fig. 4 illustrates that the
measures using KPI behave like the previous experiment; only Γ and Ψ are not
too sensitive to FPs. The normalized evaluation measures increase correctly, but
seem stagnant, excepted Φ and Dp which stay close to 0.

Concerning the addition of FNs, Fig. 5 (left) illustrates that H, H5% and
ΩδTH=1 are very sensitive to the presence of FNs. Also, Dp attains only the
score of 1

2 . The over-segmentation methods Υ , Dk, Ω and Γ remain constant
at 0. On the other hand, the score of the KPI of Ψ attains 0.5 for 50% of
FNs. Afterward, contrary to the addition of FPs or FNs, error measures without
distance measures obtains a score of 1 after one pixel of translation and the score
of Dp stays constant at 1

2 (Fig. 5 (right)). Only FoM , SFoM , MFoM , the KPI
of ΩδTH=5, the KPI of Γ and the KPI of Ψ behave correctly.

Concerning the line, the last experiment corresponds to an addition of both
FPs and FNs. Thus, Fig. 6 shows that the normalized measures, excepted Dp and
SSIM behave correctly. Concerning other measures, the KPI scores of ΩδTH=5,
Γ and Ψ are not too abrupt for few number or errors and penalize strongly Dc

in the presence of many FPs and FNs (but ΩδTH=5 is not homogeneous). For
example, Fig. 6 (bottom right) illustrates the line where both 50% of the pixels
are missing and 50 FPs are added, corresponding to 33% of TPs. In this precise
case, the KPI score of new measure Ψ is close to 0.7, thus, reflecting the reality.



VIII

Another experiment in Fig. 7, two different shapes are compared to a square
(Gt), illustrating the importance to consider both dDc

and dGt
. Furthermore,

all the shapes are growing at the same time, keeping the same percentage of
FPs and FNs with Gt. The more Gt grows, the more C1 is visually closer to
Gt whereas FNs deviate strongly in the case of C2. Despite these tow different
evolutions, statistical measures, FoM , F , d4, Dp, Υ and Γ obtain close the same
measurements for C1 and C2. On the contrary, the KPI of Ψ grows around 0.5
for C2, whereas it converges towards 0 for C1, since C1 becomes visually closer
to Gt with the enlargement (note that MFoM behaves identically).

To conclude experimental evaluations, Table 2 reports different assessments
for five edge detection methods on a real image: Sobel, Canny [10], Steerable
Filters of order 1 (SF1) [25], Steerable Filters of order 5 (SF5) [26] and Half
Gaussian Kernels (HK) [6]. Even though the problem of hand-made ground

Measure Score Measure Score Measure Score

Φ∗ 0.519 SFoM 0.702 θδTH=5 0.993

χ2∗ 0.946 MFoM 0.814 ΩδTH=1 0.587

P ∗m 0.883 DP 0.117 ∆k 0.995

F ∗α 0.790 Υ 0.618 f2d6 0.987

SSIM 0.355 H 0.999 Skk=1 0.982

FoM 0.629 H5% 0.999 Skk=2 0.992

F 0.800 Dk
k=2 0.049 Γ 0.812

d4 0.690 θδTH=1 0.989 Ψ 0.814

Measure Score Measure Score Measure Score

Φ∗ 0.563 SFoM 0.601 θδTH=5 0.995

χ2∗ 0.928 MFoM 0.770 ΩδTH=1 0.799

P ∗m 0.847 DP 0.139 ∆k 0.995

F ∗α 0.775 Υ 0.527 f2d6 0.986

SSIM 0.282 H 0.999 Skk=1 0.978

FoM 0.540 H5% 0.999 Skk=2 0.992

F 0.723 Dk
k=2 0.0714 Γ 0.597

d4 0.645 θδTH=1 0.989 Ψ 0.602

(a) Gt / Original [1] (b) Sobel (c) Canny [10]

Measure Score Measure Score Measure Score

Φ∗ 0.571 SFoM 0.574 θδTH=5 0.995

χ2∗ 0.920 MFoM 0.762 ΩδTH=1 0.814

P ∗m 0.835 DP 0.143 ∆k 0.995

F ∗α 0.717 Υ 0.509 f2d6 0.986

SSIM 0.274 H 0.999 Skk=1 0.977

FoM 0.523 H5% 0.999 Skk=2 0.992

F 0.701 Dk
k=2 0.081 Γ 0.532

d4 0.632 θδTH=1 0.990 Ψ 0.539

Measure Score Measure Score Measure Score

Φ∗ 0.625 SFoM 0.468 θδTH=5 0.996

χ2∗ 0.907 MFoM 0.715 ΩδTH=1 0.979

P ∗m 0.812 DP 0.187 ∆k 0.995

F ∗α 0.683 Υ 0.421 f2d6 0.983

SSIM 0.219 H 0.999 Skk=1 0.974

FoM 0.431 H5% 0.999 Skk=2 0.992

F 0.654 Dk
k=2 0.108 Γ 0.326

d4 0.599 θδTH=1 0.989 Ψ 0.363

Measure Score Measure Score Measure Score

Φ∗ 0.669 SFoM 0.378 θδTH=5 0.995

χ2∗ 0.903 MFoM 0.686 ΩδTH=1 0.986

P ∗m 0.805 DP 0.211 ∆k 0.996

F ∗α 0.673 Υ 0.338 f2d6 0.978

SSIM 0.198 H 0.999 Skk=1 0.970

FoM 0.371 H5% 0.999 Skk=2 0.991

F 0.622 Dk
k=2 0.120 Γ 0.203

d4 0.604 θδTH=1 0.988 Ψ 0.260

(d) Steerable filters [25] (e) Steerable filters [26] (f) Half Gaussian filters [6]

Table 2. Comparison measures of different edge detections. A score close to 0 indicates
a good edge map whereas a score 1 translates a poor segmentation.



IX

truth on real images is discussed by some researchers [27], only the comparison
of Dc with a Gt is studied here. Compared to Gt (Table 2 (a)), the well known
Sobel edge detector generates more FPs than the other three methods while
SF5 and HK are less sensitive to noise or texture. Furthermore, HK captures
easier straight contours and corners closest to their true positions [6]. So, the
measurements in tables of Table 2 must be close to 1 for Sobel and a little less
for Canny, but decrease with reasonable error for HK (scores involving KPI
for non-normalized algorithms, eq. 4). Thus, Γ and Ψ respect this evolution and
indicate a good measurement value. FoM , F , d4, SFoM , MFoM and Υ evolve
similarly, but the score for the HK remains too elevated. Also, Φ∗, χ2∗, P ∗m, F ∗α
and Dp do not indicate a significant difference between all the segmentations.
Further, other non normalized methods are not adapted to give a score between 0
and 1 using a KPI. Eventually, given the segmented images, Γ and Ψ indicate a
good measurement value. Other results involving other edge images are available
on the website: http://hkaljaf.wixsite.com/hasanabdulrahman/edge-detection-and-evaluation.

4 CONCLUSION AND FUTURE WORKS

In this paper, several referenced-based boundary detection evaluations are de-
tailed, pointing their advantages and disadvantages through concrete examples
of edge images. A new normalized supervised edge map quality measure is pro-
posed, comparing a ground truth contour image, the candidate contour image
and their associated spacial nearness. The strategy to normalize the evaluation
enables to consider a score close to 0 as a good edge map, whereas a score 1
translates a poor segmentation. Eventually, compared to other edge evaluation
assessments, the score of the new evaluation indicates confidently the quality of
a segmentation. Next on our work program agenda is to compare different edge
detectors with their different parameters and binary image matching.
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