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Edge Detection: A Review of Dissimilarity
Evaluations and a Proposed Normalized Measure

Baptiste Magnier

Abstract—In digital images, edges characterize object bound-
aries, so edge detection remains a crucial stage in numerous
applications. To achieve this task, many edge detectors have
been designed, producing different results, with various qualities
of segmentation. Indeed, optimizing the response obtained by
these detectors has become a crucial issue, and effective contour
assessment assists performance evaluation. In this paper, several
referenced-based boundary detection evaluations are detailed,
pointing out their advantages and disadvantages, theoretically
and through concrete examples of image edges. Then, a new
normalized supervised edge map quality measure is proposed,
comparing a ground truth contour image, the candidate contour
image and their associated spatial nearness. The effectiveness
of the proposed distance measure is demonstrated theoretically
and through several experiments, comparing the results with the
methods detailed in the state-of-the-art. In summary, compared
to other boundary detection assessments, this new method proved
to be a more reliable edge map quality measure.

Index Terms—Edge detection, supervised evaluation, distance
measures.

I. INTRODUCTION

In computer science, all systems, especially automated
information processing structures, must be evaluated before
being developed, principally for industrial applications or
medical data. Image processing is no exception to this rule. In
image analysis, image segmentation is one of the most critical
tasks and represents an essential step in low-level vision.
All the methods developed therefore have to be tested and
assessed, whether regarding edge detection, point matching,
region segmentation or image restoration/enhancement.

Edge detection represents one of the pioneer theoretical
works in image processing tasks [38] and remains a key point
in many applications. It is extensively used because boundaries
include the most important structures in the image [54][44].
Furthermore, edge detection itself could be used to qualify a
region segmentation technique [32][34]. In addition, contour
extraction remains a very useful preprocessing step in image
segmentation, registration, reconstruction, interpretation and
tracking [33]. An efficient boundary detection method should
create a contour image containing edges at their correct loca-
tions with a minimum of misclassified pixels. Edge detection
assessment is therefore an essential field of study, but research
has still not necessarily gone deep enough regarding contour
detection for digital images. Contrary to region segmentation
evaluations, which may consider color attributes, contour
detection assessments generally use binary images. Thus, an
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(a) Object (b) Contour 1 (c) Contour 2 (d) Contour 3

Fig. 1. Several edge chains are available for the same object. The image in
(a) is of size 30×30. Contour points are represented in blue for image (b), (c)
and (d). Contour 1 represents the inner edge whereas contour 2 corresponds
to the outer boundary. Contour 3 is the result of a step edge detector.

edge detection evaluation leads to a direct assessment of the
considered binary image. Moreover, measures of boundary
detection evaluation are based on the fact that a reliable edge
map should characterize all the relevant structures of the
image. It should also create a minimum of spurious pixels
or holes (oversights). Therefore, an evaluation can be used to
assess and improve an algorithm, or to optimize edge detector
parameters [21], for example thresholds in the last stage of
the detection.

In edge detection assessment, the measurement process
can be classified as using either unsupervised or supervised
evaluation criteria. The first class of methods exploits only the
input data image and gives a score of coherence that qualifies
the result given by the algorithm [21][17][42]. The second
class computes a similarity/dissimilarity measure between a
segmentation result and a ground truth obtained from synthetic
data or an expert judgment [9][22][31]. As edge extraction is
performed for image processing tasks and computer vision,
similarity measures are important within a broad flied of study,
for example in image interpretation, consisting in automati-
cally extracting or recognizing objects in an image, compared
to a model. Moreover, the assessment can compute a similarity
or a dissimilarity of the shapes attributes between two of
binary objects [13][22][37]. Thus, the problem of supervised
edge detection assessment amounts to a question of pattern
recognition. Nevertheless, the edge position of an object could
be interpreted in different ways, as represented in Fig. 1.
Indeed, for a vertical step edge, an edge can be located either
on the left, or on the right (which corresponds to an inner
or an outer contour). Considering a vertical blurred edge (i.e.
ramp contour [6]), the true edge is placed in the middle of
the blur, but the question of the position remains the same
when the size of the blur is even. In the crest lines case [37],
true edges are chosen in the middle of the ridge or of the
valley when the width of the ridge/valley is equal to a odd
number (i.e. at the maxima -top of ridges- or minima -bottom
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of valleys- [36] ). Finally, for a single real or synthetic image,
as several contour chains constituting the ground truth depend
on several positions of the true pixels, thus the combinations
of the boundary pixel placements are numerous, so many
chains could be created/chosen. For example, we can create a
ground truth boundary map of the image (a) in Fig. 1 with as
many combinations as there are pixels in Contour 1, 2 and 3.
This observation shows that the evaluation must not be binary,
but rather illustrates the importance of taking into account the
misplaced edge distance regarding the desired contour of the
ground true image. For all these reasons, as described in [44],
quantitative assessments are generally lacking in proposed
edge detection methods.

In image segmentation evaluation, the Structural Similarity
Index (SSIM ) estimates the visual impact of shifts in an
image [57]. This measure is based on the grayscale informa-
tion concerning the attributes that represent the structure of
objects in the scene. SSIM consists of three local comparison
functions, namely luminance comparison, contrast compari-
son, and structure comparison between two signals excluding
other remaining errors. Unlike the PSNR (Peak Signal to
Noise Ratio) or RMSE (Root-Mean-Square Error), which
are measured at the global or the image level, the SSIM
is computed locally by moving a 8×8 window for each pixel.
The final score of an entire image corresponds to the mean
of all the local scores. Applications of this image quality
evaluation include automatically judging the performance of
compression or restoration algorithms, concerning grayscale or
color images. Even though SSIM can be applied in the case
of an edge detection evaluation, in the presence of too many
areas without contours, the obtained score is not efficient or
useful (in order to judge the quality of edge detection with
the SSIM , it is necessary to compare with an image having
detected edges situated throughout the image areas).

This work focusses on comparisons of supervised edge
detection evaluations with respect to binary representation
of the boundaries. As introduced above, a supervised eval-
uation process estimates scores between a ground truth and
a candidate edge map (both binary images). These scores
could be evaluated counting the number of erroneous pixels,
but also through spatial distances of misplaced or undetected
contours; this paper outlines the various algorithms presented
in the literature. In addition, a new supervised edge map
quality measure based on the distances of misplaced pixels is
presented and compared to the others; the score obtained by
this measure is normalized and can be interpreted for each
type of contour. In order to present the effectiveness and
efficiency of the proposed method, this new formula is com-
pared with others presented and detailed in the state-of-the-
art. Thus, several comparisons of edge detection assessments
are carried out for different perturbations such as: addition of
false positive points, creation of false negative points, over-
segmentation near the edge (until total dilation of the edge),
contour displacement, modification of the image size... These
experiments indicate that some measures are not appropriate
for the evaluation of edge detection for each type of boundary,
and an ideal measure must be one that reacts as coherently
possible to reality. Therefore, this paper shows the relevance of

a boundary detection assessment that takes into consideration
the distance of both the false positive and the false negative
points created or missed by the boundary detection process.

The remainder of this paper is organized as follows. Section
II is devoted to an overview of error measures based on
statistics. Next, Section III reviews most existing reference-
based edge measures involving distances of erroneous points,
then points out the advantages and drawbacks of different
measures, followed by the presentation of a new measure.
Section IV presents experimental results for different synthetic
data, and then quality measure results for real images. Finally,
Section V gives perspectives for future work and draws the
conclusions of the study.

II. CONFUSION MATRIX-BASED ERROR ASSESSMENTS

To assess an algorithm, the confusion matrix remains a
cornerstone in boundary detection evaluation methods. Let Gt
be the reference contour map corresponding to ground truth
and Dc the detected contour map of an image I . Comparing
pixel per pixel Gt and Dc, the first criterion to be assessed
is the common presence of edge/non-edge points. A basic
evaluation is compounded from statistics resulting from a
confusion matrix. To that effect, Gt and Dc are combined.
Afterwards, denoting | · | as the cardinality of a set, all points
are divided into four sets:
• True Positive points (TPs), common points of Gt and Dc:
TP = |Dc ∩Gt|,
• False Positive points (FPs), spurious detected edges, i.e.

erroneous pixels of Dc and not in Gt defined as boundary:
FP = |Dc ∩ ¬Gt|,
• False Negative points (FNs), missing boundary points of
Dc, i.e. holes in the true contour: FN = |¬Dc ∩Gt|,
• True Negative points (TNs), common non-edge points of
Gt and Dc: TN = |¬Dc ∩ ¬Gt|.

On the one hand, let us consider boundary detection of natural
images, FPs appear in the presence of noise, texture or other
contours influencing the filter used by the edge detection
operator. On the other hand, FNs represent holes in a contour
of Dc (generally caused by blurred edges in the original image
I). For example, an incorrect threshold of the segmentation
could generate both FPs and FNs. In the experiment, TPs, FPs
and FNs are respectively represented in green, red and blue:
see illustrations in Fig. 2 for more details. Computing only FPs
and FNs enables a segmentation assessment to be performed
[35][36]. Yet, combining at least these two quantities enables

TP pixel

FP pixel

FN pixel

TN pixel

(a) Gt (b) Dc (c) Gt∪Dc (d) Legend

Fig. 2. Illustration of TP (green), FP (red) and FN (blue) points. In (b), Dc
is contaminated with 6 FPs ans 4 FNs, illustrated with colors in (c).
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TABLE I
LIST OF ERROR MEASURES INVOLVING ONLY STATISTICS.

Error measure name Formulation Parameters

Binary noise-to-signal ratio [58] BSNR (Gt, Dc) =

√
|Dc|

FP + FN
None

Complemented Performance measure
[51] [19] P ∗m (Gt, Dc) = 1−

TP

TP + FP + FN
None

Segmentation Success Ratio [55] SSR (Gt, Dc) = 1−
TP 2

|Gt| · |Dc|
None

Complemented Φ measure [56] Φ∗ (Gt, Dc) = 1−
TPR · TN
TN + FP

None

Complemented χ2 measure [60] χ2∗ (Gt, Dc) = 1−
TPR− TP − FP

1− TP − FP
·
TP + FP + FPR

TP + FP
None

Complemented Fα measure [39] F ∗α (Gt, Dc) = 1−
P REC · TPR

α · TPR+ (1− α) · P REC
, with PREC =

TP

TP + FP
α ∈]0; 1]

a segmented image to be assessed more precisely. Thus, we
present a list of statistical measures -others are detailed in [3]-
, and a good-quaity edge detection method should obtain the
smallest response for the three following indicators [2] [9]:

Over-detection error : Over(Gt, Dc) =
FP

|I| − |Gt|
,

Under-detection error : Under(Gt, Dc) =
FN

|Gt|
,

Localization-error [29]: Loc(Gt, Dc) =
FP + FN

|I|
.

One of the pioneer works in quantitative edge evaluation,
reported by Deutsch and Fram [12] computed two parameters
P1 and P2. The first evaluates the distribution of false positive
points in function of the number of columns containing edge
points, whereas P2 quantifies the edge detection by counting
the missing points for each line of Dc. Thus, P1 and P2

parameters are given by:

P1(Gt, Dc) = 1− nsig

nsig + (nnoise + FP ) · wstan · |Gt|
w1 · |I|

. (1)

and

P2(Gt, Dc) = 1−

nr
w2
−
(

1−
[
1− nnoise

|Gt|

]w1
)

[
1− nnoise

|Gt|

]w1
, (2)

with: 
nnoise =

FP · |Gt|
TN + FP

nsig =
TP − nnoise
1− nnoise

,

where nr and w1 represent respectively the number of rows
and columns in Dc which contains a least one edge point
(FP or TP point). Also, wstan corresponds to the number
of columns of Gt (which is the same as Dc), w2 is the
number of rows of the envelop rectangle containing Dc.
These two parameters are close to 0 when the segmentation
is efficient and tend towards one for poor detection. How-
ever, P1 and P2 would be more suited for the evaluation

of vertical edges (see Fig. 3). On the contrary, the score
of P1 can be over 1 when w1 � wstan, as in Fig. 5.
Moreover, concerning P2, when nr = w2, so nr

w2
= 1 and

P2(Gt, Dc) = 1− (1−nnoise/|Gt|)w1

(1−nnoise/|Gt|)w1
= 0, translating, wrongly,

a perfect segmentation, as in Fig. 3 (b), (c), (e), (f) and Fig.
5.

{{
(a) T

(b) C (c) L (d) C1

P1(L,C) = 1.0244 P1(C,L) = 1.200 P1(C,C1) = 0

P2(L,C) = 0 P2(C,L) = 0 P2(C,C1) = 0.1429

(e) C2 (f) C3 (g) C4

P1(C,C2) = 0.091 P1(C,C3) = 0.091 P1(C,C4) = 0.121

P2(C,C2) = 0 P2(C,C3) = 0 P2(C,C4) = 0.1654

Fig. 3. Computation of parameters P1 and P2 using contour images 7×7. The
C image in (b) is considerate as the Gt image. P1 penalizes Dc having FPs
whereas P2 penalizes vertical contours with hole(s). In (d), P1(C,C1) = 0
because P1 records only FPs. Note in (a) that P1(L,C) 6= P1(C,L).
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Several edge detection evaluations involving confusion ma-
trices are presented in Table I. Only TPs are an indicator, as for
SSR, this measure is normalized in function of |Gt| · |Dc| and
decreases with improved quality of detection, with SSR = 0
qualifying a perfect segmentation.

The Binary Signal-to-Noise Ratio [58] BSNR (see table I) is
inspired by the Signal-to-Noise Ratio (SNR). It corresponds
to a measure comparing the level of a signal in a reference
signal to the level of the noise in a desired signal. Thus,
BSNR computes a global error in function of the FPs and
FNs; the fewer the numbers of FPs and FNs, the more the
score increases and tends to the infinity when Gt = Dc .

Finally, the complemented Performance measure P ∗m pre-
sented in table I considers directly and simultaneously the
three entities TP , FP and FN to assess a binary image [19].
The measure is normalized and decreases with improved qual-
ity of detection, with P ∗m = 0 qualifying perfect segmentation.

By combining FP , FN , TP and TN , another way to dis-
play evaluations is to create Receiver Operating Characteristic
(ROC) [7] curves or Precision-Recall (PR) [39], involving True
Positive Rates (TPR) and False Positive Rates (FPR):

TPR =
TP

TP + FN

FPR =
FP

FP + TN
.

Derived from TPR and FPR, the three measures Φ, χ2 and
Fα (detailed in Table I) are frequently used in edge detection
assessment. Using the complement of these measures results in
a score close to 1 indicating good segmentation, and a score
close to 0 indicating poor segmentation. Among these three
measures, Fα remains the most stable because it does not
consider the TNs, which are dominant in edge maps. Indeed,
taking into consideration TN in Φ and χ2 influences solely
the measurement (as is the case in huge images).

These measures evaluate the comparison of two edge im-
ages, pixel per pixel, tending to severely penalize an (even
slightly) misplaced contour. Furthermore, they depend heavily
of the reference image Gt which could be interpreted in
different ways, as the different contours presented in Fig.
1. So statistical measures do not indicate enough significant
variations of the desired contour shapes in the course of
an evaluation (as illustrated in Fig. 5). As this penalization
tends to be too severe, some evaluations resulting from the
confusion matrix recommend incorporating spatial tolerance,
particularly for the assimilation of TPs [48] [7] [39]. This

inclusion could be carried by a distance threshold or a dilation
of Dc and/or Gt, as in [10] (see Eq. (58)). Such a strategy of
assimilation leads to counting several near contours as stripes
parallel to the desired boundary (issued from the edge detector
itself or a blur/texture in the original image). For example,
awarding a spatial tolerance for the FPs will ensure the same
score for an over-segmentation near the edges (experiments
illustrated in Fig. 13), if the spatial tolerance stays greater
than the FP distances from the true pixel. Tolerating a distance
from the true contour and integrating several TPs for one
detected contour are opposite to the principle of unicity in edge
detection expressed by the 3rd Canny criterion: an optimal
edge detector must produce a single response for one contour
[8]. Thus, from the discussion below, only one FP or one
TP should be considered in the boundary detection evaluation
process. Finally, to perform an edge evaluation, the assessment
should penalize a misplaced edge point proportionally to the
distance from its true location.

III. ASSESSMENT INVOLVING DISTANCES OF MISPLACED
PIXELS

A reference-based edge map quality measure requires that
a displaced edge should be penalized in function not only of
FPs and/or FNs but also of the distance from the position
where it should be located. Table II reviews the most rel-
evant measures in the literature with a new one called Ψ.
Some distance measures are specified in the evaluation of
over-segmentation (i.e. presence of FPs) and others in the
assessment of under segmentation (i.e. missing ground truth
points). A complete edge detection evaluation measure takes
into account both under- and over-segmentation assessment,
the studied measures are detailed in the following subsection.

A. Existing quality measures involving distances

The common feature between these evaluators corresponds
to the error distance dGt(p) or/and dDc(p). Indeed, for a pixel
belonging to the desired contour p ∈ Dc, dGt(p) represents
the minimal distance between p and Gt. On the contrary,
if a pixel p belongs to the ground truth Gt, dDc(p) is the
minimal distance between p and Dc. Mathematically, denoting
(xp, yp) and (xt, yt) the pixel coordinates of two points p and
t respectively, thus dGt(p) and dDc(p) are described by:

distance
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FoM, κ = 1

FoM, κ = 1/2

FoM, κ = 1/3

FoM, κ = 1/4

FoM, κ = 1/5
FoM, κ = 1/6

FoM, κ = 1/7

FoM, κ = 1/8

FoM, κ = 1/9

(a) Vertical edge lines with (b) FoM scores (c) Vertical edge line with (d) FoM scores (e) Legend
false positive points false negative points

Fig. 4. Evolution of FoM in function of the the distance of the false positive/negative points and κ parameter. A vertical line of false positive points (a) or
false negative points (c) is shifted by a maximum distance of 16 pixels and the measured scores are plotted in function of the displacement of this distance.
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TABLE II
LIST OF ERROR MEASURES COMPARED IN THIS WORK. IN THE LITERATURE, THE MOST COMMON VALUES ARE k = 1 OR k = 2.

Error measure name Formulation Parameters

Figure of Merit (FoM )
[1] FoM (Gt, Dc) = 1−

1

max (|Gt| , |Dc|)
·
∑
p∈Dc

1

1 + κ · d2Gt (p)
κ ∈ ]0; 1]

FoM of over-
segmentation [52] FoMe (Gt, Dc) = 1−

1

max (e−FP , FP )
·

∑
p∈Dc∩¬Gt

1

1 + κ · d2Gt (p)
κ ∈ ]0; 1]

FoM revisited [47] F (Gt, Dc) = 1− 1
|Gt|+β·FP

·
∑
p∈Gt

1

1 + κ · d2Dc (p)

κ ∈ ]0; 1] and β ∈
R+

Combination of FoM and
statistics [5] d4 (Gt, Dc) = 1

2
·

√
(TP − max (|Gt| , |Dc|))2 + FN2 + FP 2

(max (|Gt| , |Dc|))2
+ FoM (Gt, Dc)

κ ∈ ]0; 1] and β ∈
R+

Edge map quality measure
[43] Dp (Gt, Dc) =

1/2
|I|−|Gt|

·
∑
p∈Dc

(
1−

1

1 + κ·d2Gt(p)

)
+

1/2
|Gt|
·
∑
p∈Gt

(
1−

1

1 + κ·d2Gt∩Dc(p)

)
κ ∈ ]0; 1]

Yasnoff measure [59] Υ (Gt, Dc) = 100
|I| ·

√ ∑
p∈Dc

d2Gt (p) None

Hausdorff distance [24] H (Gt, Dc) = max

(
max
p∈Dc

dGt (p), max
p∈Gt

dDc (p)

)
None

Distance to Gt [46]
[24][13][31] Dk (Gt, Dc) = 1

|Dc|
· k
√ ∑
p∈Dc

dkGt (p), k = 1 for [46] k ∈ R+

Maximum distance [13] f2d6 (Gt, Dc) = max

 1

|Dc|
·
∑
p∈Dc

dGt (p),
1

|Gt|
·
∑
p∈Gt

dDc (p)

 None

Oversegmentation
[20][40] Θ (Gt, Dc) = 1

FP
·
∑
p∈Dc

(
dGt (p)

δTH

)k
, k = δTH = 1 for [20] for [40]: k ∈ R+ and

δTH ∈ R∗+

Undersegmentation
[20][40] Ω (Gt, Dc) = 1

FN
·
∑
p∈Gt

(
dDc (p)

δTH

)k
, k = δTH = 1 for [20] for [40]: k ∈ R+ and

δTH ∈ R∗+

Baddeley’s Delta Metric
[2] ∆k(Gt, Dc) = k

√
1
|I| ·

∑
p∈I
|w(dGt (p))− w(dDc (p))|k

k ∈ R+ and a con-
vex function w :
R 7→ R

Symmetric distance
[13][31] Sk (Gt, Dc) =

k

√√√√√ ∑
p∈Dc

dkGt (p)) +
∑
p∈Gt

dkDc (p)

|Dc ∪Gt|
, k = 1 for [13] k ∈ R+

Magnier et al. measure
[37] Γ(Gt, Dc) = FP+FN

|Gt|2
·
√ ∑
p∈Dc

d2Gt (p) None

Symmetric distance mea-
sure Ψ(Gt, Dc) = FP+FN

|Gt|2
·
√ ∑
p∈Gt

d2Dc (p) +
∑
p∈Dc

d2Gt (p) None



for p ∈ Dc :

dGt(p) = Inf
{√

(xp − xt)2 + (yp − yt)2, t ∈ Gt
}
,

for p ∈ Gt :

dDc(p) = Inf
{√

(xp − xt)2 + (yp − yt)2, t ∈ Dc

}
.

These distances refer to the Euclidean distance, even though
some authors include other types of distance, see [31]. The
measures presented in Table II are tuned in function of the
various parameters referenced in Table IV. After marking a
theoretical comparison of all these edge detection assessments
and carrying out in depth comparison of their parameters, the
experimental results are presented.

1) Figure of Merit and its derivatives: First, to achieve a
quantitative index of edge detector performance, one of the

most popular descriptors is the Figure of Merit (FoM ). This
distance measure ranges from 0 to 1, where 0 corresponds to a
perfect segmentation [1]. The constant value κ is fixed at 1/9,
1/4 or 1/10 (the last value is the one used in the experiments
of this paper). The more κ is close to 1, the more FoM
tackles FPs, as illustrated in Fig 4. Widely utilized for com-
paring several different segmentation methods, in particular
thanks to its normalization criterion, this assessment approach
nonetheless suffers from a main drawback. Whenever FNs are
created, for example a contour chain (even long) which is
not totally extracted, the distance of FNs (dDc(p)) are not
recorded. Indeed, FoM can be rewritten as:

FoM(Gt, Dc) = 1−

∑
p∈Dc∩Gt

1

1 + κ · d2Gt (p)
+

∑
p∈Dc∩¬Gt

1

1 + κ · d2Gt (p)

max (|Gt| , |Dc|)
,
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(a) Gt, |Gt| = 48 (b) D1, FP = 54 (c) D2, FP = 54
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(d) Error distance: Gt v.s. D1 (e) Error distance: Gt v.s. D2

Negative values (in blue) represent dDc while positive values correspond to dGt .

Over(Gt, D{1,2}) = 0.12 Under(Gt, D{1,2}) = 1
Loc(Gt, D{1,2}) = 0.24 BSNR(Gt, D{1,2}) = 0.73
P ∗m(Gt, D{1,2}) = 1 Φ∗(Gt, D{1,2}) = 1

χ2∗(Gt, D{1,2}) = 0.98 F ∗α=0.5(Gt, D{1,2}) = 1

P1(Gt, D1) = 16.25 P1(Gt, D2) = 1.63
P2(Gt, D1) = 0 P2(Gt, D2) = 0

FoM(Gt, D1) = 0.22 FoM(Gt, D2) = 0.60
FoMe(Gt, D1) = 0.22 FoMe(Gt, D2) = 0.60
F (Gt, D1) = 0.63 F (Gt, D2) = 0.75
d4(Gt, D1) = 0.84 d4(Gt, D2) = 0.89
Dp(Gt, D1) = 0.51 Dp(Gt, D2) = 0.54

SFoM(Gt, D1) = 0.25 SFoM(Gt, D2) = 0.40
MFoM(Gt, D1) = 0.29 MFoM(Gt, D2) = 0.40

Υ(Gt, D1) = 12.99 Υ(Gt, D2) = 37.34
H(Gt, D1) = 1.41 H(Gt, D2) = 7.67
H5%(Gt, D1) = 1.41 H5%(Gt, D2) = 6.71
Dk
k=1(Gt, D1) = 1.06 Dk

k=1((Gt, D2) = 3.05
Dk
k=2(Gt, D1) = 0.16 Dk

k=2((Gt, D2) = 0.48
f2d6(Gt, D1) = 1.06 f2d6(Gt, D2) = 3.05

ΘδTH=1(Gt, D1) = 1.19 ΘδTH=1(Gt, D2) = 12.26
ΘδTH=5(Gt, D1) = 0.05 ΘδTH=5(Gt, D2) = 0.49
ΩδTH=1(Gt, D1) = 1.04 ΩδTH=1(Gt, D2) = 5.12
ΩδTH=5(Gt, D1) = 0.04 ΩδTH=5(Gt, D2) = 0.20

∆k
w(Gt, D1) = 0.96 ∆k

w(Gt, D2) = 2.31
SDk

k=1(Gt, D1) = 1.04 SDk
k=1((Gt, D2) = 2.57

SDk
k=1(Gt, D1) = 1.05 SDk

k=2((Gt, D2) = 2.98
Γ(Gt, D1) = 0.34 Γ(Gt, D2) = 0.57
Ψ(Gt, D1) = 0.46 Ψ(Gt, D2) = 0.72

KPIΓ(Gt, D1) = 0.16 KPIΓ(Gt, D2) = 0.27
KPIΨ(Gt, D1) = 0.22 KPIΨ(Gt, D2) = 0.37

Fig. 5. Results of evaluation measures. For the two candidate
images, the number of FPs and number of FNs are the same:
FPs: |D1∩¬Gt|=|D2∩¬Gt|=54 and FNs: |¬D1∩Gt|=|¬D2∩Gt| =
|Gt|=48. Also, D1∩Gt=D2∩Gt=∅, so TP = 0 and SSR(Gt, D1) =
SSR(Gt, D2) = 1. The assessments involving distances of FPs and/or FNs
heavily penalize Dc, including misplaced points with greater distances.

hence:

FoM(Gt, Dc) = 1−

TP +
∑

p∈Dc∩¬Gt

1

1 + κ · d2Gt (p)

max (|Gt| , |Dc|)
, (3)

because, for p∈Dc ∩Gt, d2
Gt

(p) = 0 and 1
1+κ·d2

Gt
(p)

= 1.
Knowing that TP = |Gt| − FN , for the extreme cases, the
FoM measures takes the following values:

if FP = 0:

FoM(Gt, Dc) = 1− TP

|Gt|
,

if FN = 0:

FoM(Gt, Dc) = 1− 1
max(|Gt|,|Dc|) ·

∑
p∈Dc∩¬Gt

1

1 + κ · d2
Gt

(p)
.

Consequently, FoM counts only TPs to penalize FN points
(Fig 4 (d)) whereas only distances of FPs are recorded (Fig
4 (b)). Moreover, for FP > 0, as 1

1+κ·d2
Gt

(p)
< 1, it can

be easily demonstrate that the FoM measure penalizes the
over-detection very low compared to the under-detection. The
curve in Fig. 6 shows that when FN > FP , the penalization
of missing points (FNs) becomes higher wheareas it is weak
FN < FP . Incidentally, FoMe represents an extension of
FoM by counting only FPs [52], strictly evaluating the over-
segmentation. In fact, it computes a mean of 1

1+κ·d2
Gt

(p)
for

all the FPs. Consequently, in the presence or absence of
FNs, a contour image is considered by the FoMe criterion
as correctly segmented. The experiments in Fig. 6, Fig. 8
and Section IV illustrate this undesirable behavior. Some
improvements have been developed, such as F and d4. In
order to overcome the gaps in FoM , F computes the distances
of FNs from Gt and the measure is tuned by the number of
FPs and the cardinality of Gt (choosing β = 1 [47]). As

(a) Image Gt, (b) Image L1, (c) Image L2,
|Gt| = 21 |Dc| = 31, TP =, 21 |Dc| = 10, TP = 0,

FP = 10, FN = 0 FP = 10, FN = 21
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 FoM,   =  0.1
 FoMe,   =  0.1
 F,   =  0.1
 d4,   =  0.1
 SFoM,   =  0.1
 MFOM,   =  0.1
 Dp,   =  0.1

(d) Scores of FoM and its derived measures.

Fig. 6. Results of FoM and its derived measures in function of the %
of FNs, comparing Gt and L1. When the number of FNs attains 100%, the
candidate edge image corresponds to L2.
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TABLE III
BEHAVIOR OF d4 MEASURE IN FUNCTION OF DIFFERENT SEGMENTATION

LEVELS, NOTING M = (max(|Gt|, |Dc|))2 .

Segmentation level FoM
|TP−max(|Gt|,|Dc|)|

M
FN
M

FP
M

Good ≈ 0 ≈ 0 ≈ 0 ≈ 0
FP ↗, FN = 0 > 0 > 0 0 > 0
FP = 0, FN ↗ > 0 > 0 > 0 0
FP ↗, FN ↗ > 0 > 0 > 0 > 0

pointed out through Eq. 3 for FoM and illustrated in Fig.
6, F behaves inversely to FoM concerning FPs/FNs points:
F is more sensitive to FPs than FNs. Also, d4 represents
another enhancement, this edge measure depends particularly
on TP , FP , FN and FoM ; d4 is normalized with the 1

2
coefficient [5]. Nonetheless, even though d4 behaves correctly
for the experiment in Fig. 6, this measure focuses on FPs and
penalizes FNs like the FoM measure, as detailed in Table III.
This measure suffers from two main drawbacks. On the one
hand, the sum of all its terms yields a high sensibility to edge
displacements. On the other hand, in the case of a pure under-
segmentation, when FN → 0, d4 belongs to [0.7, 0.85] but
does not attains the score of 1.

As described here, an effective measure for the evaluation
of the edge detection is not only directed by dGt or dDc . Thus,
inspired by f2d6 (see bottom and [13]), another way to avoid
the computation of only the distance of FPs in FoM (or only
the distance of FNs in F ) is to consider the combination of
both FoM (Gt, Dc) and FoM (Dc, Gt), as in the following
two formulas:

• Symmetric Figure of Merit:

SFoM (Gt, Dc) =
1

2
· FoM (Gt, Dc) +

1

2
· FoM (Dc, Gt)

(4)
• Maximum Figure of Merit:

MFoM (Gt, Dc) = max (FoM (Gt, Dc) , FoM (Dc, Gt)) .
(5)

As FoM is a normalized measure, SFoM and MFoM
are also normalized. Finally, SFoM and MFoM take into
account both distances of FNS (i.e. dDc ) and FPs (i.e. dGt ),
so they can compute a global evaluation of a contour image.
Nevertheless, Fig. 6 shows that SFoM behaves like FoM
when FN > FP and that MFoM is not monotonous for
this experiment (whereas only FNs are added).

2) Hausdorff distance its enhancements: A second measure
widely computed in matching techniques is represented by
the Hausdorff distance H . In object recognition [22], the
algorithm aims to minimize H , which measure the mismatch
of two sets of points [24][45]. This max-min distance could be
strongly deviated by only one pixel which can be positioned
sufficiently far from the pattern (illustrated in Fig. 8); so the
measured distance becomes that between the pattern and the
(erroneous) point, in that case disturbing the score of H . To
improve the measure such that H becomes less sensitive to
outliers, one idea is to compute H with a proportion of the
maximum distances (for example 5%, 10% or 15% of the
values [24]); let us note Hn% this measure for n% of values

(a) Image A, (b) Image An, (c) Image L,
|Gt| = 45 |Dc| = 48, TP =, 45 |Dc| = 32, TP = 4,

FP = 3, FN = 0 FP = 28, FN = 41
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(d) Distance map: A vs. An (e) Distance map: A vs. L

P1(A,An) = 0.01 P1(A,L) = 0.80
P2(A,An) = 0 P2(A,L) = 0

P ∗m(A,An) = 0.06 P ∗m(A,L) = 0.95
SSR(A,An) = 0.06 SSR(A,L) = 0.99
Φ∗(A,An) = 0.01 Φ∗(A,L) = 0.92
χ2∗(A,An) = 0.07 χ2∗(A,L) = 0.99

F ∗α=0.5(A,An) = 0.03 F ∗α=0.5(A,L) = 0.90

FoM(A,An) = 0.05 FoM(A,L) = 0.60
FoMe(A,An) = 0.50 FoMe(A,L) = 0.83
F (A,An) = 0.06 F (A,L) = 0.66
d4(A,An) = 0.05 d4(A,L) = 0.78

SFoM(A,An) = 0.06 SFoM(A,L) = 0.53
MFoM(A,An) = 0.06 SFoM(A,L) = 0.60
Dp(A,An) = 0.003 Dp(A,L) = 0.29
Υ(A,An) = 2.93 Υ(A,L) = 1.82
H(A,An) = 7 H(A,L) = 5.83

H5%(A,An) = 5.5 H5%(A,L) = 5.37
Dk,k=1(A,An) = 0.30 Dk,k=1((A,L) = 2.05
Dk,k=2(A,An) = 0.18 Dk,k=2((A,L) = 0.44
f2d6(A,An) = 0.30 f2d6(A,L) = 2.11

ΘδTH=1(A,An) = 4.87 ΘδTH=1(A,L) = 2.34
ΘδTH=3(A,An) = 2.89 ΘδTH=3(A,L) = 0.79

ΩδTH=1(A,An) = 0 ΩδTH=1(A,L) = 2.31
ΩδTH=3(A,An) = 0 ΩδTH=3(A,L) = 0.77
∆k(A,An) = 2.11 ∆k(A,L) = 2.56

SDk,k=1(A,An) = 2.12 SDk,k=1(A,L) = 2.09
SDk,k=2(A,An) = 2.71 SDk,k=2(A,L) = 2.51

Γ(A,An) = 0.01 Γ(A,L) = 0.48
Ψ(A,An) = 0.01 Ψ(A,L) = 0.75

KPIΓ(A,An) = 0.01 KPIΓ(A,L) = 0.24
KPIΨ(A,An) = 0.01 KPIΨ(A,L) = 0.39

Fig. 7. Results of evaluation measures. Even edge evaluations involving
distances can be disturbed by few misplaced pixels and do not respect the
shape of the true pattern.

(n ∈ R∗+). Even though a mean percentage of the distance
does not guarantee an optimized comparison, as illustrated in
Fig. 7, this enhancement helps with regard to robustness, and
some other modifications are proposed in [61] and in [4].

Inspired by the Hausdorff distance with a view to developing
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a new method that is robust with regard to a small number
of outliers, some researchers have proposed other measures
and studied their behaviors in the presence of misplaced edge
points [2] [13]. As Hn% remains close to the Hausdorff
distance, the rank n acts as a threshold for erroneous pixels
and Hn% behaves as H . As pointed out in [13], an average
distance from the edge pixels in the candidate image to those
in the ground truth is more appropriate for matching purposes
than H and Hn%. A first proposition of this distance is Dk

which represents an error distance only in function of dGt .
Also, the Yasnoff measure, called Υ, seems to Dk, with k = 2,
using a different coefficient of 100

|I| [59]. The distance measures
Dk and Υ estimate the divergence of FPs; in other words,
they correspond to a measure of over-segmentation. On the
contrary, the sole use of a distance dDc instead of dGt enables
an estimation of the FN divergences, representing an under-
segmentation (as in Ω). Precisely, θ and Ω represent two over-
and under-segmentation assessment measures, where δTH is
the maximum distance allowed to search for a contour point
(see also distortion rates in [18]). These distance measures
penalize misplaced points further than δTH from Gt [40].
Choosing, δTH > 1 is equivalent to taking into account the
relative position for the over- and under-segmentation and
goes back to the problem of the spatial tolerance detailed
in Section II). Finally, as concluded in [9], a complete and
optimum edge detection evaluation measure should combine
assessments of both over- and under-segmentation, as f2d6 and
Sk. Thus, the score of the f2d6 corresponds to the maximum
between the over- and the under-segmentation whereas the
values obtained by Sk reprensents their mean. Moreover, Sk

takes small values in the presence of low level of outliers
whereas the score becomes large as the level of mistaken
points increases [13][31] but is sensitive to remote misplaced
points as represented in Fig. 8.

Combining both dDc and dGt , Baddeley’s Delta Metric (∆k)
[2] is a measure derived from the Hausdorff distance which is
intended to estimate the dissimilarity between each element of
two binary images. Finally, as this distance measure is based
on the mean difference between the two compared images
and is useful in region segmentation [26]. For this measure, w
represents a weighting concave function, in general w(x) = x
or w(x) = min(

√
n2 +m2, x) for an image of size m×n,

with m and n∈N∗ [30] (in our experiments, we use w(x)=x).
Compared to automatic threshold algorithms such as [41], the
threshold at which the edge detector obtains the best edge map
is more appropriate when it is computed by the minimum value
of ∆k [14]. The main drawback of ∆k is its hypersensitivity to
false positive points, i.e. this measure tends to over-penalize
images with false detections. Indeed, when a false positive
pixel is far from the true edge, the |w(dGt(p))− w(dDc(p))|
value creates a high impact on the evaluation, thus penalizing
the measure (as in the example in Fig. 8).

Another way to compute a global measure is presented
in [43] with the normalized edge map quality measure Dp.
In fact, this distance measure is similar to SFoM , with
different coefficients. The over-segmentation measure (left
term) evaluates dDc , the distances between the FPs and Gt.

The under-segmentation measure (right term) computes the
distances of the FNs between the closest correctly detected
edge pixel, i.e. Gt ∩ Dc. That means that FNs and their
distances are not counted without the presence of TP(s), and
Dp is sensitive to displacements of edges. Moreover, both the
left and the right terms are composed of a 1

2 coefficient, so in
the presence of only under- or over-segmentation, the score of
Dp does not go above 1

2 .

3) A new edge detection measure evaluation: In [37], a
normalized measure is developed after computation of the edge
assessment Γ. The Γ function represents an over-segmentation
measure which depends also of FN and FP . As this measure
is not sufficiently efficient concerning FNs, Ψ is an alternative
function which also considers dDc for false negative points.
Inspired by Sk, Ψ uses different coefficients which change the
behavior of the measure, as discussed in the next subsection.

B. On the importance of the coefficients

As shown in Table IV, distance measures compute the
evaluation using a coefficient mostly including: |Gt|, |Dc|,
|Gt∪Dc|, FN or FP . Concerning the Υ distance measure, the
coefficient 100

|I| compress the measurement, especially when
the image is large (as demonstrated in Fig. 12). For Dp, the
coefficient 1

|I|−|Gt| affects the measure concerning the false
positive term, thereby creating an insensitivity to FPs, because,
generally, |Gt| � |I|and 1

|I|−|Gt| ∼
1
|I| ∼ 0+. Thus, the

assessment of FNs is given more weight in the edge evalua-
tion, strongly penalizing edge displacements. The experiments
presented in the next section illustrate this drawback (Fig. 12).
However, ∆k uses |I| as denominator term because the mean
distance is computed for all the pixels of the image.

The authors of Γ have studied the influence of the coefficient
in different concrete cases [37]. Actually, using only |Gt| or
|Dc| penalizes severely the measurement when one misclassi-
fied pixel is placed at a significant distance of its true position.

TABLE IV
PARAMETERS AFFECTING THE ERROR DISTANCE MEASURES.

Measure |Gt| |Dc| dGt dDc Other
FoM X X X
FoMe X FP
F X X FP
d4 X X TP , FP , FN

MFoM X X X X
SFoM X X X X
Dp X X |I|, p ∈ Gt: dGt∩Dc (p)
Υ X |I|

H , Hn% X X
Dk X X
Θ X FP
Ω X FN

∆k X X |I|
f2d6 X X X X
Sk X X |Gt∪Dc|
Γ X X FP + FN
Ψ X X X FP + FN
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(a) Ground truth, (b) T1 with 19 FPs, (c) Distance map (d) T2 with 1 FP, (e) Distance map
|Gt| = 20 distance of 2 pixels. from (a) vs. (b) distance of 15 pixel. from (a) vs. (d)

Dc |Gt|
√ ∑
p∈Gt

d2
Dc

(p) +
∑
p∈Dc

d2
Gt

(p) FN FP FoMe H H20% ∆k Sk A B Ψ

T1 100 12.21 19 19 0.5 2 2 1.91 1.93 0.031 0.031 1.15
T2 100 15.03 1 1 0.983 15 4 4.78 2.38 0.038 0.038 0.075

Fig. 8. Errors quantified by FoMe, H , H5%, ∆k , Sk (k = 2), A, B and Γ for two different candidate edge images compared to the same ground truth.

For a counterexample, let us consider the following formula:

A(Gt, Dc) =

√ ∑
p∈Gt

d2
Dc

(p) +
∑
p∈Dc

d2
Gt

(p)

|Gt|2
. (6)

A represents an evaluation measure of contour detection
involving both dDc and dGt plus a coefficient term 1

|Gt|2 .
Now, considering two images (images (b) and (d) in Fig. 8)
with identical ground truth points Gt (Fig. 8(a)). However, in
image (d), a single FP point at a distance sufficiently high
behaves for A as several FP points on another image; these
images have the same interpretation in terms of A measure,
which is not the case with ratios 1/10 and 9/10. The table in
Fig. 8 illustrates, with a simple example, this drawback for A,
∆k and Sk, and a similar example can be found in in Fig. 7.

Close to A, the following measure B depends strongly on
the desired contour number |Dc|:

B(Gt, Dc) =

√ ∑
p∈Gt

d2
Dc

(p) +
∑
p∈Dc

d2
Gt

(p)

|Dc|2
. (7)

B suffers from the same problem as A. Furthermore, in
general, a measure depending mainly on a coefficient 1

|Dc| (as
a coefficient 1

|I| ) evaluates a boundary image with a value close
to 0 whereas Dc stays totally misplaced, especially when |Dc|
is huge (when |Dc| is huge, it corresponds to a total saturation
of the desired contour with an inconsistent number of FPs).

Finally, the authors concluded in [37] that such a for-
mulation must take into consideration all observable and
theoretically observable cases, as illustrated in Fig. 8. That
means that an effective measure has to take into account all the
following input parameters |Gt|, |Dc|, FN and FP , whereas
the image dimensions should not be considered. Thus, the
coefficient parameter FP+FN

|Gt|2 seems a good compromise for
an evaluation measure of edge maps and has been introduced
into the new formula of assessment Ψ.

C. Normalization of the edge detection evaluation

In order to compare each boundary detection assessment,
all the measures must be normalized, and must also indicate

the same information: an error measure close to 1 means
poor segmentation whereas a value close to 0 indicates good
segmentation. The values of FoM , FoMe, F , d4, MFoM ,
SFoM and Dp comply with this [0, 1] condition. However,
concerning the other distance measures in Table II, normal-
ization is required. Introduced in [37], a formula called Key
Performance Indicator (KPI), with KPI ∈ [0, 1] gives a
value close to 1 for a poor segmentation. Alternatively, a
KPI value close to 0 indicates a good segmentation. The Key
Performance Indicator is defined using the following equation:

KPIu : [0;∞[ 7→ [0; 1[

u → 1− 1

1 + uh
.

(8)

where the parameter u is replaced by a distance error and h
a constant such that h ∈ R+

∗ .
A key parameter of the KPI formula is the power of the

denominator term called h. It may be called a power of obser-
vation. Inasmuch as KPI depends on its value, it evolves more
or less quickly around 0.5 and embodies a range of observable
cases. Average values have been determined for the error
distance term

√∑
d2Dc +

∑
d2Gt concerning Ψ and

√∑
d2Gt for

Γ. The choice of values between 1 and 2 can be easily checked.
Otherwise, the more abrupt the KPI evolution, the less the
transition between 0.5 and 1 is marked (i.e. the slope of the
KPI curve, for example h = 1 in Fig. 9). Moreover, fixing
h = 1, KPI stagnates far from 1 when

√∑
d2Dc +

∑
d2Gt or√∑

d2Gt becomes high. Additionally, when h = 2, KPI starts
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Fig. 9. Evolution of the KPIψ in function of the mistake points distance,
for different powers h, with FN + FP = 4000 and |Gt| = 2200.
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|Gt| = 200 |Gt| = 2000 |Gt| = 5000

Fig. 10. Evolution of the KPI in function of the erroneous points distance, the number of FPs and FNs, for different |Gt| and fixing h = φ.

to increase slowly, then the slope becomes sharp around 0.5
and converges quickly towards 1. Finally, to fix the power
at the golden ratio φ ' 1.6180339887 in order to ensure
an evolution of KPI that would not be too abrupt from 0
to 1 and also not penalize when the error distances are not
high (contrary to KPI with h = 1, see Fig. 9). Furthermore,
Fig. 10 illustrates KPI values in function of the distance of
the mistake points and their numbers. For a small skeleton
Gt = 200, it shows that KPI draws near 1 quickly when
the number of FPs, number of FNs and their distances are
growing. Alternatively, for a bigger skeleton, KPI rises more
slowly. These three evolution surfaces show the coherence
and robustness of KPI regarding the starting conditions: a
displaced edge is penalized in function of the number of false
pixels and also of the distance from the position where it
should be located.

Such a value enables a displaced edge to be penalized in
function of the false pixel number and also of the distance
from the position it should be located at. As a compromise,
using the KPI formula with h = φ, the measurement
neither becomes too strong in the presence a small number
of positive or negative misclassified pixels nor penalizes Dc

too severely if dGt/Dc is small. Compared to Γ, Ψ improves
the measurement by combining both dGt and dDc . The next
section is dedicated to experimental results where candidate
edge images are progressively degraded in order to study the
behaviors of the presented boundary detection assessments.
Note that the other measures are also normalized with another
formula in the next section in order to compare all of them.

IV. COMPARISON OF EXPERIMENTAL RESULTS

The two sections above describe the main error measures
concerning edge detection assessment, explaining the advan-
tages and drawbacks of each one. The tests carried out in the
experiments are intended to be as complete as possible, and
thus as close as possible to reality. To that end, considering an
edge model (i.e. ground truth) the edge detection evaluation
measures are subjected to the following studies:
• addition of false negative points (under-segmentation),
• addition of false positive points (over-segmentation),
• addition of both false negative and false positive points,
• addition of false positive points close to the true contour,
• translation of the boundary,

• remoteness of a false positive and false negative chains,
• computation of the minimum value of the measures on edge

images (synthetic and real) compared to the ground truth.
Therefore, 26 measures are tested and compared with each
other: statistical measures in Table I (except BSNR), distance
measures in Table II, plus SFoM , MFoM and SSIM .
Firstly, the normalized measures Φ∗, χ2∗, P ∗m, F ∗α , SSIM ,
FoM , FoMe, F , d4, SFoM , MFoM , Dp, KPIΓ and
KPIΨ are plotted together. The values of SSR are not
recorded because this measure behaves like P ∗m. Secondly,
the scores of the other measures are also normalized to be
plotted together, and normalized using the following equation
for easy visual comparison. Denoting by f ∈ [0; +∞[ the
scores vector of a distance measure such that m = min(f)
and M = max(f), then the normalization N of a measure is
computed by:

N (f) =


0 if M = m = 0
1 if M = m 6= 0

f −m
M −m

if M > 1 and m 6= 0

f otherwise.

(9)

Note that the parameters for each evaluation measure are
indicated directly in the captions of the curves and that the
matlab code of the distance measures as FoM , Dk, Sk and
∆k are available at http://kermitimagetoolkit.net/library/code/.

A. Behavior comparison

The simulation of the degradation of the ground truth
Gt is studied using synthetic data. Thus, concerning the
first 6 experiments, a vertical line represents Gt in a size
image of 100×100, as illustrated in Fig 11(a). FNs, FPs or
displacements corrupt the image, and, as Gt corresponds
to a line, the interpretation of the results remains simpler.
For example, adding a false pixel to Gt or a translation of
Gt can easily be represented mathematically whereas, for a
more complicated shape, the translation of Gt can cross other
pixels and an appropriate measure will not obtain a monotonic
score. Hence, the degradations applied to the vertical lines are
chosen in order to obtain a monotonic score for a complete
measure. Then, the following two tests concern a ground
truth which is a square followed by the computation of the
minimal value of the edge detection evaluation measure in

http://kermitimagetoolkit.net/library/code/
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(a) Gt, image 100×100 (b) addition of 101 FPs
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Fig. 11. Evolution of the dissimilarity measures in function of the number
of added false positive points.
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Fig. 12. Behaviors of dissimilarity measures in function of image size.

function of the threshold.

1) Addition of false positive points: The first test consisted
in randomly adding undesirable pixels to Gt until 100 pixels,
as represented in Fig. 11(b). This perturbation is equivalent to
impulsive noise. The curves in Fig. 11 indicate the response
of each measure in function of the number of created Fs; they
enable comparison of the results delivered by the different
measures.

Firstly, concerning measures automatically given values
between 0 and 1, χ2∗, P ∗m, F ∗α , SSIM , FoM , F , d4, SFoM
and MFoM overlap and penalize corrupted images by FPs as

soon as they appear, but their values are under 0.5 whereas the
last corrupted image is composed of more FPs that TPs(see
Fig. 11(b)). FoMe is not monotonic and computes a mean
in function of the apparition of FPs. Φ∗ and Dp overlap and
stay close to 0 (same remark for the under-segmentation Ω).
Contrary to the previous measures, KPIΓ and KPIΨ ensure
an evaluation which does not become too high in the presence
of a small number of FPs, but penalizes Dc more severely
for 50 or more undesirable points. Secondly, concerning the
non-normalized measures, Θ is not monotonic or sensitive to
FP distances, as H and H5% which stay blocked at the higher
distances values, whatever the number of FPs. Furthermore, Υ,
Dk, ∆k, f2d6 and Sk have a coherent behavior, even though
Υ, Dk, ∆k and Sk (with k = 2) are sensitive to FPs at the
beginning of the assessment.

This first experiment is produced by randomly adding FPs
to the same Gt image. The second test is presented in the
image of Fig. 12 (a) which is composed of a vertical line and
100 FPs randomly placed around the line. The first image
in this test image is as large as the image in Fig. 11(b). In
a second step, the TPs and FPs are maintained in the same
position and the margins are increased, as illustrated in Fig.
12 (b), influencing the evaluation in certain cases. The curves
presented in Fig. 12 (b) show which dissimilarity measure

(a) 30 % of FPs (b) 100 % of FPs
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Fig. 14. Evolution of the dissimilarity measures in function of the number
of false negative points addition. FoM and MFoM overlap.

scores are changed by the elongations of the margins (note
that the margins lengthen both downward and to the right
at the same time). Even though the values of χ2∗ do not
change significantly, SSIM , Υ and ∆k evolve strongly.
The distance measure Dp, which remains insensitive to FPs
becomes increasingly close to zero as the margin increases.

2) Over-segmentation close to the contour: The idea
of this experiment is to create an over-segmentation at a
maximum distance of 5 pixels, as illustrated in Fig. 13(a).
Therefore, 100% of over-segmentation represents a dilation
of the vertical line with a structural element of size 1×6,
corresponding of a total saturation of the contour, see Fig.
13(b). The curves presented in Fig. 13 show that FoMe, Υ,
Sk(k = 2), ∆k and Θ (δTH = 1) are very sensitive to FPs
whereas, Φ∗, Dk, FoMe, SSIM and Dp do not penalize
Dc enough. Also, Ω stagnates at 0 because it corresponds
to an under-segmentation measure. FoMe, Dk and Θ are
not monotonic whereas the saturation of the contour is
progressive. Note that H and H5% keep the same result
throughout the test after 5% of degradation and that ∆k is
nearly the same. Finally, χ2∗, F ∗α , FoM , F , d4, SFoM ,
MFoM , KPIΓ, KPIΨ, f2d6 and Sk(k = 1) ensure a
measure evolution which is not too abrupt, even though FoM
stagnates around 0.35, then d4 and SFoM around 0.6.

3) Addition of false negative points: In this experiment,
pixels of the vertical line are missing, creating false negative
points. Fig. 14 presents the evolution of the criteria obtained
by the studied segmentation measures. These curves indicate
that almost all the measures show the same behavior.
The over-segmentation measures FoMe, Γ, Υ, Dk and Θ
stagnate at 0. The SSIM stays close to 0, whereas there
are almost no more remaining pixels in Dc at the end of
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Fig. 15. Evolution of the dissimilarity measures in function of both the
number of false positive and false negative points addition.

the experiment. As this test concerns only the addition of
FNs, the Dp distance measure obtains a result of 0.5 at the
finish, but no higher because it corresponds to a measure
which separates under- and over-segmentation. As feared in
Section III, the d4 measure does not sufficiently penalizes
the under-segmentation because the maximum score it attains
is around 0.8. Moreover, compared to the experiment in
Fig. 11, it is clear that FoM , F , d4, SFoM , MFoM and
Dp are more sensitive to FN addition than FP points. The
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of Dc. Note that FoM , FoMe, SFoM and MFoM overlap.
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Fig. 17. Evolution of dissimilarity measures in function of the size of the original square.

non-normalized measure scores in the lower graph of Fig.
14 evolve progressively, even though Sk (with k = 1) is
less sensitive to FNs Note that, for ∆k (which overlaps with
f2d6), FN distances are considered to be less detrimental
than FP distances (experiments reported in Fig. 11). Finally,
KPIΨ ensures an evaluation which is not too high in the
presence of a small number of FNs, followed by a greater
penalization when the number of FNs increases.

4) Addition of both false positive and false negative points:
Some measure are specialized and have an adaptive behav-
ior for the evaluation of only under- or over-segmentation.
Nevertheless, it is interesting to study their sensitivities by
combining these two degradations because edge detectors
often create both FPs and FNs in real/noisy images. Thus,
adding randomly undesirable pixels to Gt (until 100 pixels)
and creating FNs at the same times gives a discontinuous line
in the middle of randomly placed FPs, as illustrated in Fig 15,
bottom right.

Fig. 15 shows a hyper-sensitivity of FPs/FNs distances for
FoMe, H , H5%, Θ, ∆k, Sk and ∆k. Moreover, Θ and Ω
are not monotonic. Also, Φ∗, F ∗α , FoM , d4, MFoM , f2d6

and Sk (with k = 1) increase (almost) constantly from 0 to

1 whereas both FNs and FPs are added. For example, the
image in Fig 15, bottom right, illustrates the line where both
50% of the correct pixels are missing and 50 FPs are added.
In this precise case, Φ∗, F ∗α , FoM , d4, MFoM and SFoM
measures give a result close to 0.5 whereas Gt is disturbed by
more than 50%, as represented by the measurement of χ2∗,
P ∗m, KPIΓ and KPIΨ (note that Υ, Dk and Sk -with k = 2-
behave the same way even though they have a sensitivity
to misplaced points at the beginning of the experiment). F
seems to evolve correctly but is not monotonic. Note that
the SSIM remains unsuitable for this type of degradation
because the best score it attains is little more than 0.5. Finally,
the evolution of Dp is monotonic until 0.5 but not thereafter,
due to the coefficient 1

|I|−|Gt| which compresses the result,
whereas the final image represents a cloud of FPs without
TPs (the next experiment with edge translation shows more
clearly the influence of this coefficient).

5) Edge translation: As pointed out in Section I, a blur in
the original image can shift the detected contour. When this
displacement remains not too high, the shape of the desirable
object stays detectable and the evaluation should not overly
penalize the edge detector. Hence, edge detection evaluation
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measures must be assessed in function of the translation
of a true contour. Indeed, the vertical line is shifted by a
maximum distance of 20 pixels (Fig. 16 bottom left) and
the score of the measures is plotted in Fig. 16 in function
of the displacement of the desired contour. Thus, regarding
the statistical measures Φ∗, χ2∗, P ∗m and F ∗α , the curves
perfectly illustrate the need to consider the distances of the
misplaced pixels for the edge detection evaluation. FoM ,
SFoM and MFoM overlap completely, but their evaluations
are correct, like KPIΓ and KPIΨ. F and d4 measures are
sensitive to the first 2 translations. As pointed out above
with the previous test, Dp is not suited to the evaluation
of translations, like SSIM (the SSIM computes locally a
score in a window 8×8, so the score does not change after a
switch of 8 pixels). The evolution of the other measures (Fig.
16, bottom) perform monotonically but no information can
be infered because the measures are not normalized between
0 and 1 to evaluate the segmentation.

6) Comparison of the false positive distance and false
negative distance points: In the experiment proposed in Fig.
17, two desired contours are compared with a ground truth,
illustrating the importance of considering both the distance of
the false negatives points (dDc ) and the distance of the false
positive points (dGt ). Indeed, a square (Gt in Fig. 17 (a))
is compared with another square (Fig. 17 (b)) and also with
a shape of two edges forming an angle (Fig. 17 (f)). The
minimum square size for Gt is 3×3 large and the image size
stays fixed at 50×50. The shapes C1 and C2 keep the same
position as in (c) and (g) and increase in proportion to Gt.
All the shapes grow at the same time, as represented in Figs.
17 (d) and (h) and the scores for each measure are plotted in
Fig. 17 (i), (j), (k) and (l). Thus, the more Gt grows, the more
C1 is visually closer to Gt whereas FNs deviate strongly in
the case of C2, but keep the same percentage of FPs and FNs
for each desired contour. That is the reason why statistical
measures obtain the same evolutions for each shape: Φ∗, χ2∗,
P ∗m and F ∗α . Despite these two different edge evolutions,
some distance measures obtain almost the same measurements
for C1 and C2: FoM , FoMe, Dp, Dk, Θ (with δTH = 1)
and KPIΓ. On the contrary, concerning the normalized
error distance measures, MFoM and KPIΨ increase to
about 0.5 for C2, due to around 50% of TPs whereas they
converge towards 0 for C1, since C1 becomes visually closer
to Gt. Nevertheless, SFoM does not sufficiently penalize
FN distances in C2, and F is too severe with C1. Concerning
non-normalized measures, H5%, f2d6 and Sk behave correctly.

B. Threshold corresponding to the minimum measure

The aim of the experiments presented here is to obtain
the best edge map in a supervised way. The edges are
extracted using the Canny filter [8] (i.e. isotropic Gaussian
filter with a standard deviation of σ). Then, thin edges are
created after the non-maximum suppression of the absolute
gradient in the gradient direction η [49] (see table V) and
are normalized for easier comparison. In order to study the

performance of the contour detection evaluation measures,
one approach is to compare each measure by varying the
threshold of the thin edges computed by an edge detector1.
Indeed, compared to a ground truth contour map, the ideal
edge map for a measure corresponds to the desired contour
at which the evaluation obtains the minimum score for the
considered measure among the thresholded gradient images.
Theoretically, this score corresponds to the threshold at which
the edge detection represents the best edge map, compared to
the ground truth contour map [14][9]. Since a small threshold
leads to heavy over-segmentation and a strong threshold may
create numerous false negative pixels, the minimum score of
an edge detection evaluation should be a compromise between
under- and over-segmentation.

The two images used in these experiments are a synthetic
and a real image. For the first one, in Fig. 18 (a), several
white shapes are present immersed in a black background,
creating step edges. To avoid the problem of edge pixel
placements, as stated in Section I, Fig. 1, a blur is created by
adding a 1 pixel width of gray around each shape. Thus, the
ground truth corresponds to this gray. The second image in
Fig. 19(a) is a real image with a corresponding hand-made
ground truth. Even though the problem of hand-made ground
truths on real images is discussed by some researchers, only
the comparison of Dc with a Gt is studied here.

1) Edges of synthetic data: To evaluate the measures
performances, the original image in Fig. 18(a) is disturbed
with random Gaussian noise and edges are extracted from
the noisy image (Fig. 18(d) and (e)). Scores are plotted in
function of the threshold and the image under each curve
corresponds to the ideal edge map for the considerate measure.
Statistic measures and Dp correctly extract the edges at the
price of numerous FPs. The Hausdorff distance H , H5%

and ∆k threshold the edges too severely, losing the majority
of TPs. The over-segmentation distance measures Dk, θ
and Γ lose almost all the contours because the minimum
corresponds to the threshold where no false pixel appears
(even though true pixels disappear). Finally, SSIM , f2d6,
F , Sk and Ψ do not create significant holes in the contours
and the FNs extracted are positioned close to the true contours.

2) Edges of a real image: Real images contain other
disturbances than the previous noisy synthetic image, such as
texture or blurred edges. The ground truth and the original
image in Fig. 19 arise from the database available at the
following website: http://www.cs.rug.nl/∼imaging/databases/
contour database/contour database.html.

In edge detection assessment, the ground truth is considered
as a perfect segmentation. However, the boundary benchmarks
are built by human observers and errors may be created by hu-
man labels (oversights or supplements). Indeed, an inaccurate
ground truth contour map in terms of localization (sometimes
several pixels, see [27], part 2.2.2.3) penalizes precise edge
detectors and/or advantages the rough algorithms. In [23] the

1The matlab code and several measures are available on
MathWorks: https://fr.mathworks.com/matlabcentral/fileexchange/
63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges

http://www.cs.rug.nl/~imaging/databases/contour_database/contour_database.html
http://www.cs.rug.nl/~imaging/databases/contour_database/contour_database.html
https://fr.mathworks.com/matlabcentral/fileexchange/63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges
https://fr.mathworks.com/matlabcentral/fileexchange/63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges
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(a) Image 270×238 (b) Zoom in (a) (c) Gt, |Gt| = 1584 (d) Noisy, SNR = 3.31dB (e) Thin edges (f) Φ
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Fig. 18. Comparison of the minimal score for several edge detection evaluation measures concerning synthetic data. The edges are extracted using Canny’s
theory (σ = 1) on the noisy image in (d) and the binary images correspond to the thin edge image in (e) which is thresholded at the threshold corresponding
to the minimum value of the bottom curve. The results for F ∗α are the same as the P ∗m, χ2∗ measures and do not need to be reported. The scores of the
over-segmentation measure Dk are the same as FoMe, Υ, Θ and Γ. Moreover, FoM , d4, SFoM and MFoM obtain almost the same result.

question is raised concerning the reliability of the datasets
regarded as ground truths for novel edge detection methods.
Thus, an incomplete ground truth penalizes a method detecting
true boundaries and efficient edge detection algorithms obtain
between 30% and 40% of errors. Furthermore, contrary to
the previous experiment, where only noise is added to the
synthetic image, the true contours are only reported by human
perception and, locally, the image intensities (for example the
texture) create some disturbances which are nether spatially
positioned as a result of the filtering technique, nor humanly
perceptible. Unfortunately, this type of contour can be ampli-
fied by a strong gradient created by the edge detector [8]. As
these undesirable pixels could be far from Gt, however, an
edge detection method must converge to a threshold which
preserves acceptable contours, close to the ground truth, and
removes undesirable contour pixels. In other words, the final
shapes created by the contours of the binarized image should
be similar, especially nearby the edges pixels of Gt. Thus, in
this case, the segmented images are totally different from Gt
than those in the synthetic case. For example, the ideal edges

indicated by the SSIM miss most of the main edges. Also,
P ∗m, F ∗α , χ2∗ and d4 indicate an ideal edge image composed of
numerous false positive pixels (d4 obtains this result because
most statistics include this measure). On the contrary, the
statistical measure Φ, and the distance measures H , Dp and
∆k lose most of the desired boundaries; furthermore, the
ideal threshold for FoMe and Υ is 1. Ideal contour images
concerning Skk=2, H5%, f2d6, FoM , SFoM and MFoM are
less polluted by FPs. Finally, the ideal contour map computed
for Ψ is less noisy and better-quality, leading to a compromise
between optimum under- and over-segmentation.

3) Comparison of several edge detectors by filtering: In
this section, we compare the score of different evaluation
measures involving real images (Figs. 20(b) and 26(a)) and 9
filtering edge detectors: Sobel [53], Shen [50], Bourennane [6],
Deriche [11], Canny [8], Steerable filter of order 1 (SF1) [15],
Steerable filter of order 5 (SF5) [25], Anisotropic Gaussian
Kernels (AGK) [16], Half Gaussian Kernels (H-K) [35]. Table
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(a) Image 512×512 (b) Gt, |Gt| = 5951 (c) Thin edges , σ = 3 (d) P∗m, Fα, χ2∗, d4 th = 0.27 (e) Φ, Dp, th = 0.04

(h) SSIM , Dkk=2, th = 0.57 (i) H , th = 0.1 (j) H5%, th = 0.16 (k) f2d6, Skk=1, F , th = 0.18 (l) Skk=2, FoM , th = 0.17

(m) ∆k , th = 0.07 (n) Ψ, th = 0.23 (o) Detected edges of (j) (p) Detected edges of (m) (q) Detected edges of (n)

Fig. 19. Comparison of the minimal score for several edge detection evaluation measures concerning a real image and a hand-made ground truth. The edges
are extracted using Canny’s theory (σ = 3) on the real image in (a) and the binary images correspond to the thin edge image in (c) which is thresholded at
the value (th) corresponding to the minimum score for each measure. The best images for the measures Skk=1, f2d6, SFoM and MFoM are the same.
The optimal threshold for the over-segmentation measures ΘδTH=1 or 5, Γ is th = 1, and is th = 0 for the under-segmentation measure ΩδTH=1 or 5.

V shows how gradients are computed using these methods.
The parameters of the filters are chosen to keep the same
spatial support for the derivative information (see Fig. 27(o)).
As above, the comparison is the same: the segmented image
corresponds to the one having the minimum score for the
considered measure.

Box [53] and exponential [50] [6] filters do not delocalize
contour points [28] whereas they are sensitive to noise (i.e.,
addition of FPs). The Deriche [11] and Gaussian filters [8]
are less sensitive to noise but suffer from rounding corners
and junctions (see [28]) as the oriented filters SF1 [15], SF5

[25] and AGK [16], but the more the 2D filter is elongated, the
more the segmentation remains robust against noise. Finally,
as a compromise, H-K correctly detects contours points having
corners and is robust agains noise [35]. Consequently, the
scores of the evaluation measures for the first 3 filters must
be higher than the three last ones. Furthermore, the ideal
segmented image should be visually closer to the ground truth
edge image concerning SF5, AGK and H-K. Thus, Fig. 21
illustrates that Fα gives coherent segmentation and scores
even though it is high noisy for images (a)-(f) but the scores
are not consistent for the noisy image in Fig. 26(a), see Fig.
27(a). H and ∆k measures are very sensitive to FPs, therefore,
important contours are missing in the segmented images (Figs.

22 and 24). Worse still, concerning the image in Fig. 26(a), the
scores of AGK are qualified as the second worst segmentation.
The segmented images with respect to FoM remain noisy
(Fig. 23) and the scores in Fig. 27(h) penalize both AGK and
H-K filters almost like the Sobel filter.

Finally, segmented images using f2d6, Sk and Ψ are close
to the ground truth edge image and, the more efficient the
edge detection filter is, the more the main contours are visible
with reasonable FPs and the scores decrease in function of
the effectiveness of the filter used. On the contrary, other
evaluation measures give either segmented images with high
level of FPs, or incoherent scores (bars in Figs. 20 and 27).

TABLE V
GRADIENT MAGNITUDE AND ORIENTATION COMPUTATION FOR A SCALAR

IMAGE I WHERE Iθ REPRESENTS THE IMAGE DERIVATIVE USING A
FIRST-ORDER FILTER AT THE θ ORIENTATION (IN RADIANS).

Type of operator Gradient magnitude Gradient direction
Fixed operator
[53], [50], [6],
[11], [8]

|∇I| =
√
I20 + I2

π/2
η = arctan

(
Iπ/2

I0

)

Oriented Filters
[15], [25], [16] |∇I| = max

θ∈[0,π[
|Iθ| η = arg max

θ∈[0,π[
|Iθ|+

π

2

Half Gaussian
Kernels [35] |∇I| = max

θ∈[0,2π[
Iθ − min

θ∈[0,2π[
Iθ η =

(
arg max
θ∈[0,2π[

Iθ + arg min
θ∈[0,2π[

Iθ

)
/2
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Fig. 20. Comparison of the minimal score for several edge detection evaluation measures concerning a real image and several edge detection methods.
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Fig. 21. Comparison of the minimal score for the Fα measure concerning a real image and several edge detection methods.
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Fig. 22. Comparison of the minimal score for the H measure concerning a real image and several edge detection methods.

V. CONCLUSION

This study presents a review of supervised edge detection
assessment methods. A supervised evaluation process esti-
mates scores between two binary images: a ground truth and
a candidate edge map. Eight statistical evaluations based on

the number of false positive, false negative, true positive or
true negative points are detailed. Firstly, examples of the
evaluation of contour images prove the need to evaluate an
edge detector using assessments involving distance measures.
Fifteen distance measures are therefore also evaluated. The
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(a) Sobel (b) Shen (c) Bourennane (d) Deriche (e) Canny
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Fig. 23. Comparison of the minimal score for the FoM measure concerning a real image and several edge detection methods.
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Fig. 24. Comparison of the minimal score for the ∆k measure concerning a real image and several edge detection methods.
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Fig. 25. Comparison of the minimal score for the Ψ measure concerning a real image and several edge detection methods.

latter compute a score depending mainly on the false positive
and/or negative distances. By pointing out the drawbacks and
advantages of each evaluation measure, in this work a new
measure is proposed which takes into account the distance of
all the misplaced pixels: false positives and false negatives.
Moreover, one of the advantages of the developed method
is a function which normalizes the evaluation. Indeed, the
score is close to zero concerning good segmentation and
increases to one concerning poor edge detection. The influence
of the parameters of the new evaluation measure is detailed,
theoretically and with concrete cases.

The rest of the paper is dedicated to the experimental
results for synthetic and real data. Most of the edge detection
evaluation methods are subjected to the following studies:
addition of false negative points and/or false positive points,
translation of the boundary, remoteness of false positive and
false negative contour chains. Finally, as the minimum value
of an edge detection evaluation corresponds to the threshold
at which the edge detection is the best, the last experiment
concerns the minimum value of the measures on image edges
compared to the ground truth. This enables the performance
of edge detection algorithms to be studied based on filtering
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(a) Original image (b) Ground truth edge map (c) Sobel (d) Shen (e) Bourennane (f) Deriche
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Fig. 26. Comparison of the minimal score for the Ψ measure concerning a real image and several edge detection methods.
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 Shen filter, α = 1.103
 Bourenanne filter, s = 5.13
 Deriche filter, α = 1.46
 Gaussian deriative, σ = 1.5

(k) MFoM (l) Skk=1 (m) Skk=1 (n) ∆k (o) Profile of the different filters
Fig. 27. Comparison of the minimal score for several edge evaluation measures concerning several edge detection methods of the image in Fig. 26 (a).

through the optimal threshold obtain by the supervised as-
sessment. Therefore, as the proposed function of dissimilarity
seems sufficiently robust to evaluate binary edge maps, we
plan in a future study to compare more deeply several edge
detection algorithms using the optimum threshold computed
by the minimum of the evaluation.
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