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An Objective Evaluation of Edge Detection
Methods based on Oriented Half Kernels

Baptiste Magnier

IMT Mines d’Alès, LGI2P, 6. avenue de Clavières 30100 Alès, France
Baptiste.Magnier@mines-ales.fr

Abstract. Easy to use, oriented half kernels are reliable in image anal-
ysis. These thin filters, rotated in all the desired directions are useful
to detect edges, or extract precisely their orientations, even concerning
highly noisy images. Usually, the filtering process corresponds to convo-
lutions with Gaussians and their derivatives. Other filters exist and can
be implemented in order to build half kernels. However, functions used
for the smoothing and derivative parts have not been studied in depth.
The goal of this paper is to evaluate different types of half filters as a
function of the noise level. The studied kernels have the same spatial
support, enabling easier comparisons. To address the robustness of the
studied filters against noise, the image quality is gradually worsened.
Then, their performances are compared through objective evaluations of
both segmentation and gradient direction.
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1 Introduction
Edge detection is a fundamental process and remains widely used in image anal-
ysis and computer vision applications. Moreover, gradient and edge orientations
are essential information for the interpretation and exploitation of digital im-
ages [26,19]. Classical methods use first-order fixed operators [21,5,24,4] or the
structure tensor [11] to detect gradient and its orientation. Gradient-based edge
and orientation estimators are frequently utilized. Among these operators, DoB

(Difference of Boxes) filters [21] often remain implemented in many applications
as in robotics. DoB simply computes the difference between two mean filters of
same sizes on both sides of the considered pixel (usually represented by a list
of 1 or -1). However, DoB filters are sensitive to noise and orientations not re-
liable. The robustness of the detection is generally improved by smoothing the

(a)Blurred corner (b) DoB [21] (c) Gaussian [5] (d) AGK [9] (e) Half kernel

Fig. 1. Edge extraction around a blurred corner using different filters.
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Type of operator Fixed operator Oriented Filters Half Kernels

Example of filter

Gradient magnitude |∇I| =
√
I20 + I2π/2 |∇I| = max

θ∈[0,π[
|Iθ| |∇I| = max

θ∈[0,2π[
Iθ − min

θ∈[0,2π[
Iθ

Gradient direction η = arctan

(
Iπ/2
I0

)
η = arg max

θ∈[0,π[
|Iθ|+

π

2
η =

(
arg max
θ∈[0,2π[

Iθ + arg min
θ∈[0,2π[

Iθ

)
/2

Table 1. Gradient magnitude and orientation computation for a scalar image I where
Iθ represents the image derivative at the θ orientation (in radians).

image by a low pass filter followed by a gradient detection using vertical and
horizontal masks of type [-1 0 1]. Edge detection methods differ in the types of
smoothing filters that are applied [5,24,6,4], as equations presented in Tab.3. The
computations of the gradient magnitude |∇I| and its orientation η are presented
in Tab.1(left). Among all the edge detectors, box [21] and exponential [24,4] filters
do not delocalize contour points [12], whereas they are sensitive to noise and blur
while contours near a corner are rounded by Gaussian and Deriche filters (cf. Fig.
2(a)). In the orientation and edge detection domains, steerable feature detectors
represent popular and efficient tools [8,10,9]. This concept provides valuable ori-
entations and edges for many image processing applications, especially when
the filter is elongated (cf. Fig. 2(b)). The concept was generalized in [20] by
decomposing a given filter kernel optimally in a set of basic filters approximat-
ing an Anisotropic Gaussian Kernel (AGK). Mathematically, Tab.1(middle column)
presents the orientation and the gradient magnitude computation using this type
of filter, corresponding to the maximum energy in the maximal response direc-
tion. The AGK possesses a common shortcoming, as a matter of fact, only one
π-periodic orientation is extracted efficiently [20], so the impossibility of these
filters to estimate in a relevant way several coexisting orientations at the same
pixel, as illustrated in Fig. 1(d). Otherwise, multi steerable filters are designed
and adjusted to a pattern of interest or a region to determine more precisely the
directions of edges with 2π-periodic templates [23,18,13]. On the other hand, the
asymmetric filter developed in [16] estimates the homogeneity in multiple local
directions. This filter consists in a network of several parallel lines in which a
homogeneity is computed and enables an estimation of edge directions modulo
2π. Lastly, wedge [23,18] or asymmetric oriented filters [15,16] sound better suited
to multiple edge directions detection or modeling a template. The next section
details the edge detection process using 2π-periodic filters.

3/4 1/2?

OO
3/4 1/2

1/4

1/4 1/4 1/4

(a) Circular support (b) Elongated support (AGK) (c) Half kernel (HK) support

Fig. 2. Representation of filter supports concerning edges and corners.
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2 Edge detection using Half Oriented Kernels

2.1 Advantages of half oriented kernels

Edge detection techniques using elongated kernels are efficient to detect large
linear structures correctly [10,20,9,22]. The robustness against noise depends
strongly on the smoothing parameters of the filter, i.e., the parameter of the fil-
ter elongation. If the filter length increases, the detection is less sensitive to noise,
but small structures are considered as noise and their edges are not extracted.
Consequently, the accuracy of the detected edge points decreases strongly at cor-
ner points and for non-straight object contour parts, as illustrated in Fig. 1(d).
To bypass this undesirable effect, an anisotropic edge detection method is devel-
oped in [17] and [15]. Indeed, the proposed technique is able to detect crossing
edges and corners due to two elongated and oriented filters in two different di-
rections. The simplest solution is to consider paths crossing each pixel in several
directions. The idea proposed in [17] and [15] is to “cut” the elongated kernel us-
ing a Heaviside function into two parts, i.e. two directions (see Fig. 2(c)). Then,
the half kernel (HK) is rotated in several directions from 0 to 2π (bilinear rota-
tion) and computes a derivative information at each desired angle (illustrated in
Fig. 3, for each π/36 radian angle). Thus, in a contour direction, a half smoothing
is performed, whereas in the perpendicular direction, a derivative information
is computed, as illustrated in Fig. 3(a),(d)-(g). In order to better understand
this technique to extract edge, the filter support of a HK on a straight contour
is equivalent to 1/2 on both sides of the edge, as for elongated and circular or
box filters, illustrated in Fig. 2. On the contrary, for a corner point with a π/2
radian angle, the support of the half filter remains 1/2 on both sides of the edge,
whereas it is around 1/4 and 3/4 concerning other filter supports. Such a manner
to extract edges enables to compute a gradient of blurred contours, even corners
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Fig. 3. Decomposition of half kernel (HK) in one dimension. Normalized signals in
(e)-(g) represent the filter response (counter-clockwise rotation) of the centered pixel
in (d), with D and S the derivative and smoothing parameters (cf. Tab.4 and 5).
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Filter Formula

DoB DoB(x) = [ −1 ... − 1︸ ︷︷ ︸
(D−1)/2 times, see row 1 of Tab.4

0 1 ... 1︸ ︷︷ ︸
(D−1)/2 times, see row 1 of Tab.4

]

Shen filter S1(x) =


−e−α·|x|, if x < 0
0, if x = 0

e−α·|x|, if x > 0

Bourenanne filter B1(x) = −sgn(x) ·
[
k · sin(w · x) · e−α·|x| + cos(w · x) · e−α·|x| − e−s·|x|

]
Deriche filter D1(x) = x · e−α·|x|

Gaussian filter G1(x) = x · e
x2

2·σ2

Table 2. Different derivative filters. Parameters are available in Tab.3.

as illustrated in Fig. 1(e), contrary to other filtering methods. Eventually, as
detailed in Tab.1(right), the gradient corresponds to the maximum value minus
the minimum value of the convolution of the oriented half filter with the image.
These two directions represent to the two main orientations of a contour and the
gradient direction η corresponds to the bisector between these two directions (cf.
Fig. 2(c)). These orientations are useful and efficient for image restoration via
PDE [14], corner detection [3] or image descriptor [25].

2.2 Types of implemented filters

Edge detection using oriented half kernels is reliable, robust against noise, and,
outperforms classical edge detectors [15,14]. As pointed in [17] and illustrated in
Figs.5(l)-(q), the HK can be implemented using different equations:

• a derivative part of the filter, represented by an equation in Tab.2,
• a half smoothing part, which corresponds to an equation in Tab.3.

In order to create an elongated filter, the support of the half smoothing part
must be higher than the derivative support. The parameters of the different
filter equations can be chosen in Tab.5 for the half smoothing part, where S
represents the length of the support where 98% of the filtered information is
computed, i.e., the width of the HK (cf. Fig 3(c)). As for the derivative part, the
parameters are available in Tab.4, where D represents the length of the support
where 98% of the filtered information is computed (i.e., width of the HK, cf. Fig
3(b)). As an example, a half filter using Bourennane equation, of length S=46
pixels and D=11 pixels, the parameter corresponds to s=3.22 for the smoothing
part and s=0.33 for the derivative part. The half filter can be generated using a

Filter Formula Parameter(s)

Boxes Box(x) = [ 1 ... 1︸ ︷︷ ︸
S times, see row 1 of Tab.5

] S ∈ N∗

Shen filter S(x) = e−α·|x| α ∈ R∗+

Bourenanne filter
B(x) =

e−α·|x|

α2 + w2
· [−(k · α+ w) · sin(w · |x|) +

(α− k · w) · cos(w · x) · e−α·|x|
]
− e−s·|x|

s

s ∈ R∗+, w = 0.01,
k=−0.564,
α = 0.215 · s

Deriche filter D(x) = (α · |x|+ 1) · e−α·|x| α ∈ R∗+
Gaussian filter G(x) = e

x2

2·σ2 σ ∈ R∗+
Table 3. Different low pass filters compared in this study.
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half DoB, see first rows in Tab.2 and Tab.3. Thus, S and D numbers, indicate
directly the size of the half DoB, which is rotated from 0 to 2π. It is important
to note that the parameters of the half smoothing parts in Tab.5 correspond to
parameters representing a pass bas filter centered at 0, and only the causal part
is preserved here, so S corresponds to a smoothing support size of a half filter. As
a result, the derivative part computes the oriented gradient information, whereas
the half smoothing part enables a smooth along edges, preserving them and their
directions. Finally, on the one hand, the length of the HK must be sufficiently
large to be robust against noise. On the other hand, the width of the HK must
be thin to ensure precise edge detection and orientations. As an example in
Fig. 3(left), when S and D are small, all the signals are noisy, whereas when
S increases, the edge directions highlight incrementally, even though Shen and
Bourennane HK remain always sensitive to noise.

The Matlab code is available on the MathWorks website: https://fr.mathworks.com/

matlabcentral/fileexchange/66853-edge-detection-methods-based-on-oriented-half-kernels?s_tid=srchtitle.

3 Evaluation and Results

The aim of the experiments is to obtain the best edge map in a supervised
way. In the experiments, 7 edge detection methods based on filtering gradient
computation are compared: isotropic Gaussian filter [5], AGK [9] and HK formed
by the DoB, Shen [24], Bourennane [4], Deriche [6], and Gaussian filters [17,15].
These filters possess the same spatial support (AGK has two times the spacial
support of the HK, Fig.5(m)). Filters must be thin and elongated in order to
compute accurate contours and associated directions (cf. Fig. 3(d)-(g)). Thus,
the derivative parameter concerning isotropic Gaussian filter [5] remains the same
than others (D=7), see Fig.5(l)-(q). HK and AGK are rotated each π/72 radian
angles. Finally, after a non-maximum suppression [26], an objective assessment
is performed by varying hysteresis thresholds on normalized thin edges until the
Relative Distance Error (RDE) [7] evaluation obtains the minimum score [2]:

Spacial support: Number of pixels D 3 5 7 9 11 13 15 17 19

Shen filter: values of α 2.15 1.52 1.10 0.86 0.69 0.58 0.49 0.43 0.38

Bourenanne filter: values of s 9.99 7.07 5.13 3.98 3.22 2.69 2.3 2 1.77

Deriche filter: values of α 3.16 2.01 1.46 1.14 0.93 0.79 0.68 0.6 0.49

Gaussian filter: values of σ 0.7 1.11 1.53 1.95 2.38 2.8 3.23 3.66 4.09

Table 4. Parameters of the filters in function of their support size, i.e., the number
of pixels under the range of the filter. These parameters correspond to the derivative
part. The first row is tied to the range of the derivative of the DoB filter.

Spacial support S 16 21 26 31 36 41 46 51 56 61 66

Shen filter: α 0.23 0.17 0.133 0.11 0.095 0.082 0.071 0.065 0.058 0.052 0.047

Bourenanne filter: s 1.05 0.78 0.62 0.51 0.44 0.38 0.33 0.3 0. 27 0.24 0.22

Deriche filter: α 0.33 0.25 0.2 0.17 0.14 0.12 0.11 0.1 0.09 0.08 0.07

Gaussian filter: σ 6.66 8.81 10.96 13.11 15.26 17.41 19.56 21.7 23.85 26 28.15

Table 5. Parameters of the half filters in function of their support size. These param-
eters are used for the length of the 2D filters, i.e., smoothing part. The first row is tied
to the range of the mean filter used in the DoB filter, i.e., number of pixels S.

https://fr.mathworks.com/matlabcentral/fileexchange/66853-edge-detection-methods-based-on-oriented-half-kernels?s_tid=srchtitle
https://fr.mathworks.com/matlabcentral/fileexchange/66853-edge-detection-methods-based-on-oriented-half-kernels?s_tid=srchtitle
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RDE (Gt, Dc) =

√
1

|Dc|
·
∑
p∈Dc

d2Gt (p) +

√
1

|Gt|
·
∑
p∈Gt

d2Dc (p),

where Dc represents the desired contour map, Gt the ground truth edge image
(Fig. 5(b)), | · | the number of contour points of a set, and, dA(p) is the minimal
Euclidian distance between a pixel p and a set A [7,1]. These scores are recorded
and plotted as a function of the noise level in the original image, as presented
in Fig.5(j). Hence, a plotted curve increases monotonously with the noise level
(Gaussian noise). The second evaluation measure concerns the gradient angle, η
(cf. Tab.1). Once Dc is created, considering CDc the set of contour chains in Dc

(i.e., at least 2 pixels per chain), the gradient evaluation as follows:

E(CDc , η) =
1

|CDc |
·
∑
p∈CDc

∑
dk∈W

[
1− abs(π/2− abs(−→ηp −−→ηdk ))

π/2

]
/ck,

where dk represents a contour pixel belonging to W, a 3×3 window centered on
p, −→ηdk the gradient orientation of dk and ck the number of contour pixels in W,
minus the central pixel. This evaluation linearly ranges from 0 for identical angles
of −→ηp and −→ηdk to 1 for angles that differs (Fig.4). Note that angles of −→ηdk and −→ηp
belong to [0; π[ and when one direction approximates 0 and the other direction
π, the evaluation of these two directions remains close to 0 (see Fig.4(c)).

The presented segmentations in Fig.5 correspond to the original image for a
PSNR=14dB. Clearly, all the HK obtains better segmentations than the isotropic
Gaussian. The HK using Gaussian outperforms six other compared filters, in
terms of both RDE evaluation and visualization. AGK obtains good scores, but
the contour image presents undesirable straight contours disturbing its interpre-
tation. HK using DoB produces many false positive points, especially close to
the true edges; it performs in presence of salt&pepper noise, but not concerning
white Gaussian noise. Otherwise, HK using Shen and Bourennane filters obtain
close the same results, however, they remain too sensitive to noise, and, espe-
cially, many edges are missing. HK with Deriche filter is more robust to noise but
edges are still missing. Concerning η evaluation,E(CDc ,η) indicates that HK using
Gaussian remains more reliable than other HK. This information means that HK
using Gaussian is less disturbed by noise than other kernels. The gradient eval-
uation of AGK is close to 0 because almost all the edges obtained are straight;
consequently, the gradient angle remains close the same for all the contour chain.
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(a) −→ηp and −→ηdk (b) e ≈ 0 (c) e ≈ 0.1 (d) e ≈ 0.9 (e) e ≈ 1 (f) e ≈ 0.3 (g) e ≈ 0.5

Fig. 4. Illustration of ηp and ηdk directions, in a 3×3 window, where each white square
represents a contour pixel of Dc, whereas gray squares correspond to non-edge pixels.
Example of angular single error computation e = 1− abs(π/2− abs(ηp − ηdk ))/π/2.
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4 Conclusion

Oriented half kernels (HK) represent thin filters enable to describe the image
information all around a considered pixel. As they are robust against noise and
their edge directions are accurate, HK are utilized in the context of many image
processing problems [14,3,25]. This study presents different manners to build
HK devoted to edge detection in digital images. Five HK have been objectively
compared and HK using Gaussian remains the most reliable. Especifically, this
HK and the anisotropic Gaussian kernel obtain similar evaluation results kernel
but the obtained edges are more usable with HK. For this purpose, we plan in
a future study to implement multiscale and subpixel half Gaussian kernels.
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