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A New Objective Supervised Edge Detection
Assessment using Hysteresis Thresholds

Hasan Abdulrahman, Baptiste Magnier, and Philippe Montesinos

Ecole des Mines d’Alès, Parc scientifique Georges Besse, 30000 Nı̂mes, France

Abstract. Useful for the visual perception of a human, edge detec-
tion remains a crucial stage in numerous image processing applications.
Therefore, one of the most challenging goals in contour extraction is to
operate algorithms that can process visual information as humans need.
Hence, to ensure that it is reliable, an edge detection technique needs to
be severely assessed before being used it in a computer vision tools. To
achieve this task, a supervised evaluation computes a score between a
ground truth edge map and a candidate image. Theoretically, by varying
the hysteresis thresholds of the thin edges, the minimum score of the mea-
sure corresponds to the best edge map, compared to the ground truth.
In this study, a new supervised edge map quality measure is proposed,
where the minimum score of the measure is associated with an edge map
in which the main structures of the desired objects are distinctive.

Keywords: edge detection, supervised evaluation, hysteresis.

1 Introduction on edge detection and thresholding

Edge detection is an important field in image processing because this process
frequently attempts to capture the most important structures in the image.
Hence, edge detection represents a fundamental step concerning computer vision
approaches. Furthermore, edge detection itself could be used to qualify a region
segmentation technique. Additionally, the edge detection assessment remains
very useful in image segmentation, registration, reconstruction or interpretation.
Hence, it is hard to design an edge detector which is able to extract the exact
edge with good localization and orientation from an image. In the literature,
different techniques have emerged and, due to its importance, edge detection
continues to be an active research area [1]. The best-known and useful edge
detection methods are based on gradient computing first-order fixed operators
[2, 3]. Oriented operators compute the maximum energy in an orientation [4–6]
or two directions [7]. Typically, these methods are composed of three steps:

1. Computation of the gradient magnitude and its orientation η, see Fig. 1.
2. Non-maximum suppression to obtain thin edges: the selected pixels are those hav-

ing gradient magnitude at a local maximum along the gradient direction η which
is perpendicular to the edge orientation.

3. Thresholding of the thin contours to obtain an edge map.

Thus, Fig. 1 exposes the different possibilities of gradient and its associated
orientations involving several edge detection algorithms compared in this paper.
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The final step remains a difficult stage in image processing, however it rep-
resents a crucial operation to compare several segmentation algorithms. In edge
detection, the hysteresis process uses the connectivity information of the pixels
belonging to thin contours and thus remains a more elaborated method than
binary thresholding. Simply, this technique determines a contour image that has
been thresholded at different levels (low: τL and high: τH). The low threshold τL
determines which pixels are considered as edge points if at least one point higher
than τH exists in a contour chain where all the pixel values are also higher than
τL, as represented with a signal in Fig. 1. Thus, the lower the thresholds are,
the more the undesirable pixels are preserved.

Usually, in order to compare several edge detection methods, the user has
to try some thresholds to select the ones that appear visually as the best edge
maps in quality. However, this assessment suffers from a main drawback: seg-
mentations are compared using the threshold (deliberately) chosen by the user,
this evaluation is very subjective and not reproducible. Hence, the purpose is
to use the dissimilarity measures without any user intervention for an objective
assessment. Finally, to consider a valuable edge detection assessment, the evalu-
ation process should produce a result that correlates with the perceived quality
of the edge image, which relies on human judgment [9, 8, 10]. In other words, a
reliable edge map should characterize all the relevant structures of an image as
closely as possible, without any disappearance of desired contours. Nevertheless,
a minimum of spurious pixels can be created by the edge detector, disturbing at
the same time the visibility of the main/desired objects to detect.

In this paper, a novel technique is presented to compare edge detection tech-
niques by using hysteresis thresholds in a supervised way, being consistent with
the visual perception of a human. Indeed, by comparing a ground truth contour
map with an ideal edge map, several assessments can be compared by varying
the parameters of the hysteresis thresholds. This study shows the importance
to penalize stronger the false negative points, compared to the false positive
points, leading to a new edge detection evaluation algorithm. The experiment
using synthetic and real images demonstrated that the proposed method obtains
contours maps closer to the ground truth without requiring tuning parameters
and outperforms other assessment methods in an objective way.

Type of operator Fixed operator [2, 3] Oriented Filters [4–6] Half Gaussian Kernels [7]
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Fig. 1. Gradient magnitude and orientation computation for a scalar image I and
example of hysteresis threshold applied along a contour chain. Iθ represents the image
derivative using a first-order filter at the θ orientation (in radians).
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2 Supervised Measures for Image Contour Evaluations

A supervised evaluation criterion computes a dissimilarity measure between a
segmentation result and a ground truth obtained from synthetic data or an
expert judgment (i.e. manual segmentation) [11][12][13][14]. In this paper, the
closer to 0 the score of the evaluation is, the more the segmentation is quali-
fied as good. This work focusses on comparisons of supervised edge detection
evaluations and proposes a new measure, aiming at an objective assessment.

2.1 Error measures involving only statistics

To assess an edge detector, the confusion matrix remains a cornerstone in bound-
ary detection evaluation methods. Let Gt be the reference contour map corre-
sponding to ground truth and Dc the detected contour map of an original image
I. Comparing pixel per pixel Gt and Dc, the 1st criterion to be assessed is the
common presence of edge/non-edge points. A basic evaluation is composed of
statistics; to that end, Gt and Dc are combined. Afterwards, denoting | · | as the
cardinality of a set, all points are divided into four sets (see Fig. 3):

• True Positive points (TPs), common points of Gt and Dc: TP = |Dc ∩Gt|,
• False Positive points (FPs), spurious detected edges of Dc: FP = |Dc ∩ ¬Gt|,
• False Negative points (FNs), missing boundary points of Dc: FN = |¬Dc ∩Gt|,
• True Negative points (TNs), common non-edge points: TN = |¬Dc ∩ ¬Gt|.

Several edge detection evaluations involving confusion matrix are presented
in Table 1. Computing only FPs and FNs [7] or their sum enables a segmentation
assessment to be performed. The complemented Performance measure P ∗m con-
siders directly and simultaneously the three entities TP , FP and FN to assess
a binary image and decreases with improved quality of detection.

Another way to display evaluations is to create Receiver Operating Charac-
teristic (ROC) [19] curves or Precision-Recall (PR) [18], involving True Positive
Rates (TPR) and False Positive Rates (FPR): TPR = TP

TP+FN and FPR =
FP

FP+TN . Derived from TPR and FPR, the three measures Φ, χ2 and Fα (de-
tailed in Table 1) are frequently used. The complement of these measures enables
to translate a value close to 0 as a good segmentation.

These measures evaluate the comparison of two edge images, pixel per pixel,
tending to severely penalize a (even slightly) misplaced contour, as illustrated in
Fig. 2. Consequently, some evaluations resulting from the confusion matrix rec-
ommend incorporating spatial tolerance. Tolerating a distance from the true con-
tour and integrating several TPs for one detected contour can penalize efficient
edge detection methods, or, on the contrary, advantage poor ones (especially
for corners or small objects). Thus, from the discussion below, the assessment
should penalize a misplaced edge point proportionally to the distance from its
true location (some examples in [14], and, as shown in Fig. 2).

Table 1. List of error measures involving only statistics.

Performance measure [15] P ∗m (Gt, Dc) = 1− TP

|Gt ∪Dc|
= 1− TP

TP + FP + FN

Complemented Φ measure [16] Φ∗ (Gt, Dc) = 1− TPR · TN
TN+FP

Complemented χ2 measure [17] χ2∗ (Gt, Dc) = 1− TPR−TP−FP
1−TP−FP · TP+FP+FPR

TP+FP

Complemented Fα measure [18] F ∗α (Gt, Dc) = 1− PREC · TPR
α · TPR+(1−α)·PREC

, with PREC = TP
TP+FP

and α ∈]0; 1]
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Table 2. List of error measures involving distances, generally: k = 1 or k = 2.

Error measure name Formulation Parameters

Pratt’s FoM [20] FoM (Gt, Dc) = 1− 1

max (|Gt| , |Dc|)
·
∑
p∈Dc

1

1 + κ · d2Gt(p)
κ ∈ ]0; 1]

FoM revisited [21] F (Gt, Dc) = 1− 1
|Gt|+β·FP ·

∑
p∈Gt

1

1 + κ · d2Dc(p)
κ ∈ ]0; 1] and
β ∈ R+

Combination of FoM
and statistics [22]

d4 (Gt, Dc) = 1
2
·

√
(TP −max (|Gt| , |Dc|))2 + FN2 + FP 2

(max (|Gt| , |Dc|))2
+ FoM (Gt, Dc)

κ ∈ ]0; 1] and
β ∈ R+

Symmetric FoM [14] SFoM (Gt, Dc) = 1
2
· FoM (Gt, Dc) + 1

2
· FoM (Dc, Gt) κ ∈ ]0; 1]

Maximum FoM [14] MFoM (Gt, Dc) = max (FoM (Gt, Dc) , FoM (Dc, Gt)) κ ∈ ]0; 1]

Yasnoff measure [23] Υ (Gt, Dc) = 100
|I| ·

√ ∑
p∈Dc

d2Gt (p) None

Hausdorff distance [24] H (Gt, Dc) = max

(
max
p∈Dc

(dGt(p)),max
p∈Gt

(dDc(p))

)
None

Maximum distance
[11]

f2d6 (Gt, Dc) = max

(
1

|Dc|
·
∑
p∈Dc

dGt (p),
1

|Gt|
·
∑
p∈Gt

dDc (p)

)
None

Distance to Gt [25][13] Dk (Gt, Dc) = 1
|Dc| · k

√ ∑
p∈Dc

dkGt (p), k = 1 for [25] k ∈ R+

Oversegmentation [26] Θ (Gt, Dc) = 1
FP
·
∑
p∈Dc

(
dGt (p)

δTH

)k for [26]: k ∈ R+

and δTH ∈ R∗+

Undersegmentation
[26]

Ω (Gt, Dc) = 1
FN
·
∑
p∈Gt

(
dDc (p)

δTH

)k for [26]: k ∈ R+

and δTH ∈ R∗+

Symmetric distance
[11][13]

Sk (Gt, Dc) =
k

√√√√ ∑
p∈Dc

dkGt (p)) +
∑
p∈Gt

dkDc (p)

|Dc ∪Gt|
, k = 1 for [11] k ∈ R+

Baddeley’s Delta Met-
ric [27]

∆k(Gt, Dc) = k

√
1
|I| ·

∑
p∈I
|w(dGt(p))− w(dDc(p))|k

k ∈ R+ and a
convex function
w : R 7→ R

Edge map quality
measure [28]

Dp (Gt, Dc) = 1/2
|I|−|Gt| ·

∑
p∈Dc

(
1− 1

1 + α·d2Gt(p)

)
+ 1/2
|Gt| ·

∑
p∈Gt

(
1− 1

1 + α·d2Gt∩Dc(p)

)
α ∈ ]0; 1]

Magnier et al. measure
[29]

Γ (Gt, Dc) = FP+FN
|Gt|2

·
√ ∑
p∈Dc

d2Gt(p) None

Complete distance
measure [14]

Ψ(Gt, Dc) = FP+FN
|Gt|2

·
√ ∑
p∈Gt

d2Dc(p) +
∑
p∈Dc

d2Gt(p) None

2.2 Assessment involving distances of misplaced pixels

A reference-based edge map quality measure requires that a displaced edge
should be penalized in function not only of FPs and/or FNs but also of the
distance from the position where it should be located. Table 2 reviews the most
relevant measures involving distances. Thus, for a pixel p belonging to the desired
contour Dc, dGt(p) represents the minimal Euclidian distance between p and Gt.
If p belongs to the ground truth Gt, dDc(p) is the minimal distance between p
and Dc. On the one hand, some distance measures are specified in the evaluation
of over-segmentation (i.e. presence of FPs), like: Υ , Dk, Θ and Γ . On the other
hand, Ω measure assesses an edge detection by computing only an under segmen-
tation (FNs). Other edge detection evaluation measures consider both distances

(a
)
G
t

(b
)
D

1

(c
)
D

2

F ∗α(Gt, D1)=1.000 F ∗α(Gt, D2)=1.000

Υ (Gt, D1)=13.223 Υ (Gt, D2)=13.223

FoM((Gt, D1)= 0.3939 FoM(Gt, D2)=0.3939

H(Gt, D1)=1.4142 H(Gt, D2)= 5.3852

Skk=2(Gt, D1)=1.0414 Skk=2(Gt, D2)=1.6993

λ(Gt, D1)=0.4482 λ(Gt, D2)=0.5725

Fig. 2. Different Dc: FPs and number of FNs are the same for D1 and for D2.
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Meas. Gt vs M Gt vs C Gt vs T Gt vs B

F ∗α 0.1515 0.0820 0.0704 0.0504

P ∗m 0.2632 0.1515 0.1316 0.0959

χ2∗ 0.0989 0.1609 0.1413 0.1030

Φ∗ 0.1619 0.1515 0.0112 0.0078

Dk 0.1987 0.000 0.1726 0.1776

f2D6 0.6036 0.5606 0.5242 0.4496

H 6.000 6.000 5.6569 6.4031

H15% 4.6713 3.7000 3.6217 2.9835

ΘδTH=5 0.7968 0.000 0.7968 0.9377

ΩδTH=5 0.7400 0.7400 0.000 0.000

FoM 0.0888 0.1515 0.07711 0.0625

F 0.2029 0.0822 0.1316 0.0959

d4 0.1385 0.1312 0.1007 0.0747

SFoM 0.0411 0.0956 0.0842 0.0629

MFoM 0.5199 0.5199 0.5184 0.5150

Dp 0.0215 0.0199 0.0016 0.0012

Υ 4.1498 0.000 4.1498 3.4186

Skk=2 0.5821 0.3033 0.2806 0.2361

∆k 0.4705 0.2361 0.2344 1.1167

Γ 0.0290 0.0000 0.0145 0.0092

Ψ 0.0402 0.0140 0.0145 0.0092

λ 0.0439 0.0165 0.0145 0.0092

(k) Noisy synthetic (l) Gt of

image 270×238. image in (k).

(m) Real noisy (n) Gt of

image 495×558 image in (m).

PSNR = 21 dB.

Fig. 3. Results of evaluation measures and images for the experiments.

of FPs and FNs [8]. A perfect segmentation using an over-segmentation measure
could be an image including no edge points and an image having most undesir-
able edge points (FPs) concerning under-segmentation evaluations (see Fig. 3).
Also, another limitation of only over- and under-segmentation evaluations are
that several binary images can produce the same result (Fig. 2). Therefore, as
demonstrated in [8], a complete and optimum edge detection evaluation measure
should combine assessments of both over- and under-segmentation.

Among the distance measures between two contours, one of the most popular
descriptors is named the Figure of Merit (FoM). Nonetheless, for FoM , the dis-
tance of the FNs is not recorded and are strongly penalized as statistic measures
(see above). For example, in Fig.3, FoM(Gt, C) > FoM(Gt,M), whereas M
contains both FPs and FNs and C only FNs. Further, for the extreme cases:

• if FP = 0: FoM (Gt, Dc) = 1− TP/|Gt| = 1− (|Gt| − FN)/|Gt|,
• if FN = 0: FoM (Gt, Dc) = 1− 1

max(|Gt|,|Dc|) ·
∑
p∈Dc∩¬Gt

1
1+κ·d2

Gt
(p)

.

When FN>0 and FP constant, it behaves like matrix-based error assess-
ments (Fig. 2). Moreover, for FP>0, the FoM penalizes the over-detection very
low compared to the under-detection. On the contrary, the F measure computes
the distances of FNs but not of the FPs, so F behaves inversely to FoM . Also,
d4 measure depends particularly on TP , FP , FN and FoM but penalizes FNs
like the FoM measure. SFoM and MFoM take into account both distances
of FNs and FPs, so they can compute a global evaluation of a contour image.
However, MFoM does not consider FPs and FNs at the same time, contrary
to SFoM . Another way to compute a global measure is presented in [28] with
the edge map quality measure Dp. The right term computes the distances of the
FNs between the closest correctly detected edge pixel, i.e. Gt ∩Dc. Finally, Dp

is more sensitive to FNs than FPs because of the coefficient 1
|I|−|Gt| .

A second measure widely computed in matching techniques is represented by
the Hausdorff distanceH, which measures the mismatch of two sets of points [24].
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This max-min distance could be strongly deviated by only one pixel which can
be positioned sufficiently far from the pattern (Fig. 3). To improve the measure,
one idea is to compute H with a proportion of the maximum distances; let us
note H15% this measure for 15% of the values [24]. Nevertheless, as pointed
out in [11], an average distance from the edge pixels in the candidate image to
those in the ground truth is more appropriate, like Sk or Ψ . Eventually, Delta
Metric (∆k) [27] intends to estimate the dissimilarity between each element of
two binary images, but is highly sensitive to distances of misplaced points [8][14].

A new objective edge detection assessment measure: In [14] a measure
of the edge detection assessment is developed: it is denoted Ψ (Tab. 2) and
improvemes the over-segmentation measure Γ , by combining both dGt and dDc ,
see Fig. 3. Ψ gives the same weight for dGt and dDc in its assessment of errors.
Thus, using Ψ , a missing edge remains not enough penalized contrary to the
distance of FPs which could be too important. Another example, in Fig. 3,
Ψ(Gt, C) < Ψ(Gt, T ) whereas C must be more penalized because of FNs which
does not allow to identify the object (also Fig. 5). The solution proposed here is
to penalize stronger the distances of the FNs depending on the number of TPs:

λ(Gt, Dc) =
FP + FN

|Gt|2
·

√√√√∑
p∈Dc

d2Gt(p) + min

(
|Gt|2,

|Gt|2
TP 2

)
·
∑
p∈Gt

d2Dc(p) (1)

The term influencing the penalization of FN distances can be rewritten as:
|Gt|2
TP 2 =

(
FN+TP
TP

)2
=

(
1 + FN

TP

)2
> 1, ensuring a stronger penalty for d2Dc ,

compared to d2Gt . When TP = 0, the min function avoids the multiplication by
infinity; moreover, the number of FNs is large, corresponding to a strong penalty
with the weight term |Gt|2 (see Fig. 4 left). When |Gt| = TP , λ is equivalent
to Ψ and Γ (see Fig. 3, image T ). Also, compared to Ψ , λ penalizes more Dc

having FNs, than Dc with only FPs, as illustrated in Fig. 3 (images C and T).

Finally, the weight |Gt|
2

TP 2 tunes the λ measure by considering an edge map of
better quality when FNs points are localized close to the desired contours Dc.

The next subsection details the way to evaluate an edge detector in an ob-
jective way. Results presented in this communication show the importance to
penalize stronger the false negative points, compared to the false positive points
because the desired objects are not always completely visible by using ill-suited
evaluation measure, and, λ provides a reliable edge detection assessment.
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2.3 Minimum of the measure and ground truth edge image

Dissimilarity measures are used for an objective assessment using binary images.
Instead of choosing manually a threshold to obtain a binary image (see Fig. 3 in
[8]), the purpose is to compute the minimal value of a dissimilarity measure by
varying the thresholds (τL, τH) of the thin edges (see Table 1). Thus, compared
to a ground truth contour map, the ideal edge map for a measure corresponds
to the desired contour at which the evaluation obtains the minimum score for
the considered measure among the thresholded (binary) images. Theoretically,
this score corresponds to the thresholds at which the edge detection represents
the best edge map, compared to the ground truth contour map [30, 12, 8]. Fig. 4
right illustrates the choice of a contour map in function of τL and τH . Since small
thresholds lead to heavy over-segmentation and strong thresholds may create nu-
merous false negative pixels, the minimum score of an edge detection evaluation
should be a compromise between under- and over-segmentation (detailed in [8]).

As demonstrated in [8], the significance of the ground truth map choice influ-
ences on the dissimilarity evaluations. Indeed, if not reliable [31], an inaccurate
ground truth contour map in terms of localization penalizes precise edge detec-
tors and/or advantages the rough algorithms as edge maps presented in [10, 9].
For these reasons, the ground truth edge map concerning the real image in our
experiments is built in a semi-automatic way detailed in [8].

3 Experimental results

In these experiments, the importance of an assessment to penalize stronger the
false negative points is enlightened, compared to the false positive points. In
order to study the performance of the contour detection evaluation measures,
the hysteresis thresholds vary and the minimum score of the studied measure
corresponds to the best edge map. The thin edges of both synthetic and real noisy
images are computed by five or six edge detectors: Sobel [2], Canny [3], Steerable
Filters of order 1 (SF1)[4] or 5 (SF5)[5], Anisotropic Gaussian Kernels (AGK)[6]
and Half Gaussian Kernels (H-K)[7]. Fig. 5 presents the results for 14 measures
with their associated scores (bars) according to the hysteresis parameters. In the
one hand, we must take into account the obtained edge map, and on the other
hand the measure score. Generally, the optimal edge map for FoM , SFoM , f2d6,
Ψ and λ measures allows to distinct the majority of the desired edges for each
contour detection operator (except Sobel), whereas for the other assessments,
contours are too disturbed by undesirable points or distinguished with high
difficulty (especially Ψ which does not penalizes enough FNs). Note that SFoM
measure does not classify the Sobel algorithm as less efficient. Concerning the
experiment with a real image in Fig. 6, 8 measures are compared together. For
FoM , H, ∆k and Sk, the ideal edge maps concerning Sobel edge detector are
highly corrupted by undesirable contours, the main objects are not recognizable.
The other segmentations are also disturbed by undesirable pixels for FoM , H
and ∆k. Moreover, the higher score for ∆k (AGK) does not represent the more
disturbed map. Ultimately, using λ, the essential structures are visible in the
optimal contour map for each edge detector (objects are easily recognizable).
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Moreover, contrary to H, FoM , d4, ∆k and Sk measures, the scores of λ are
coherent, in relation to the obtained segmentations (Sobel and H-K results).

4 Conclusion and future works

This study presents a new supervised edge detection assessment method λ which
enables to assess a contour map in an objective way. Based on the theory of the
dissimilarity evaluation measures, the objective evaluation allows to evaluate
1st-order edge detectors. Indeed, the segmentation which obtains the minimum
score of a measure is considered as the best one. Theory and experiments prove
that the minimum score of the new dissimilarity measure λ corresponds to the
best edge quality map evaluations, which is similarly closer to the ground truth,
compared to the other methods. On the one hand, this new measure takes into
account the distances of false positive points, in the other hand, it considers
the distance of false negative points tuned by a weight. This weight depends
on the number of false negative points: the more it is elevated, the more the
segmentation is penalized. Thus, this enables to obtain objectively an edge map
containing the main structures, similar to the ground truth, concerning a reliable
edge detector. Finally, the computation of the minimum score of a measure
does not require tuning parameters, which represents a huge advantage. For this
purpose, we plan in a future study to deeply compare the robustness of several
edge detection algorithms and use the new measure in object recognition.
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Fig. 5. Comparison of best maps and minimum scores for different evaluation measures.
The bars legend is presented in Fig. 6. Gt and original image are available in Fig. 3.
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The standard deviation for Canny, SFs, AGK and HK is equal to  1. 
In Fig. 6, the contour images and scores  of Canny are similar to SF.
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Fig. 6. Comparison of best maps and minimum scores for different evaluation measures.
Gt and the original real image are presented in Fig. 3.


