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ABSTRACT 

The first commercial fleets of Robo-Taxis will be on the road soon. Today important efforts are made 

to anticipate future Robo-Taxi services. Fleet size is one of the key parameters considered in the 

planning phase of service design and configuration. Based on multi-agent approaches, the fleet size 

can be explored using dynamic demand response simulations. Time and cost are the most common 

variables considered in such simulation approaches. However, personal taste can affect the demand 

and consequently the required fleet size. In this paper, we explore the impact of user trust and 

willingness to use on Robo-Taxi fleet size. This investigation is carried out by simulating the 

transportation system of the Rouen Normandie metropolitan area in France using MATSim, a multi-

agent activity-based simulator. A local survey is made in order to explore the variation of user trust 

and their willingness to use future Robo-Taxis according to the sociodemographic attributes. After 

applying this survey data in the simulation, the obtained results reveal the significant importance of 

traveler trust and willingness to use variations on Robo-Taxi use and the required fleet size. 

 

 

Keywords: Multi-agent simulation, Robo-Taxis, Willingness to use, User trust, Fleet size  
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INTRODUCTION 

Technology advancements on autonomous driving as well as increasing popularity of recently 

appeared shared mobility and on-demand services show that personal mobility will profoundly change 

in the next decades. Travelers increasingly use such services because they become more accessible, 

easy to use and affordable (Chan and Shaheen, 2012; Shaheen et al., 2016, 1998). With the reference 

to past experiences, these advantages for users result in various issues for the operators (Shaheen et al., 

2015). One example is fleet rebalancing. The emergence of autonomous vehicles (AVs) could result in 

resolving such issues. The idea may be to share a fleet of autonomous vehicles, which is maintained 

and managed by a third-party organization to respond to the travel demand of the entire urban 

population or a community. We call this shared-mobility on-demand service “Robo-Taxi”. Other 

concepts of shared autonomous vehicles (SAVs), as for instance the sharing of a fleet among a group 

of members or company employees requiring a pre-subscription can be developed. Such 

considerations are of high importance for car manufacturers given their recent investments in AV 

technology (Stocker and Shaheen, 2017). Automakers are aware of such transformation and are 

interested in playing the role of an operator with new business models capturing profit per kilometer or 

per trip (Firnkorn and Müller, 2012; Stocker and Shaheen, 2018). 

In order to design future Robo-Taxi services, the basic operational characteristics are to be 

estimated in the upstream planning. Fleet size, fleet specifications, relocation strategies and service 

area are the main ones. Thanks to recently developed demand-responsive simulation and modeling, 

those characteristics and their impacts on service demand can be explored at a fine-grained level. The 

major part of recent studies on planning for future SAVs are focusing on this subject. For this purpose, 

agent-based simulation is widely applied. Compared to other approaches, due to the disaggregate 

temporal and spatial data in the simulation, complex supply-demand relationships can be assessed 

(Vosooghi et al., 2017). Nevertheless, the application of such approaches is usually limited to the 

operational aspects of such services. One of the research gaps is that the traveler tendency to use such 

service is not integrated into the simulation as an influencing factor of the use of AVs. This research 

aims to fill this gap by providing a novel method in order to integrate both user trust and willingness to 

use into recently applied multi-agent simulation with the aim of exploring their impacts on Robo-Taxi 

fleet sizes. Furthermore, in this study, the waiting time as an essential factor of mode choice decision is 

incorporated into the simulation. To the best of our knowledge, this is the first time that individual 

taste variation and service waiting time is considered in Robo-Taxi fleet sizing simulations. It should 

also be mentioned that in this research, the demand of a new service is assumed not to be eliminated 

due to the service acceptance but substituted by other modes (if available with less disutility). 

However, the importance of service acceptance could be as well explored with the proposed approach.  

The contribution of the present study is mainly the proposition of a new scoring process in a 

widely used multi-agent transport simulation platform (MATSim). A further contribution is synthetic 

population generation. Simulation experiments are based upon the real data for the transportation 

system of the Rouen Normandie metropolitan area in France. A local survey is also made in order to 

explore the variation of user trust and their willingness to use future Robo-Taxis. 

The remainder of this paper is structured as follows: we first present a review of the relevant 

literature on this topic. This is followed then by the methodology. Next section describes the data 

preparation and scenario setup. After that, detailed results and comparisons are presented. Finally, 

insights gained through this research are discussed and suggestions for further work are given. 
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RELATED WORK 

A review of the existing literature reveals the large attention given today to behavioral experimental 

studies considering the use of various types of AVs. Some limited investigations also address the case 

of shared AVs (Bansal et al., 2016; Haboucha et al., 2017; Krueger et al., 2016; Steck et al., 2018). In 

almost all these studies, the traveler perception and tendency towards using AVs are explored in an 

attempt to predict the market penetration rate. Regardless of this fact, the results have not been applied 

in comprehensive travel demand-responsive models. One of the main reasons is the fact that 

developing reliable models for on-demand and shared transport systems is still in progress. The most 

appropriate approach to simulate such systems is considered to be activity-based multi-agent 

simulation (Vosooghi et al., 2017). This approach is widely used today. However, several components 

specifically related to the interactive relation of demand and transport service still need more 

investigation. Recently, Hörl (Hörl, 2017) has addressed this issue for autonomous taxis and developed 

an extension of a previously-developed framework in order to make multi-agent simulation demand 

responsive. Wang et al. (Wang et al., 2018) also dealt with this issue and proposed a different 

methodology with the aim of exploring fleet size and strategy optimization of autonomous on-demand 

service. Fagnant et al. (Fagnant and Kockelman, 2018) applied a more sophisticated approach for fleet 

sizing of a system of SAV in Austin. All aforementioned studies are based on MATSim (MATSim, 

2012), a multi-agent transport simulator, and clearly none of them have integrated the traveler-related 

aspect of decision making. In a recent paper, we addressed the impact of user preferences on SAV 

modal share in Paris, applying a similar simulation approach (Kamel et al., 2019). In our work, traveler 

preferences have been integrated into the scoring function used within a co-evolutionary algorithm in 

order to optimize agent plans. For the case study scenario, all the taxis have been replaced by SAVs 

and the simulation results have been compared. The latter indicates that the overall modal split of 

SAVs as well as the use of this service before and after the introduction of user preferences are 

significantly different. In the mentioned study, SAV utility has been defined based on conventional 

taxi utility without considering the impact of waiting time. Martinez and Viegas (Martinez and Viegas, 

2017) have applied another agent-based model in order to deal with the discussed issue. In this study, 

the socio-demographic attributes (i.e. age and income) are represented in the model by applying a 

discrete choice approach. However, as this model is based on real trip-taking activity (i.e. all modes 

currently available), those attributes are neglected for SAV mode. 

The impact of individual-related attributes on mode choice is well reflected in the classic travel 

demand models at an aggregated level across the discrete choice model. These attributes can be added 

to the travelers’ decision-making mechanism separately through the disaggregated level of data in 

agent-based simulation. The main drawback here is that the modal choice as an element of the genetic 

algorithm embedded in the agent-based approach is not well investigated. Hörl et al. (Hörl et al., 2018) 

tried to integrate discrete choice modeling into co-evolutionary algorithm in MATSim. However, 

consistency of the proposed integration method and its compatibility with the other part of the multi-

agent framework remain uncertain.  
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METHODOLOGY 

In this research, the multi-agent transport simulation MATSim (MATSim, 2012) and its Dynamic 

Vehicle Routing Problem (DVRP) extension (Maciejewski, 2016) are used. In the following, a short 

introduction to this simulation framework is given. 

MATSim uses the artificial population with an initial daily plan for each agent as input. Those 

plans incorporate activities that are performed throughout a day with their respective arrival times, 

locations, and durations as well as the initial transport modes, which agents use to move between two 

activity locations. The daily plan could exceed 24 hours, but the simulation is done for a single day 

only. In the first simulation, each agent realizes its plan for the given day. A dynamic queue-based 

model measuring the traffic flows and estimating the travel times simulates the movements of agents 

from one activity to the next. It is possible that due to congestion or crowded public transport some 

agents arrive too late to the next activity location. Likewise, some others might arrive too early. Any 

deviation from the initial activity plan (especially start time) for each agent is memorized and 

measured by the score in the end of the day. In addition, an extra score is calculated for the mode that 

has been used. For the next iteration agents try to slightly modify their plan (e.g. the mode that they 

use for each trip or activity end-time) to diminish the less negative score. The iteration is repeated until 

the average overall scores of the executed plans in the population start to fluctuate only slightly around 

an equilibrium state. This evolutionary re-planning and learning process is the core component of the 

simulation.  

The measurements (i.e. scoring) in the simulation are based on two general occurrences: 

activities and trips (or legs). Scores are described by marginal utility of activities and marginal 

disutility of legs. Utility is measured through time- and equivalent cost-varying parameters. However, 

score functions can be set for each agent according to its corresponding socio-demographic attributes 

or personal preferences. In order to integrate user trust and willingness to use in this simulation, and to 

address the previously discussed research gap we propose to extend the modeling approach that will be 

detailed further in the present article.  

The conducted work includes three major parts: 1) categorized scoring function, 2) population 

synthesis, and 3) scenario set up and model calibration. 

Categorized scoring function 

Some major changes are required to integrate taste variations among individuals. In MATSim 

the scoring function is based on the Charypar-Nagel scoring method (Charypar and Nagel, 2005). The 

function includes both activity and leg scores. Since the purpose of this study is to add the new mode 

and anticipate short-term changes, only leg (trip) scores have been modified. The initial leg scoring 

function is described as below: 

, , ...trav mode trav mode trav mode dist travS C t d        (1) 

where for each mode in a leg the score is calculated from constant utility of mode 𝐶𝑚𝑜𝑑𝑒 , marginal 

disutility of travel duration 𝛽𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒, travel time 𝑡𝑡𝑟𝑎𝑣, marginal disutility of travel distance 

 𝛽𝑚𝑜𝑑𝑒,𝑑𝑖𝑠𝑡, and the distance traveled between two activity locations 𝑑𝑡𝑟𝑎𝑣. Furthermore, mode-specific 

additional terms (e.g. waiting time for public transport) may be added separately. For this research, a 

more specific scoring method has been developed based on the initial function and some additional 

variables have been added. Moreover, the function has been categorized by travelers’ socio-

professional categories in order to integrate the different behavior of travelers according to their 
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personal attributes. Besides, this categorization could help us to differentiate the similar daily activity 

pattern of groups of individuals according to their main daily activity tour. The modified scoring 

function is described as: 

'

, , , , , , , , , ,( )trav cat ut m cat trav m cat ivt ivt wt wt dist m cat trav co m cat pl m catS C t t d                 (2) 

where  

 𝜅𝑢𝑡 is the user trust factor which equals to “1” for all modes except Robo-Taxi 

 𝐶𝑚,𝑐𝑎𝑡 is the constant utility of mode 𝑚 by traveler category 𝑐𝑎𝑡 

 𝛽𝑡𝑟𝑎𝑣,𝑚,𝑐𝑎𝑡 is the marginal disutility of travel duration of mode 𝑚 by traveler category 𝑐𝑎𝑡 

 𝜅𝑖𝑣𝑡 is the willingness to use factor of in-vehicle travel time utility which equals to “1” for all 

modes except Robo-Taxi 

 𝑡𝑖𝑣𝑡 is the in-vehicle travel time 

 𝜅𝑤𝑡 is the willingness to use factor of waiting time utility which equals to “1” for all modes 

except Robo-Taxi 

 𝑡𝑤𝑡 is the waiting time 

 𝛽𝑑𝑖𝑠𝑡,𝑚,𝑐𝑎𝑡 is the marginal disutility of travel distance for mode 𝑚 by traveler category 𝑐𝑎𝑡 

 𝑑𝑡𝑟𝑎𝑣 is the travel distance 

 𝜈𝑐𝑜,𝑚,𝑐𝑎𝑡 is the dummy factor of household car ownership (one, two and more) for mode 𝑚 by 

traveler category 𝑐𝑎𝑡 

 𝛾𝑝𝑙,𝑚,𝑐𝑎𝑡 is the dummy factor of parking availability level at destination (medium and high) for 

mode 𝑚 by traveler category 𝑐𝑎𝑡 

All parameters except additional factors are derived from the utility functions estimated for 

each socio-professional category. As a result, the respective Value of Travel Time (VTT) is included 

implicitly in the marginal disutility of travel duration. For Robo-Taxis, given that this mode is not yet 

widely available and consequently the marginal disutility cannot be estimated from the revealed 

preferences and discrete choice model, another approach has been applied. According to a recent 

survey made in France that addressed 457 persons with different individual attributes and current 

modes, car users are much more likely to use Robo-Taxis when the service is proposed with a fixed 

monthly cost and unlimited rides (Al-Maghraoui, 2019). Based on this survey, we assume that the 

marginal disutility of in-vehicle travel time for Robo-Taxi is similar to individually owned cars. 

Moreover, the marginal disutility of waiting time is assumed ten times bigger. These naïve 

assumptions do not fully reflect the real behavior of travelers regarding the use of a future Robo-Taxi 

service, but given the purpose of this study, to explore the impact of Robo-Taxi user trust and 

willingness to use variations, those assumptions are acceptable.  

The above-mentioned survey shows that user trust varies according to age and gender. In general, 

men are more likely to use a Robo-Taxi than women. Similarly, younger persons are more likely to use 

Robo-Taxis in comparison to older ones (Al-Maghraoui, 2019). In our simulation, in order to integrate 

user trust, we assume that the constant utility of mode Robo-Taxi varies according to those attributes. 

This is given by using variable user trust factor: 

( )
2

2

Age Sex

ut

 



      (3) 
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where different variations with the mean value equal to one are supposed for age factor 𝜅𝐴𝑔𝑒 and 

gender factor 𝜅𝑆𝑒𝑥. These variations are derived from the results of the aforementioned survey and the 

distribution graph is based on it (see FIGURE 1). Concerning gender, two fixed values are assumed for 

the distribution. Also, a different variation is supposed for the age preference factor 𝜅𝐴𝑔𝑒: for both 

persons younger than 45 years and older than 60 constant values are considered respectively, and for 

middle-age travelers this factor changes linearly. 

 
FIGURE 1  Distribution graph of taste variation factors. 

According to the survey results, the Robo-Taxi willingness to use is strongly correlated to the 

household income (Al-Maghraoui, 2019). Therefore, we assumed that the perception of in-vehicle and 

waiting times varies with income: 

1
ivt

Income

wt Income




 





    (4) 

Where the in-vehicle factor 𝜅𝑖𝑣𝑡 is inversely correlated to income. As wealthy persons are more likely 

to use this service compared to less fortunate, the income factor 𝜅𝐼𝑛𝑐𝑜𝑚𝑒  is assumed to grow 

logarithmically. However, because of the higher value of time for wealthy persons the waiting factor 

𝜅𝑤𝑡 is assumed to vary directly when income growths.  

All of the above-mentioned attributes as well as socio-professional categories have been 

identified and defined for each traveler in the population synthesis. 
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Population synthesis 

The synthetic population is an essential input for multi-agent transport simulation. The 

population synthesis is based on socio-demographic data of individuals and households. As this 

microdata is not available for the whole population, a synthetic population is generated. This is done 

by drawing households and individuals from microdata samples on a zonal level. In the case of multi-

agent transport simulation, more detailed information related to the individuals’ activity and travel 

patterns must be synthesized. In this research, we call the second process activity chain allocation. 

 As stated before, we aim to set the scoring function according to the socio-professional 

attributes of each individual. It is therefore mandatory to have those data in the population. Popular 

procedures for population synthesis include both the generation of a joint multiway distribution of all 

attributes of interest using iterative proportional fitting (IPF) and combinatorial optimization (CO). 

Recognizing their limitations, including the inability to deal with multilevel controls (e.g. controls on 

socio-professional attributes), as well as the need for determining a joint multiway distribution, we 

have applied a novel method. The process is simple, while a set of households is drawn randomly from 

the sample, a multilevel controller measures the fitness of marginal synthetic and real data by zone and 

by attributes of interest. We call this procedure fitness‐based synthesize with multilevel controls (FBS-

MC). An open source generator has been developed which is applicable for synthetic population 

generation for all large cities in France (Kamel et al., 2018). Once the synthetic population is 

generated, the next step is to allocate activity chains to each individual. This has been done using the 

frequency of each activity chain in the transport survey according to socio-professional attributes. By 

analyzing the transport survey of the case study area, we found that the activity chains are significantly 

correlated to those attributes, especially in the case of employed persons, students and people under 14 

years (see FIGURE 2).  

 

 
FIGURE 2  Top ten activity chains of Rouen Normandie metropolitan population and the 

frequency of socio-professional categories of individuals.  
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SCENARIO SETUP 

The base scenario that is used in this paper has been created for the Rouen Normandie metropolitan 

area with a population of around 490,000 inhabitants (see FIGURE 3). The synthetic population is 

generated from public use microdata (INSEE 2014) and the regional transport survey (EMD 2017) 

relying on a simulation-based synthesis. The multilevel controller has been set up to generate the 

population with the minimum errors for household numbers, age ranges and socio-professional 

category attributes. 

 

 
FIGURE 3  Simulation baseline scenario area with 240 population zones and around 490,000 

inhabitants. Fine-grained road network of the city of Rouen. 
 

 For each individual of the population an activity chain is then assigned. This is done based on 

the recent transport survey analysis (EMD2017). We have found 929 different activity chains for eight 

trip purposes in the observations including around 5,000 households and 11,000 individuals, for which 

124 are common for 75% of the surveyed people. All the activity chains are assigned according to the 

socio-professional categories by frequency into the synthetic population. 

As the next step, for each activity of individuals, a location is assigned. This process has been 

carried out based on the origin-destination estimation derived from the public use microdata and the 

regional transport survey. For each individual in the public use microdata census and accordingly in 

the synthetic population, the aggregated locations of home, study and work activities are known. In 

order to assign the relevant locations for other activities (i.e. other work, leisure, shopping, 

family/personal errands and escort) a simplified model has been developed. This model estimates the 

probability of destination zones according to the origins and destinations activity types. Once activity 

zones are known, the next categorical model assigns the exact location within each zone according to 

the facility’s specific type. The distribution has been done using the gravity distance model.  

The final step is to allocate the start time and duration to each individuals’ activity. Statistics on 

these data have been measured from the regional transport survey. Subsequently, categorized models 

have been developed. FIGURE 4 shows the plotted kernel distribution estimates of start time for 

different activity types. As shown in the figure, for almost all activity types there are two peak hours 

(in the morning and evening). For study trip purpose, the morning peak hour is much more important 

and deviation from this peak is more limited due to the strict start time of educational institutions. The 
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second peak for work and other work activities originates from secondary activities (such as lunch or 

visit). The models for shopping and family/personal errands are relatively similar and only the evening 

peak hour for shopping lasts longer. The peak times for leisure/visit is shifted to the right and it seems 

that those activities are performed more during lunch or dinner times. The home activity start time here 

refers to returning to home between other activities during the day as well as the end of the daily 

activities. The peak start time for this activity match obviously with other ones. Only a small peak of 

the beginning of the day is present in this model, which is derived from the escort activity of 

homemakers in the survey. 

 
FIGURE 4  Activity start time models estimated from regional transport survey (EMD Rouen 

2017). 

 

In the FIGURE 5, the plotted kernel distribution estimates of activity duration for different 

activity types are also shown. Activity duration models of study and work purposes are almost similar. 

The two peaks here are due to the middle activities, which are more home and leisure/visit ones. 

(a)

(b)

(c)
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However, for other work (i.e. work at an unusual location, meetings, missions, etc.) the behavior of the 

model is completely different. In the case of shopping and family/personal errands, there is an 

important peak for a short duration and then, the frequency has an inverse correlation with the duration 

of the activity. For the home activity during the day, a similar behavior is given, with the difference 

that the correlation has a slighter slope.  

 
FIGURE 5  Activity duration models estimated from regional transport survey (EMD Rouen 

2017). 

 

The described models have been applied to assign time-related characteristics of the allocated 

activities to the synthetic population by socio-professional categories. The multi-agent simulation is 

performed over this fine-grained synthetic population. The next step is to set up the model. For this 

purpose, the utility functions for the transportation system of the case study area have been estimated 

for each category based on the recent transport survey (EMD Rouen 2017). The scoring function has 

been set up accordingly (see TABLE 1).  

(a)

(b)

(c)
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TABLE 1  Estimated parameters of categorized scoring function   

 

 Employed Unemployed 
Retired or 

Pre-retired 

Students, unpaid trainees 

14 years of age or older 

Under 

14 years 
Homemakers 

Car       

𝐶 -3.6020 -2.7890 -2.5520 -3.8919 10.7037 -4.2870 

𝛽𝑡𝑟𝑎𝑣 -0.1062 -0.1290 -0.3794 -0.2962* -0.4286 -0.5477 

𝛽𝑑𝑖𝑠𝑡 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 

𝜈1 2.6257 3.3000 1.7200 1.8292 2.9565 3.0860 

𝜈≥2  3.3727 3.5930 2.4910 2.3111 3.9719 5.0510 

𝛾𝑚 -0.1465 2.3770 -0.4820 -1.7695 -15.2280 -0.1020 

𝛾ℎ -0.7282 -2.2050 0.1040 -1.4279 -15.1742 0.3920 

PT       

𝐶 -3.9290 -2.2850 -3.6290 -2.2643 11.4187 -4.6340 

𝛽𝑡𝑟𝑎𝑣 -0.0327 -0.0910 -0.2088 -0.2385* -0.2191 -0.2202 

𝜈1 -0.7330 0.0350 -1.0540 0.1292 -0.4358 0.2950 

𝜈≥2  -1.0170 0.1710 -1.7670 0.1848 -0.7283 1.0570 

𝛾𝑚 0.9463 -2.5320 1.4040 -1.4570 -14.6497 0.9190 

𝛾ℎ 0.5606 -1.0530 1.1650 -1.0114 -14.3791 1.0200 

Walk       

𝐶 0 0 0 0 0 0 

𝛽𝑡𝑟𝑎𝑣 -0.8137 -0.7236 -0.7308 -3.0852* -0.8051 -0.8708 
*These values represent an estimation based on the logarithm function of corresponding variables. 

 

It is assumed that the VTT for all trip purposes is 10 Euros per hour (DG Trésor). However, 

one could assume varied VTT in terms of trip purposes, which would result in estimations that are 

more accurate. It should be noted that the VTT by socio-professional category is implicitly considered 

in the marginal disutility of travel duration. According to the survey, the modal split of taxi is almost 

zero; as a result, the models do not include this mode. Based on data of the average French driver, the 

relevant non-fixed costs (the marginal disutility of travel distance by car) is assumed 0.3 Euro 

kilometer (DG Trésor). Likewise, the public transport price is set at 1.43 Euro per trip (ticket price 

when sold in book of 10 full fare tickets) and the walking speed at 5 km per hour.  

The simulation is afterwards calibrated according to the modal split of the case study area by 

varying the constant utility of modes. Concerning Robo-Taxis, as there is no revealed data at hand, 

some assumptions for the valuation of parameters are required. As stated before, two marginal 

disutility of travel duration measures are assumed for Robo-Taxi: in-vehicle and waiting times. For in-

vehicle time, the marginal disutility of travel duration is considered the same as for car, and for the 

waiting time, it is assumed ten times bigger. Additionally, in accordance with the survey analysis 

applied in this research, it is assumed that Robo-Taxis has the fixed monthly cost rate (one and a half 

times bigger than the fixed cost of car) with unlimited rides for the users.   
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SIMULATION RESULTS 

In order to serve the 1,508,160 person-trips ten scenarios with different Robo-Taxi fleet sizes have 

been generated. Four initial distribution points are assumed in the simulation. The service has been 

considered available during the whole day. All Robo-Taxi requests are made by customers right before 

departure, there are no in advance bookings. Moreover, ingress and egress times are supposed to be 

one and two minutes respectively. These scenarios have been evaluated with and without considering 

user trust and willingness to use and analyzed in terms of fleet usage, average vehicle on-board 

mileage and average passenger waiting time.  

FIGURE 6 shows modal shares for all scenarios. The results illustrate that Robo-Taxi modal 

share increases proportionally to the fleet size. Consistent with findings in the literature, modal shifts 

toward Robo-taxi come mainly from public transport, car and walk, but the use of public transport 

decreases significantly relative to other ones (Hörl et al., 2016; Martinez and Viegas, 2017; Vinet and 

Zhedanov, 2011). The overall changes on Robo-Taxi modal shares for the same fleet sizes vary from 

1.5% to 4.4%. Two main changes are in the fleet sizes of 3k and 7k vehicles.  

 
FIGURE 6  Modal split comparison of all scenarios. 

 

By comparing passenger wait time, service demand and Robo-Taxi with passenger on-board 

mileage with and without considering user trust and willingness to use, we observe that these 

indicators vary for all fleet sizes with unlike ratio but with similar trends (see FIGURE 7). The 

difference on average passenger waiting time is positive and less than 1.1 minute for all scenarios. 

However, service demand and average vehicle with passenger on-board driving mileages have two 

major changes in the fleet sizes of 3k and 7k vehicles. In fact, for the scenario without considering 

individual taste variation, the maximum demand with all vehicles occupied at least for one hour is met 

with about 6k Robo-Taxis in operation; while considering user trust and willingness to use, more than 

7k Robo-Taxis are needed to reach this goal (see FIGURE 8). Therefore, the significant changes for 

fleet size of 7k comes mainly from the overall demand. However, for the scenario with 3k vehicles 

important differences occur due to some other factors.  
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FIGURE 7  Robo-Taxi service and user related relative changes. 

 

 
FIGURE 8  Hourly Robo-Taxi in-service rate. 
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The changes on Robo-Taxi service demand after introducing user trust and willingness to use 

are due to the user’s variation in terms of sociodemographic attributes and socio-professional profiles 

(see TABLE 2). As mentioned before, women and elder people are less likely to use a Robo-Taxi. As a 

result, retired people and homemakers used less Robo-Taxis in almost all scenarios compared to those 

when user trust and willingness to use are neglected. In the contrary, students and persons under 14 

years used this mode more significantly. However, the average trip distance especially for persons 

under 14 years is shorter than for retired people and homemakers (see TABLE 3). Thus, the fleet is 

available to serve larger number of users and the overall demand increases for all fleet sizes. 

Regarding to employed people, the change on Robo-Taxi usage remains minor for all scenarios. 

However, for unemployed people some fluctuations could be observed especially for the fleet size of 

7k vehicles. Once there are enough vehicles to serve all demands (e.g. more than 7k), the indicators 

become more stable except for homemakers, which is due to the limited number of users in this profile. 

 

TABLE 2  Comparison of Robo-Taxi user rate among each socio-professional category with and 

without considering user trust and willingness to use 

 
Fleet number 

Profiles 
1000 2000 3000 4000 5000 6000 7000 8000 9000 10 000 

Employed -2% 1% 4% 0% 2% 2% 4% 3% 1% 3% 

Unemployed 5% 0% 3% 1% 8% 1% 14% 1% 6% 3% 

Retired or pre-retired 4% -31% -12% -11% -31% -24% -18% -16% -18% -17% 

Students >14 years 12% 36% 39% 35% 24% 26% 25% 13% 15% 12% 

< 14 years of age 5% 11% 24% 5% 6% 9% 7% 6% 8% 10% 

Homemakers -29% -21% -31% -2% -28% -42% -16% -28% -7% -11% 

 

TABLE 3  Comparison of entire population attributes and average trip distance by socio-

professional categories   

  

 
Population, female 

/ male (% of total) 

Average 

Age (year) 

Average Household 

Income (€) 

Average Trip 

Distance (m) 

Employed  51.0 / 49.0 41 26 623 15 190 

Unemployed 48.8 / 51.2 35 22 968 13 516 

Retired or pre-retired 56.9 / 43.1 73 25 272 14 209 

Students >14 years  42.4 / 47.6 19 29 715 14 001 

< 14 years of age 49.2 / 50.8 7 29 415 9 482 

Homemakers 98.1 / 1.9 49 29 517 16 196 

 

As discussed before, travelers with different socio-professional categories and consequently 

dissimilar daily trip patterns have a different willingness to use Robo-Taxis for their trips. Therefore, 

by introducing this variation, Robo-Taxis are used in a different temporal pattern. The hourly Robo-

Taxi in-service rates of all scenarios shown in FIGURE 8 prove this variation. We can observe here 

two peaks related to peak hours. As illustrated by color intensity, peak areas corresponding to the case 

of considering user trust and willingness to use have higher values especially for the fleet size of 

between 2k and 7k vehicles. Meanwhile, almost all Robo-Taxis are in service from 8 a.m. to 8 p.m. in 

the second and third scenarios in which individual taste variation are considered. As mentioned above, 

the service use for students, persons under 14 years, retired people and homemakers have significantly 

changed in those scenarios and especially in the case of a fleet size of 3k. People of different profiles 
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have different temporal trip pattern, particularly those related to their secondary activities. However, 

these results can be intensely different for other case study areas with dissimilar socio-demographic 

structure. 

The other observation obtained from FIGURE 8 is that the maximum fleet usage occurs when 

the fleet size is between 2k and 3k in both cases, with and without considering user trust and 

willingness to use. One can conclude that in the case of minimum fleet size (1k), the passenger wait 

time is relatively high and the users choose other means of transportation instead of Robo-Taxi. 

Meanwhile, by increasing the number of fleet, the passenger waiting time decreases and the utility of 

using Robo-Taxi becomes relatively competitive compared to other modes until the maximum demand 

reached.  

The fleet usage is one of the key parameters that helps planners to size the fleet and to evaluate 

service performance. In order to illustrate the differences in two cases, we further compared relative 

changes on average daily and peak hour in-service rates (see FIGURE 9). The average in-service rate 

has been defined as the total duration of in-service drive over the total duration of all tasks (including 

stay task, when there is no demand for a Robo-Taxi). The peak hours are assumed to be 8-10 a.m. and 

5-7 p.m. As shown in the figure, while average daily in-service rate changes after introducing 

individual taste variation are significant for the fleet sizes of 3k and 7k vehicles, for the fleet sizes of 

less than 5k, the average morning peak hour in-service rate remains unchanged. This is due to the 

excessive demand for the Robo-Taxi service in the morning peak. Considering average evening peak 

hour in-service rate, the changes are more scattered with a significant increase for the feet size of 7k 

vehicles. 

 
FIGURE 9  Comparison of average Robo-Taxi daily and peak hour in-service rates. 

 

The overall fleet usage rate during a day could meaningfully change service profits of 

operators. As shown in FIGURE 8, by introducing individual taste variation the hourly service use in 

off-peak hours changes especially in the case of the small fleet sizes. FIGURE 10 illustrates this 

difference; we observe an important alteration for the fleet size of 3k vehicles. This is also the reason 

for which the other key indicators for this fleet size change expressively.  
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FIGURE 10  Comparison of average off-peak hours in-service rates. 

 

These results indicate that by introducing user trust and willingness to use, the significant 
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case). Meanwhile, in the latter case, as all the vehicles are in-service in the morning and evening peak 

hours, off-peak Robo-Taxi demand becomes notably the main cause to affect overall service 

indicators. As mentioned before, this is largely due to the dissimilar users with different temporal daily 

trip pattern. Unlike other indicators, the passenger waiting times remain almost stable for all fleet 
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CONCLUSION AND OUTLOOKS 

In this paper, the scoring function of a multi-agent simulator (MATSim) has been categorized and 

modified to integrate user trust and willingness to use in the simulation. The transportation system of 

the Rouen metropole area with ten different Robo-Taxi fleet sizes was simulated. The outputs are 

analyzed in terms of fleet usage, temporal distribution of in-service rides, customer waiting times and 

average Robo-Taxi on-board driving mileage throughout a day. The results reveal significant changes 

not only for the fleet size required to meet maximum demand, but also for a smaller fleet size. User 

variations in terms of socio-professional profiles (with different temporal trip pattern) and different 

value of waiting time are the main reasons for those changes. 

The above discussions of user trust, willingness to use and travel demand pattern variations are 

key to operator costs and system profitability. Fleet variation can have important consequences for 

costs and customer experience. Moreover, operators will wish to size their fleets to maximize profits, 

while offering users a relatively high level of service. The results indicate that Robo-Taxi fleet sizing 

must be taken into account according to the demographic structure of the city or region of interest as 

well as the preferences variation of its inhabitants.  

Future work will need to extend our current framework in order to do a similar analysis for 

Robo-Taxi ride-share services. Assessing the spatial aspect of services (e.g. initial distribution points, 

relocation strategy, charging station locations in the case of electric Robo-Taxis, etc.) by considering 

the spatial dispersion of travelers with different profiles can result in clearer predictions on the use of 

Robo-Taxis in real-world scenarios. In the future research, taking into consideration some other 

aspects more related to the vehicle such as Robo-Taxi capacity and autonomy distance rate could also 

help operators to configure their fleet specification according to the socio-demographic structure of 

people in the service area.    
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