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1 Introduction

Various kinds of connections between hyperbolic and trigonometric func-
tions have always received a lot of attention by mathematicians. There is
the case for ratio functions involving hyperbolic functions in the numerator
and trigonometric functions in the denominator, or vice-versa. For instance,
concerning the ratio function coshx/ cosx, see [3] and [2] and for the ratio
function sinhx/ sinx, see [2], [4] and [8], and the references therein. On the
other side, let us notice that the graphs of ratio functions cosx/ coshx and
sinx/ sinhx are somewhat bell shaped. Due to the importance of bell shaped
curves in probability theory and statistics, some of the mathematical prop-
erties of specific functions(mentioned earlier) whose graphs are bell shaped
curves deserve to be studied. An important aspect is to explore tractable
bounds for these functions. In this study, we provide new exponential and
polynomial bounds to the ratio functions mentioned above, improving im-
mediate bounds derived to those established in the literature. They are
obtained by the use of a special type of Bernoulli inequality, improving the
well-known Bernoulli inequality on the unit interval.
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The organization of our paper is as follows. In Section 2, a refinement of
the Bernoulli inequality in the special case is proposed. In Section 3, expo-
nential and polynomial bounds for coshx/ cosx (and cosx/ coshx) as well
as exponential and polynomial bounds for sinhx/ sinx (and sinx/ sinhx)
are established.

2 A refinement of the Bernoulli inequality

First of all, let us present the so-called Bernoulli inequality in the case where
u, v ∈ (0, 1).

Theorem 1. [A Bernoulli inequality] For u, v ∈ (0, 1), we have

1− uv > (1− v)u.

We refer to [7, Theorem A] and [5], [6] for generalized version and other
variants of Bernoulli inequality. Under the same context, we present a
sharper lower bound in Proposition 1 below.

Proposition 1. For u, v ∈ (0, 1), we have

1− uv > f(u, v)(1− v)u,

where f(u, v) denotes the function defined by

f(u, v) =
1 + uv

(1 + v)u
,

and we have f(u, v) > 1 (implying the standard Bernoulli inequality for
u, v ∈ (0, 1)).

Proof of Proposition 1. Using the logarithmic series expansion, for u, v ∈
(0, 1), we have

ln

(
1 + uv

1− uv

)
= ln(1 + uv)− ln(1− uv) =

+∞∑
n=1

(−1)n−1(uv)n

n
+

+∞∑
n=1

(uv)n

n

=

+∞∑
n=1

[(−1)n−1 + 1](uv)n

n
= 2

+∞∑
k=0

(uv)2k+1

2k + 1
.

For u, v ∈ (0, 1) and k > 0, we have u2k+1 6 u, so (uv)2k+1 6 uv2k+1.
Therefore

2
+∞∑
k=0

(uv)2k+1

2k + 1
6 u

(
2
+∞∑
k=0

v2k+1

2k + 1

)
= u ln

(
1 + v

1− v

)
.
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Hence

ln

(
1 + uv

1− uv

)
6 u ln

(
1 + v

1− v

)
.

Then composing by the exponential function, we obtain

1 + uv

1− uv
6

(
1 + v

1− v

)u
,

which is equivalent to the desired inequality after rearrangement, i.e.

1− uv > f(u, v)(1− v)u.

To prove that f(u, v) > 1, we need general version of the Bernoulli inequal-
ity: for x > −1 and r ∈ (0, 1), we have 1 + rx > (1 + x)r (see [7, Theorem
A]). By applying it with r = u ∈ (0, 1) and x = v ∈ (0, 1), we obtain the
desired result.

Therefore, Proposition 1 gives a sharper lower bound for 1−uv than the
classical Bernoulli inequality.

In the sequel, we use this result to provide new bounds for ratio of
trigonometric and hyperbolic functions.

3 Some new bounds

3.1 Bounds for ratio of cosine and hyperbolic cosine func-
tions

The result below presents an exponential upper bound for the ratio function
coshx/ cosx.

Proposition 2. For α ∈ (0, π/2) and x ∈ (0, α), we have

coshx

cosx
6 eβx

2
,

with β = [ln(coshα)/ cosα)]/α2.

Proof of Proposition 2. First of all, let us recall some known results on infi-
nite product series. We have the following expressions for coshx and cosx:
for all x ∈ R, we have

coshx =
+∞∏
k=1

(
1 +

4x2

π2(2k − 1)2

)
, cosx =

+∞∏
k=1

(
1− 4x2

π2(2k − 1)2

)
.

So we can express the ratio function coshx/ cosx as

coshx

cosx
=

+∞∏
k=1

(
1 + 4x2/[π2(2k − 1)2]

1− 4x2/[π2(2k − 1)2]

)
.
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Secondly, note that Proposition 1 can be reformulated as follows: for u, v ∈
(0, 1), we have

1 + uv

1− uv
6

(
1 + v

1− v

)u
. (3.1)

It follows from these results that for α ∈ (0, π/2) we have

coshx

cosx
=

+∞∏
k=1

(
1 + (4α2/[π2(2k − 1)2])(x2/α2)

1− (4α2/[π2(2k − 1)2])(x2/α2)

)

6
+∞∏
k=1

(
1 + 4α2/[π2(2k − 1)2]

1− 4α2/[π2(2k − 1)2]

)x2/α2

=

[
+∞∏
k=1

(
1 + 4α2/[π2(2k − 1)2]

1− 4α2/[π2(2k − 1)2]

)]x2/α2

=

[
coshα

cosα

]x2/α2

= eβx
2
.

This ends the proof of Proposition 2.

We provide a graphical illustration of Proposition 2 in Figure 1 by taking
α = 1 and α = 1.5.
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Figure 1: Graphs of the functions in Proposition 2 for x ∈ (0, α).

Note: Let us observe that we can write β as β = β1 − β2 with β1 =
ln(coshα)/α2 and β2 = ln(cosα)/α2. On the other hand, it follows from [1,
Proposition 2 and the related note] that, for

eβ1x
2
6 coshx 6 ex

2/2, eβ2x
2
6 cosx 6 e−x

2/2,

which implies that
coshx

cosx
6 eγx

2
,
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with γ = (1/2)− β2. So Proposition 2 is not a trivial consequence of these
results, and gives a sharper upper bound since β < γ.

Note: Proposition 2 can be reformulated in term of lower bound: For
α ∈ (0, π/2) and x ∈ (0, α), we have

cosx

coshx
> e−βx

2
.

An interest of the upper bound in Proposition 3 in comparison to the
one in Proposition 2 is not to depend on the chosen α.

Using similar arguments, we can provide a ratio polynomial upper bound
for the ratio function coshx/ cosx.

Proposition 3. For x ∈ (0, π/2), we have

coshx

cosx
6

(
π2 + 4x2

π2 − 4x2

)π2/8

.

Proof of Proposition 3. Using infinite product expression of coshx/ cosx

and (3.1), with the equality
+∞∑
k=1

1
(2k−1)2 = π2

8 , we obtain

coshx

cosx
=

+∞∏
k=1

(
1 + (4x2/π2)[1/(2k − 1)2]

1− (4x2/π2)[1/(2k − 1)2]

)

6
+∞∏
k=1

(
1 + 4x2/π2

1− 4x2/π2

)1/(2k−1)2

=

(
1 + 4x2/π2

1− 4x2/π2

)+∞∑
k=1

1/(2k−1)2

=

(
1 + 4x2/π2

1− 4x2/π2

)π2/8

=

(
π2 + 4x2

π2 − 4x2

)π2/8

.

Proposition 3 is proved.

A graphical illustration of Proposition 3 is provided in Figure 2.
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Figure 2: Graphs of the functions in Proposition 3 for x ∈ (0, 1.5).

Note: It is proved in [9, Theorems 2 and 5] that for x ∈ (0, π/2), ε > 1
and θ > π2/16, we have(

π2 − 4x2

π2 + 4x2

)ε
6 cosx, coshx 6

(
π2 + 4x2

π2 − 4x2

)θ
.

This implies that

coshx

cosx
6

(
π2 + 4x2

π2 − 4x2

)θ+ε
and since (π2 + 4x2)/(π2 − 4x2) > 1 and θ + ε > 1 + π2/16 > π2/8, our
upper bound is sharper.

Note: Proposition 3 can be reformulated in term of lower bound: For
x ∈ (0, π/2), we have

cosx

coshx
>

(
π2 − 4x2

π2 + 4x2

)π2/8

.

Results similar to Propositions 2 and 3 can be proved for the ratio func-
tion sinhx/ sinx. This is developed in the subsection below.

3.2 Bounds for ratio of sine and hyperbolic sine functions

Proposition 4. For α ∈ (0, π) and x ∈ (0, α), we have

sinhx

sinx
6 eζx

2
,

with ζ = [ln(sinhα)/ sinα)]/α2.
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Proof of Proposition 4. We use the following expressions for sinhx/x and
sinx/x: for all x ∈ R, we have

sinhx

x
=

+∞∏
k=1

(
1 +

x2

π2k2

)
,

sinx

x
=

+∞∏
k=1

(
1− x2

π2k2

)
.

Hence
sinhx

sinx
=

+∞∏
k=1

(
1 + x2/(π2k2)

1− x2/(π2k2)

)
.

It follows from (3.1) that for α ∈ (0, π) we have

sinhx

sinx
=

+∞∏
k=1

(
1 + (α2/(π2k2))(x2/α2)

1− (α2/(π2k2))(x2/α2)

)

6
+∞∏
k=1

(
1 + α2/(π2k2)

1− α2/(π2k2)

)x2/α2

=

[
+∞∏
k=1

(
1 + α2/(π2k2)

1− α2/(π2k2)

)]x2/α2

=

[
sinhα

sinα

]x2/α2

= eζx
2
.

This ends the proof of Proposition 4.

We provide a graphical illustration of Proposition 4 in Figure 3 by taking
α = 2 and α = 3.
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Figure 3: Graphs of the functions in Proposition 4 for x ∈ (0, α).

Note: Proposition 4 can be reformulated in term of lower bound: For
α ∈ (0, π/2) and x ∈ (0, α), we have

sinx

sinhx
> e−ζx

2
.
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Using similar arguments, we can get a ratio polynomial upper bound for
the ratio function sinhx/ sinx.

Proposition 5. For x ∈ (0, π/2), we have

sinhx

sinx
6

(
π2 + x2

π2 − x2

)π2/6

.

Proof of Proposition 3. Using infinite product expression of coshx/ cosx

and (3.1), with the equality
+∞∑
k=1

1
k2

= π2

6 , we obtain

sinhx

sinx
=

+∞∏
k=1

(
1 + (x2/π2)(1/k2)

1− (x2/π2)(1/k2)

)

6
+∞∏
k=1

(
1 + x2/π2

1− x2/π2

)1/k2

=

(
1 + x2/π2

1− x2/π2

)+∞∑
k=1

1/k2

=

(
1 + x2/π2

1− x2/π2

)π2/6

=

(
π2 + x2

π2 − x2

)π2/6

.

Proposition 5 is proved.

A graphical illustration of Proposition 5 is provided in Figure 4.
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Figure 4: Graphs of the functions in Proposition 5 for x ∈ (0, 3).

Note: It is proved in [9, Theorems 1 and 4] that for x ∈ (0, π), ξ > 1
and φ > π2/12, we have(

π2 − x2

π2 + x2

)ξ
6

sinx

x
,

sinhx

x
6

(
π2 + x2

π2 − x2

)φ
.
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Hence
sinhx

sinx
6

(
π2 + x2

π2 − x2

)φ+ξ
and since (π2 + x2)/(π2− x2) > 1 and φ+ ξ > 1 + π2/12 > π2/6, our upper
bound is sharper.

Note: Proposition 5 can be reformulated in term of lower bound: For
x ∈ (0, π/2), we have

sinx

sinhx
>

(
π2 − x2

π2 + x2

)π2/6

.
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