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This paper is devoted to obtain sharp exponential and polynomial upper bounds for the ratio functions cosh x/ cos x and sinh x/ sin x. The proofs are based on the use of a refinement of a special case of the Bernoulli inequality and infinite products.

Introduction

Various kinds of connections between hyperbolic and trigonometric functions have always received a lot of attention by mathematicians. There is the case for ratio functions involving hyperbolic functions in the numerator and trigonometric functions in the denominator, or vice-versa. For instance, concerning the ratio function cosh x/ cos x, see [START_REF] Krick | On the Coefficients of Cosh X/cos X[END_REF] and [START_REF] Gandhi | The Coefficients of Cosh X/cos X and a Note on Carlitz's Coefficients of Sinh X/sin X[END_REF] and for the ratio function sinh x/ sin x, see [START_REF] Gandhi | The Coefficients of Cosh X/cos X and a Note on Carlitz's Coefficients of Sinh X/sin X[END_REF], [START_REF] Leeming | The coefficients of sinh xt/sin t and the Bernoulli polynomials[END_REF] and [START_REF] Withers | Products of sinusoids as sums of sinusoids[END_REF], and the references therein. On the other side, let us notice that the graphs of ratio functions cos x/ cosh x and sin x/ sinh x are somewhat bell shaped. Due to the importance of bell shaped curves in probability theory and statistics, some of the mathematical properties of specific functions(mentioned earlier) whose graphs are bell shaped curves deserve to be studied. An important aspect is to explore tractable bounds for these functions. In this study, we provide new exponential and polynomial bounds to the ratio functions mentioned above, improving immediate bounds derived to those established in the literature. They are obtained by the use of a special type of Bernoulli inequality, improving the well-known Bernoulli inequality on the unit interval.

The organization of our paper is as follows. In Section 2, a refinement of the Bernoulli inequality in the special case is proposed. In Section 3, exponential and polynomial bounds for cosh x/ cos x (and cos x/ cosh x) as well as exponential and polynomial bounds for sinh x/ sin x (and sin x/ sinh x) are established.

A refinement of the Bernoulli inequality

First of all, let us present the so-called Bernoulli inequality in the case where u, v ∈ (0, 1). Theorem 1. [A Bernoulli inequality] For u, v ∈ (0, 1), we have

1 -uv (1 -v) u .
We refer to [7, Theorem A] and [START_REF] Mitrinović | On Bernoulli's inequality[END_REF], [START_REF] Mitrinović | Bernoulli's Inequality[END_REF] for generalized version and other variants of Bernoulli inequality. Under the same context, we present a sharper lower bound in Proposition 1 below. Proposition 1. For u, v ∈ (0, 1), we have

1 -uv f (u, v)(1 -v) u ,
where f (u, v) denotes the function defined by

f (u, v) = 1 + uv (1 + v) u ,
and we have f (u, v) 1 (implying the standard Bernoulli inequality for u, v ∈ (0, 1)).

Proof of Proposition 1. Using the logarithmic series expansion, for u, v ∈ (0, 1), we have

ln 1 + uv 1 -uv = ln(1 + uv) -ln(1 -uv) = +∞ n=1 (-1) n-1 (uv) n n + +∞ n=1 (uv) n n = +∞ n=1 [(-1) n-1 + 1](uv) n n = 2 +∞ k=0 (uv) 2k+1 2k + 1 .
For u, v ∈ (0, 1) and k 0, we have u 2k+1 u, so (uv) 2k+1 uv 2k+1 . Therefore

2 +∞ k=0 (uv) 2k+1 2k + 1 u 2 +∞ k=0 v 2k+1 2k + 1 = u ln 1 + v 1 -v . Hence ln 1 + uv 1 -uv u ln 1 + v 1 -v .
Then composing by the exponential function, we obtain

1 + uv 1 -uv 1 + v 1 -v u ,
which is equivalent to the desired inequality after rearrangement, i.e.

1 -uv f (u, v)(1 -v) u .
To prove that f (u, v) 1, we need general version of the Bernoulli inequality: for x > -1 and r ∈ (0, 1), we have 1 + rx (1 + x) r (see [START_REF] Shi | Generalizations of Bernoulli's inequality with applications[END_REF]Theorem A]). By applying it with r = u ∈ (0, 1) and x = v ∈ (0, 1), we obtain the desired result.

Therefore, Proposition 1 gives a sharper lower bound for 1 -uv than the classical Bernoulli inequality.

In the sequel, we use this result to provide new bounds for ratio of trigonometric and hyperbolic functions.

3 Some new bounds

Bounds for ratio of cosine and hyperbolic cosine functions

The result below presents an exponential upper bound for the ratio function cosh x/ cos x.

Proposition 2. For α ∈ (0, π/2) and x ∈ (0, α), we have

cosh x cos x e βx 2 , with β = [ln(cosh α)/ cos α)]/α 2 .
Proof of Proposition 2. First of all, let us recall some known results on infinite product series. We have the following expressions for cosh x and cos x: for all x ∈ R, we have

cosh x = +∞ k=1 1 + 4x 2 π 2 (2k -1) 2 , cos x = +∞ k=1 1 - 4x 2 π 2 (2k -1) 2 .
So we can express the ratio function cosh x/ cos x as

cosh x cos x = +∞ k=1 1 + 4x 2 /[π 2 (2k -1) 2 ] 1 -4x 2 /[π 2 (2k -1) 2 ] .
Secondly, note that Proposition 1 can be reformulated as follows: for u, v ∈ (0, 1), we have

1 + uv 1 -uv 1 + v 1 -v u . (3.1) 
It follows from these results that for α ∈ (0, π/2) we have

cosh x cos x = +∞ k=1 1 + (4α 2 /[π 2 (2k -1) 2 ])(x 2 /α 2 ) 1 -(4α 2 /[π 2 (2k -1) 2 ])(x 2 /α 2 ) +∞ k=1 1 + 4α 2 /[π 2 (2k -1) 2 ] 1 -4α 2 /[π 2 (2k -1) 2 ] x 2 /α 2 = +∞ k=1 1 + 4α 2 /[π 2 (2k -1) 2 ] 1 -4α 2 /[π 2 (2k -1) 2 ] x 2 /α 2 = cosh α cos α x 2 /α 2 = e βx 2 .
This ends the proof of Proposition 2.

We provide a graphical illustration of Proposition 2 in Figure 1 by taking α = 1 and α = 1.5. Note: Let us observe that we can write β as β = β 1 -β 2 with β 1 = ln(cosh α)/α 2 and β 2 = ln(cos α)/α 2 . On the other hand, it follows from [1, Proposition 2 and the related note] that, for e β 1 x 2 cosh x e x 2 /2 , e β 2 x 2 cos x e -x 2 /2 , which implies that cosh x cos x e γx 2 , with γ = (1/2) -β 2 . So Proposition 2 is not a trivial consequence of these results, and gives a sharper upper bound since β < γ.

Note: Proposition 2 can be reformulated in term of lower bound: For α ∈ (0, π/2) and x ∈ (0, α), we have cos x cosh x e -βx 2 .

An interest of the upper bound in Proposition 3 in comparison to the one in Proposition 2 is not to depend on the chosen α.

Using similar arguments, we can provide a ratio polynomial upper bound for the ratio function cosh x/ cos x. Proposition 3. For x ∈ (0, π/2), we have

cosh x cos x π 2 + 4x 2 π 2 -4x 2 π 2 /8
. Proof of Proposition 3. Using infinite product expression of cosh x/ cos x and (3.1), with the equality

+∞ k=1 1 (2k-1) 2 = π 2 8 , we obtain cosh x cos x = +∞ k=1 1 + (4x 2 /π 2 )[1/(2k -1) 2 ] 1 -(4x 2 /π 2 )[1/(2k -1) 2 ] +∞ k=1 1 + 4x 2 /π 2 1 -4x 2 /π 2 1/(2k-1) 2 = 1 + 4x 2 /π 2 1 -4x 2 /π 2 +∞ k=1 1/(2k-1) 2 = 1 + 4x 2 /π 2 1 -4x 2 /π 2 π 2 /8 = π 2 + 4x 2 π 2 -4x 2 π 2 /8
. Proposition 3 is proved.

A graphical illustration of Proposition 3 is provided in Figure 2. 

((π 2 + 4x 2 ) (π 2 -4x 2 )) (π 2 8)
Figure 2: Graphs of the functions in Proposition 3 for x ∈ (0, 1.5).

Note: It is proved in [9, Theorems 2 and 5] that for x ∈ (0, π/2), 1 and θ π 2 /16, we have

π 2 -4x 2 π 2 + 4x 2 cos x, cosh x π 2 + 4x 2 π 2 -4x 2 θ .
This implies that cosh x cos x

π 2 + 4x 2 π 2 -4x 2 θ+
and since (π 2 + 4x 2 )/(π 2 -4x 2 ) 1 and θ + 1 + π 2 /16 π 2 /8, our upper bound is sharper.

Note: Proposition 3 can be reformulated in term of lower bound: For x ∈ (0, π/2), we have

cos x cosh x π 2 -4x 2 π 2 + 4x 2 π 2 /8
. Results similar to Propositions 2 and 3 can be proved for the ratio function sinh x/ sin x. This is developed in the subsection below. Proof of Proposition 4. We use the following expressions for sinh x/x and sin x/x: for all x ∈ R, we have

Bounds for ratio of sine and hyperbolic sine functions

sinh x x = +∞ k=1 1 + x 2 π 2 k 2 , sin x x = +∞ k=1 1 - x 2 π 2 k 2 . Hence sinh x sin x = +∞ k=1 1 + x 2 /(π 2 k 2 ) 1 -x 2 /(π 2 k 2 ) .
It follows from (3.1) that for α ∈ (0, π) we have

sinh x sin x = +∞ k=1 1 + (α 2 /(π 2 k 2 ))(x 2 /α 2 ) 1 -(α 2 /(π 2 k 2 ))(x 2 /α 2 ) +∞ k=1 1 + α 2 /(π 2 k 2 ) 1 -α 2 /(π 2 k 2 ) x 2 /α 2 = +∞ k=1 1 + α 2 /(π 2 k 2 ) 1 -α 2 /(π 2 k 2 ) x 2 /α 2 = sinh α sin α x 2 /α 2 = e ζx 2 .
This ends the proof of Proposition 4.

We provide a graphical illustration of Proposition 4 in Figure 3 by taking α = 2 and α = 3. Note: Proposition 4 can be reformulated in term of lower bound: For α ∈ (0, π/2) and x ∈ (0, α), we have sin x sinh x e -ζx 2 .

Using similar arguments, we can get a ratio polynomial upper bound for the ratio function sinh x/ sin x. Proposition 5. For x ∈ (0, π/2), we have

sinh x sin x π 2 + x 2 π 2 -x 2 π 2 /6
. Proof of Proposition 3. Using infinite product expression of cosh x/ cos x and (3.1), with the equality

+∞ k=1 1 k 2 = π 2 6 , we obtain sinh x sin x = +∞ k=1 1 + (x 2 /π 2 )(1/k 2 ) 1 -(x 2 /π 2 )(1/k 2 ) +∞ k=1 1 + x 2 /π 2 1 -x 2 /π 2 1/k 2 = 1 + x 2 /π 2 1 -x 2 /π 2 +∞ k=1 1/k 2 = 1 + x 2 /π 2 1 -x 2 /π 2 π 2 /6 = π 2 + x 2 π 2 -x 2 π 2 /6
.

Proposition 5 is proved.

A graphical illustration of Proposition 5 is provided in Figure 4. and since (π 2 + x 2 )/(π 2 -x 2 ) 1 and φ + ξ 1 + π 2 /12 π 2 /6, our upper bound is sharper.

Note: Proposition 5 can be reformulated in term of lower bound: For x ∈ (0, π/2), we have

sin x sinh x π 2 -x 2 π 2 + x 2 π 2 /6
.
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 1 Figure 1: Graphs of the functions in Proposition 2 for x ∈ (0, α).
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 42 For α ∈ (0, π) and x ∈ (0, α), we have sinh with ζ = [ln(sinh α)/ sin α)]/α 2 .
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