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Introduction

Soit n ∈ N ≥0 et soit S n le groupe symétrique associé. On sait, depuis les prémisses de la théorie des représentations par Frobenius et Dedekind, classifier les représentations irréductibles de S n sur le corps des nombres complexes (ou, de façon équivalente les modules simples sur l'algèbre du groupe CS n ). Celles-ci sont naturellement paramétrées par des objets combinatoires : les partitions de n. Une partition λ de n est une suite d'entiers positifs (λ 1 , . . . , λ r ) où r ∈ N >0 vérifiant λ 1 ≥ λ 2 ≥ . . . ≥ λ r ≥ 0 (par convention, on identifiera toute partition (λ 1 , . . . , λ r ) avec (λ 1 , . . . , λ r , 0)). On note λ n. L'unique partition de 0 est notée ∅. Notons Irr(CS n ) l'ensemble de ces modules simples. On peut donc écrire :

Irr(CS n ) = {V λ | λ n}.
Chaque CS n -module simple se construit explicitement. Des formules de caractères sont disponibles et donc en particulier des formules pour les dimensions des C-espaces vectoriels V λ . Pour ce dernier problème, on peut procéder de la manière suivante. On associe à chaque partition λ = (λ 1 , . . . , λ r ) de n, son diagramme de Young, une collection de cellules disposées sur r lignes, la ième ligne du diagramme comportant exactement λ i cellules. Par exemple, la partition (4, 3, 1) de 8 a pour diagramme de Young : Grâce à ce nouvel outil combinatoire, on peut construire un graphe dont les sommets sont toutes les partitions possibles. C'est un graphe infini, partant du diagramme de Young de la partition vide, et où deux diagrammes de Young sont reliés par une flèche si et seulement si l'un est obtenu à partir de l'autre en rajoutant une boîte. On obtient le graphe de Young (voir la figure 1).

La dimension d'un module simple V λ est alors aisée à calculer, il suffit pour ceci de compter le nombre de chemins possibles dans le graphe de Young, du diagramme de Young vide au diagramme de Young de λ. Par exemple, il y a 3 chemins liant le diagramme vide au diagramme de la partition (3.1). La dimension du module simple V (3.1) est donc égal à 3.

Ce graphe comporte en fait beaucoup plus d'informations sur la théorie des représentations du groupe symétrique : il permet de déterminer la règle de branchement. Le groupe symétrique S n a ceci de -Figure 1. Le début du graphe de Young.

particulier qu'il s'injecte dans S n+1 . Or, un procédé naturel permet d'associer à chaque représentation d'un sous-groupe, une représentation du groupe en entier : c'est la représentation induite. Au niveau des modules et dans le cas de ceux qui nous intéressent ici, on peut donc associer à chaque CS n -module simple V λ un nouveau module, cette fois sur l'algèbre du groupe CS n+1 , qui s'écrit explictement de la manière suivante : CS n+1 ⊗ CSn V λ . On le note Ind(V λ ). En général, ce module n'est pas simple, il ne peut donc pas s'écrire sous la forme d'un V µ , mais la théorie des représentations complexes étant semi-simple, ceci impose que tout module peut se décomposer sous la forme d'une somme directe de sous-modules simples. Ce module peut donc a priori s'écrire comme une somme directe de V µ où µ parcourt un certain sous-ensemble de l'ensemble des partitions de n + 1. Le problème de branchement consiste à répondre à la question suivante : Quel est ce sous-ensemble de partitions ? il se trouve que c'est le graphe de Young qui permet de répondre de façon satisfaisante à ce problème. Prenons λ n alors on note λ → µ si une flèche relie λ à la partition µ de n + 1. Alors on a :

Ind(V λ ) = λ→µ V µ .
Toutes les remarques ci-dessus montrent que la théorie des représentations du groupe symétrique sur le corps des nombres complexes est relativement bien comprise. Par contraste, l'étude de la théorie des représentations de ce même groupe sur un corps de caractéristique p > 0 l'est beaucoup moins. Par exemple, un problème naturel comme celui de savoir quelles sont les dimensions des modules simples dans ce cas n'admet pas de réponse en général : aucune formule général pour ces dimensions n'est disponibles, ni même aucun algorithme efficace. Pire, une célèbre conjecture (la conjecture de James) qui était sensée donner des informations sur cette théorie a été recemment infirmée par des résultats de Williamson [START_REF] Williamson | On an analogy of the James conjecture[END_REF]. Cependant, certains résultats sont disponibles : par exemple, on sait obtenir une classification des modules simples et un analogue à la règle de branchement est aussi possible. Ces résultats, obtenus dans les années 80, font en fait intervenir un object combinatoire, plus complexe que le graphe de Young, qui se définit initialement en théorie des représentations des groupes quantiques : le cristal d'un espace de Fock. Depuis une trentaine d'années, de nombreux liens se sont tissés entre cette théorie et celle du groupe symétrique, ou plus généralement des groupes de réflexions. Dans cette note, nous essaierons d'expliquer certains de ces liens, en particulier, comment ce cristal intervient en théorie des représentations de certaines algèbres associées au groupe symétrique et à ces généralisations. La prochaine section considère le problème du calcul de la règle de branchement pour le groupe symétrique en caractéristique positive. La suivante explore des problèmes analogues concernant deux types d'algèbres importantes qui apparaissent naturellement dans un grand nombre de problèmes algébriques, géométriques ou combinatoires : les algèbres de Hecke et les algèbres de Cherednik rationnelles.

Remerciements : L'auteur remercie Maria Chlouveraki pour une relecture attentive de cet article ainsi que pour ses nombreuses corrections et commentaires.

Représentations modulaires du groupe symétrique

Dans cette section, nous étudions la théorie des représentations du groupe symétrique sur un corps de caractéristique non nulle. Le but est de donner une définition de règle de branchement dans ce cadre et de montrer que celle-ci peut se déterminer de façon assez élémentaire en construisant un nouveau graphe : le cristal d'un espace de Fock.

2.1. Modules de Specht. -Soit n ∈ N >0 et soit F un corps quelconque. Dans [START_REF] Specht | Die irreduziblen Darstellungen der symmetrischen Gruppe[END_REF], pour chaque partition λ de n, Specht a défini un F S n -module S λ appelé "module de Specht". La construction de ces modules est explicite et l'avantage de cette construction est sa validité sur tout corps. Elle se fait grâce à des outils combinatoires et nous nous réferons au livre de James-Kerber [START_REF] James | The representation theory of the symmetric group[END_REF]Ch. 7] pour les détails de sa construction. Les dimensions de ces modules peuvent se calculer exactement comme dans l'introduction (avec le module V λ ).) On dispose donc d'une classification des modules simples en caractéristique nulle (et, comme expliqué dans l'introduction, on connaît les dimensions de ces modules.) Que se passe t-il maintenant pour un corps de caractéristique positive ? les modules de Specht ci-dessus sont toujours bien définis mais ils ne sont pas simples en général, on peut cependant s'en servir avantageusement pour déterminer un ensemble de module simples. Si les modules de Specht ne sont pas simples, ils admettent une suite de composition, c'est à dire qu'il existe une suite de sous-modules :

0 ⊂ M 1 ⊂ M 2 . . . ⊂ M k ⊂ S λ ,
où tous les quotients successifs sont des modules simples. Ces modules simples sont appelés facteurs de composition. Une telle suite n'est pas unique en général mais les facteurs de composition et leurs multiplicités (c'est à dire le nombre de fois où un module simple apparaît comme quotient dans une telle suite) le sont (c'est le théorème de Jordan-Hölder). Pour les modules de Specht, on peut montrer que chacun des modules simples se trouve comme facteur de composition dans un module de Specht. On a même un résultat beaucoup plus précis qui permet de donner une classification des modules simples. Pour ceci, nous allons tout d'abord définir un sous-ensemble de l'ensemble des partitions. Définition 2.4. -Soit e ∈ Z >1 . Soit λ = (λ 1 , . . . , λ r ) une partition de n. On dit que λ est une partition e-régulière si il n'existe aucun entier i ∈ N vérifiant :

λ i = λ i+1 = . . . = λ i+e-1 .
On note Reg e (n) l'ensemble des partitions de n qui sont e-régulières.

Le cas qui va nous intéresser ici est le cas où e = p est premier mais, plus tard, ces partitions interviendront dans le cas général e ∈ Z >1 .

Exemple 2.5. -L'ensemble des partitions 2-régulières de n = 1 à 5 est : {∅, (1), ( 2), (3), (2, 1), ( 4), (3, 1), ( 5), (4, 1), (3, 2))} L'ensemble des partitions 3-régulières de n = 1 à 6 est : {∅, (1), ( 2), (1, 1), (3), (2.1), ( 4), [START_REF] Bezrukavnikov | Parabolic induction and restriction functors for rational Cherednik algebras[END_REF][START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF], (2, 2), (2, 1, 1), ( 5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1)} La classification des modules simples est donc donnée grâce au théorème suivant (voir [START_REF] James | The representation theory of the symmetric group[END_REF]Th 7.1.14]), théorème qui utilise un ordre partiel fondamental sur l'ensemble des partitions d'un même entier : l'ordre de dominance. Soit λ = (λ 1 , . . . , λ r ) n et µ = (µ 1 , . . . , µ s ) n. On peut supposer que r = s, quitte à rajouter suffisamment de 0 à une des deux partitions. Alors on note λ µ si pour tout i = 1, . . . , r, on a :

1≤j≤i λ j ≤ 1≤j≤i µ j .
On obtient : Théorème 2.6 (James). -Soit M un F S n -module simple où F est un corps de caractéristique p > 0. Alors il existe une unique partition λ M n qui est p-régulière et vérifiant :

1. M est un facteur de composition de S λ M et sa multiplicité est de 1, 2. Si λ n est telle que M est un facteur de composition de S λ alors λ M λ. L' application suivante est bijective:

Ψ : Irr(F S n ) → Reg p (n) M → λ M .
Il suit donc que les modules simples s'indexent naturellement par l'ensemble des partitions p-régulières. Dans la suite, on va noter pour tout

M ∈ Irr(F S n ), D λ M := Ψ -1 (λ M ) = M . De sorte que Irr(F S n ) = {D µ | µ ∈ Reg p (n)}.
Cette description est beaucoup moins explicite que le cas de la caractéristique 0. Par exemple, reprenons l'exemple 2.1 où nous avons deux modules de Specht de dimension 1 représentant la représentation signe et la représentation triviale. Etant donnée la dimension de ces deux modules, ils sont nécessairement simples et apparaissent donc dans la classification ci-dessus. Autremant dit, il existe λ 0 ∈ Reg p (n) tel que D λ 0 est associé à la représentation triviale et λ 1 ∈ Reg p (n) tel que D λ 1 est associé à la représentation signe.

Il est facile de voir que λ 0 = (n) dans la classification (notons que (n) est bien une partition p-régulière.) Mais si p < n, la partition (1, . . . , 1 n fois

) n'est jamais p-régulière, on ne peut donc avoir λ 1 = (1, . . . , 1 n fois ).

Déterminer cette partition n'est pas aisé et peut être vue comme un cas particulier du problème dit de Mullineux (voir la remarque 2.7 ci-dessous). On la trouve par exemple dans [27, 6.43 (iii)]. Pour ceci, on écrit la division euclidienne de n par (p -1), on a n = (p -1)q + r avec q ∈ Z ≥0 et 0 ≤ r ≤ p -2. Alors λ 1 = (q + 1, . . . , q + 1 r fois , q, . . . , q p-r-1 fois ) Remarque 2.7. -Le problème de Mullineux est le suivant. Soit λ une partition de n. Sur Q, on a déjà vu que le module de Specht associé S λ est simple. La représentation associée ρ : S n → GL k (Q) est irréductible (k étant la dimension du module). On peut alors considérer la représentation ρ : S n → GL m (Q) tel que ρ (σ) = ε(σ)ρ(σ) où ε est le signe et σ un élément arbitraire de S n . Il est facile de voir que la représentation étant irréductible, elle est associée à un module de Specht S ι(λ) où ι(λ) est une partition de n. Mais laquelle ? on peut en fait facilement montrer que celle-ci correspond à la partition conjugué de λ, c'est à dire l'unique partition de n dont le diagramme de Young est le diagramme de Young de λ que l'on a symmétrisé par rapport à la diagonale. Par exemple, le conjugué de (n) est (1, . . . , 1 n fois ) (ce qui est consistant avec le résultat). Moins trivialement, le conjugué de (4, 3, 1) par exemple est (3, 2, 2, 2, 1). Remarquons qu'un module de Specht indexé par une partition a la même dimension que celui indexé par sa conjuguée.

Mais ce problème se pose aussi dans le cas de la caractéristique positive ! Concrètement, donnons-nous une partition p-régulière et le module simple associé D λ . Le même procédé que ci-dessus donne l'existence d'un nouveau module simple D m(λ) où m(λ) est une partition p-régulière. En 1979, Mullineux a donné une forme conjecturale de cette partition. La conjecture de Mullineux a été prouvée bien plus tard par Kleshchev [START_REF] Kleshchev | Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux[END_REF] et Ford et Kleshchev [START_REF] Ford | A proof of the Mullineux Conjecture[END_REF]. On sait en fait que ce problème a une réponse particulièrement élégante en terme de cristal de l'espace de Fock de niveau 1 (voir la remarque 2.14 ci-dessous).

2.2. Règle de branchement modulaire. -On s'intéresse maintenant aux procédés d'induction de F S n à F S n+1 . Dans le cas où F est le corps des nombres complexes, on cherche donc simplement à comprendre l'induction d'un module simple de F S n à F S n+1 . Dans le cas général, on ne peut espérer une réponse aussi satisfaisante que celle donnée dans l'introduction car la théorie des représentations n'est pas semi-simple. Ceci signifie en particulier que l'induction d'un module simple n'est pas semi-simple : elle ne peut en général pas s'écrire comme somme directe de sous-modules simples. On s'intéresse plutôt ici à décrire le socle de l'induction d'un module simple, c'est à dire le plus grand sous-module semi-simple contenu dans cette induction. Par définition, il s'écrit donc comme somme directe de modules simples de F S n+1 . On en revient donc à définir un graphe qui contient les informations ci-dessus. Par convention D ∅ est l'unique module simple de

F S 0 et Ind(D ∅ )) = D (1)
Exemple 2.9. -Si on prend un nombre premier p tel que p > n alors, comme déjà noté dans la remarque 2.3, la théorie des représentations de F S n est semi-simple, le socle correspond donc au module lui-même et tous les modules de Specht sont simples et non isomorphes. Le graphe de branchement n'est rien d'autre que le graphe de Young de l'introduction.

Le problème de la détermination explicite de la règle de branchement a été résolu par Kleshchev ( [START_REF] Kleshchev | Branching rules for modular representations of symmetric groups[END_REF][START_REF] Kleshchev | Branching rules for modular representations of symmetric groups[END_REF]) et fait intervenir, pour la première fois dans cette note, un cristal d'espace de Fock. Passons donc à la définition de cet objet. Pour ceci, nous avons besoin de quelques définitions combinatoires associées aux diagrammes de Young.

Soit λ = (λ 1 , . . . , λ r ) une partition de n. Une cellule du diagramme de Young de λ est repérée par son numéro de ligne et son numéro de colonne si bien que le diagramme de Young peut formellement se définir par l'ensemble : Si nous reprenons l'exemple de l'introduction avec la partition (4.3.1) de 8, on voit que la cellule (2, 3) est une cellule supprimable et son résidu est -1 + pZ. On voit par exemple également que (2, 4) est une cellule ajoutable de résidu -2 + pZ. Fixons maintenant j ∈ Z/eZ. On considère l'ensemble X des cellules ajoutables et supprimables de résidu j associée à λ. Ensuite, on considère tous les éléments de X et on les écrit sous la forme d'une suite :

Y(λ) = {(a, b) | 1 ≤ a ≤ r, 1 ≤ b ≤ λ a }.
((a 1 , b 1 ), (a 2 , b 2 ), . . . , (a m , b m ))
où a 1 > a 2 > ... > a m (on voit facilement que les a i ne peuvent être égaux) et on construit un mot en écrivant dans l'ordre de la suite S j si (a j , b j ) est supprimable et A j si (a j , b j ) est ajoutable. On supprime dans ce mot toutes les occurrences consécutives de type S i A j , de façon inductive, de manière à ne plus avoir de telles occurences dans notre mot. Alors soit le mot obtenu n'admet aucune lettre de type A et on note dans ce cas f j λ = 0; Sinon notre mot s'écrit sous la forme:

A i1 . . . A i k S i k+1 . . . S ir
avec donc i 1 < . . . < i r (et éventuellement aucune lettre de type S. ) On considère la partition µ telle que

Y(µ) = Y(λ) {(a i k , b i k )}
On définit alors f j λ = µ. L'opérateur f j est appelé opérateur de Kashiwara. Il est facile de voir qu'étant donné une partition, il existe toujours au moins un j ∈ Z/pZ tel que f j λ est non nul.

Exemple 2.10. -Prenons notre exemple avec la partition (4, 3) de 7 et choisissons p = 3. On écrit le diagramme de Young et le résidu de chaque cellule dans la boîte du tableau associé:

0 1 2 0 2 0 1
(par abus de langage nous notons x pour x+pZ). Les cellules ajoutables et supprimables de résidu 1+3Z sont donc (1, 5) qui est ajoutable, (2, 3) qui est supprimable et (3, 1) qui est ajoutable. La suite ci-dessus s'écrit : (3, 1), (2, 3), (1, 5) et le mot A 1 S 2 A 3 . Si on supprime l'occurence S 2 A 3 , il ne reste qu'un terme de type A qui correspond à la boîte ajoutable (3, 1). On voit que :

Y(4, 3, 1) = Y(4, 3) {(3, 1)} et on conclut donc que f 1 (4, 3) = (4, 3, 1)
Définition 2.11. -Le cristal de l'espace de Fock de niveau 1 associé au nombre premier p > 0 est le graphe avec -Sommets : l'ensemble des partitions de n pour n ∈ Z ≥0 -Flèches : on a λ → µ si et seulement si il existe n ∈ Z ≥0 avec λ n, µ n + 1 et j ∈ Z/eZ tel que

f j λ = µ.
En fait, chaque flèche du graphe ci-dessus vient avec la donnée d'un élément de Z/eZ indexant l'opérateur de Kashiwara associé. Nous omettons cette donnée dont nous n'avons pas besoin dans ce survol.

Le cristal est à l'origine un objet apparaissant dans en théorie des représentations des algèbres de Lie semi-simples et des groupes quantiques et donc de façon a priori complètement indépendante des problèmes que nous exposons ici. On peut l'associer à certains modules sur ces algèbres et il permet de décrire des propriétés importantes de ceux-ci. Dans cet article, la propriété qui nous intéresse est la suivante : Théorème 2.12 (Kleshchev). -Le graphe de branchement de (F S n ) n∈Z>0 correspond à la composante connexe du cristal de l'espace de Fock contenant la partition vide.

Le calcul explicite de la règle de branchement n'a pas été à l'origine décrite à l'aide de ce cristal. Ce sont Lascoux, Leclerc et Thibon [START_REF] Lascoux | Thibon J-Y Hecke algebras at roots of unity and crystal bases of quantum affine algebras[END_REF] qui ont pour la première fois remarqué que cette règle pouvait se traduire de cette manière. De là, de nombreux autres liens se sont tissés entre la théorie des représentations des groupes de réflexions et celles des cristaux et groupes quantiques. Pour plus de détails, on peut se référer aux ouvrages [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF][START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF].

Exemple 2.13. -La figure 2 montre le début du cristal de l'espace de Fock de niveau 1 lorsque p = 3. On voit donc par exemple que

Soc(Ind(D (2,1 )) = D (2,1,1) ⊕ D (2,2)
Remarque 2.14. -Comme indiquée dans la remarque 2.7, le problème de Mullineux admet une solution en terme du graphe ci-dessus. Pour ceci, il faut prendre en compte les flèches dans ce graphe mais aussi les éléments de Z/pZ indexant les opérateurs de Kashiwara. Si λ est p-régulière, il existe, une suite d'éléments (i 1 , . . . , i n ) de Z/pZ tel que λ = f i1 . . . f in ∅. Alors, la partition m(λ) est la partition p-régulière de n suivante m(λ) = f -i1 . . . f -in ∅ que l'on peut montrer bien définie. Par exemple, prenons p = 3, on voit que m(4) = (2, 2) ce qui est cohérent avec la fin de la section précédente. 

Représentations modulaires des algèbres de Hecke

On voit que la définition du cristal d'un espace de Fock a un sens lorsque p n'est pas nécessairement un nombre premier. Existe t-il un groupe ou une algèbre qui joue le rôle du groupe symétrique pour ce cristal ?

3.1. Définition et théorie des représentations. -Tout d'abord, nous allons considérer une généralisation du groupe symétrique. Le groupe symétrique est un cas particulier de groupe de réflexions complexes. Prenons V un C-espace vectoriel de dimension finie. Une réflexion f de V est par définition un isomorphisme linéaire de V , diagonalisable telle que le noyau de f -Id V est un hyperplan de V . Un groupe de réflexions complexes est un groupe fini engendré par des réflexions complexes.

Il existe une classification des groupes de réflexions complexes irréductibles (ceux dont l'espace vectoriel sous-jacent V n'a pas de sous-espace vectoriel non trivial invariant par l'ensemble des réflexions du groupe) par Shephard et Todd en 1954 dans [START_REF] Shephard | Finite unitary reflection groups[END_REF]. Elle consiste en :

1. Une série infinie dépendant de trois paramètres entiers n ∈ Z >0 , l ∈ Z >0 et r ∈ Z >0 avec r qui divise l. Elle est notée G(l, r, n). En tant que groupe, G(l, r, n) est isomorphe au sous-groupe de GL n (C) formé des matrices monomiales (i.e. les matrices avec exactement un élément non nul dans chaque ligne et colonne) où les coefficients non nuls sont des racines l-ièmes de l'unité et le produit de ceux-ci une racine l/r-ième de l'unité. 2. 34 groupes, dits exceptionnels, qui ne rentrent pas dans la catégorie ci-dessus. L'objet qui va nous intéresser ici est le groupe de réflexions de type G(l, 1, n) aussi appelé groupe symétrique généralisé. C'est un objet fondamental car tout groupe de la série infinie se retrouve comme sous-groupe d'un groupe de ce type. De plus, une grande partie de la théorie des représentations de toute cette série infinie se déduit de l'étude seule de la théorie des représentations de ce groupe grâce à des techniques de théories des groupes (comme la théorie de Clifford). Lorsque l = 1 ou 2, ce groupe est aussi un groupe de Weyl (un groupe de réflexion réel) : Le groupe G(1, 1, n) n'est rien d'autre que le groupe symétrique, le groupe G(2, 1, n) est aussi connu sous le nom de groupe hyperoctohédral, ou groupe de Weyl de type B n .

On se place ici sur le corps des nombres complexes. On peut définir l'algèbre CG(l, 1, n) du groupe G(l, 1, n) par sa présentation. Celle-ci est donnée par :

générateurs: T 0 , T 1 ,..., T n-1 , relations:

T 0 T 1 T 0 T 1 = T 1 T 0 T 1 T 0 , T i T i+1 T i = T i+1 T i T i+1 (i = 1, ..., n -2), T i T j = T j T i (|j -i| > 1), T l 0 -1 = 0, T 2 
i -1 = 0 (i = 1, ..., n -1). Ceci signifie que tout élément de cette algèbre est une somme de produits des éléments T 0 , T 1 ,..., T n-1 et que la multiplication entre deux de ces éléments est déterminée par les relations ci-dessus. Plus formellement, pour toute C-algèbre H, et pour toute application f : {T 0 , . . . , T n-1 } → H, il existe un unique morphisme d'algèbres F : CG(l, 1, n) → H prolongeant f et tel que les images des générateurs satisfont les relations ci-dessus.

Si l = 1, T 0 est alors égal à 1 et l'algèbre n'est engendrée que par T 1 , ..., T n-1 . On voit bien alors que l'algèbre obtenue n'est rien autre que l'algèbre du groupe symétrique sur le corps des nombres complexes, où pour k = 1, . . . , n -1, l'élément T k correspond à la transposition (k, k + 1). Dans le cadre général, on peut associer à ce groupe une nouvelle algèbre obtenue en "déformant" la multiplication et plus particulièrement les deux dernières relations de sa présentation.

Pour ceci, fixons nous un élément q ∈ C × et s = (s 1 , . . . , s l ) ∈ Z l . On se place ici sur le corps des nombres complexes. L'algèbre de Hecke du groupe G(l, 1, n) est une C-algèbre avec une présentation par :

générateurs: T 0 , T 1 ,..., T n-1 , relations:

T 0 T 1 T 0 T 1 = T 1 T 0 T 1 T 0 , T i T i+1 T i = T i+1 T i T i+1 (i = 1, ..., n -2) 
,

T i T j = T j T i (|j -i| > 1),
(T 0 -q s1 ) . . . (T 0 -q s l ) = 0, (T i -q)(T i + 1) = 0 (i = 1, ..., n -1).

Nous la noterons CH s (q). Prenons l = 1, l'algèbre obtenue est appelée algèbre de Hecke de type A. On voit que si on fixe encore q = 1, on obtient encore une fois l'algebre du groupe symétrique sur le corps des nombres complexes. Cette algèbre joue un rôle important dans diverses théories (voir [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF][START_REF] Geck | G Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF] pour des détails), citons par exemple :

-La théorie des représentations des groupes réductifs finis.

-La théorie des noeuds : cette algèbre permet de définir un invariant de noeud, le polynôme HOM-FLYPT. -La théorie des groupes quantiques et des bases canoniques, etc. Des rôles analogues sont parfois joués par ces algèbres ou par certaines de leurs avatars dans le cas plus général où l ∈ Z >0 . Par exemple, les liens avec les groupes quantiques se généralisent aux cas l ∈ N (voir [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF]). Dans certains cas, ces rôles demeurent mystérieux mais font l'objet de récents travaux (voir par exemple la théorie des Spets [START_REF] Broué | Split Spetses for Primitive Reflection Groups[END_REF]).

Outre les références ci-dessus, on peut citer [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF] pour une étude approfondie de la théorie des représentations de cette algèbre. La théorie des représentations de CH s (q) possède de grandes similarités avec celle du groupe symétrique. Ici, les objets combinatoires qui vont nous intéresser ne sont pas simplement les partitions mais les l-partitions. Une l-partition de n est par définition un l-uplet λ = (λ 1 , . . . , λ l ) où pour chaque j = 1, . . . , l, on a λ j n j avec (n 1 , . . . , n l ) ∈ Z ≥0 vérifiant 1≤j≤l n j = n. On notera λ l n. Par convention, une 1-partition est identifiée à une partition.

Tout d'abord, on peut construire un ensemble de CH s (q)-modules appelé modules de Specht et indexé par les l-partitions de n.

{S λ | λ l n}. Ces modules ne sont pas simples en général. Ils le sont lorsque l'algèbre est semi-simple (on dispose d'un critère relativement simple pour savoir quand elle l'est [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF]Th. 5.4.2] du à Ariki). On peut ensuite adopter la même stratégie que pour le groupe symétrique pour trouver les modules simples. Cependant, le résultat va être un peu plus compliqué et nous allons avoir besoin de la théorie des cristaux d'espace de Fock dès cette étape pour définir les objets en présence.

3.2.

Cristaux. -On se fixe ici e ∈ Z >1 et s = (s 1 , . . . , s l ) ∈ Z l . Soit λ = (λ 1 , . . . , λ l ) une l-partition de n. On définit le diagramme de Young de λ comme l'ensemble

Y(λ) = {(a, b, c) | 1 ≤ a, 1 ≤ b ≤ λ c a , 1 ≤ c ≤ l}.
Comme dans le cas l = 1, ses éléments sont appelés les cellules de λ. Ce diagramme se représente de facon identique au cas l = 1. Par exemple, le diagramme de Young de la 3-partition ((3, 1), ( 2 Fixons maintenant j ∈ Z/eZ. On considère l'ensemble X des cellules ajoutables et supprimables de résidu j associé à λ et nous allons considérer un ordre sur ces éléments, on écrit

(a, b, c) < (a , b , c ) si -b -a + s c < b -a + s c , -ou bien b -a + s c = b -a + s c et c < c
. Ensuite, on considère tous les éléments de X et on les écrit sous la forme d'une suite

((a 1 , b 1 , c 1 ), (a 2 , b 2 , c 2 ), . . . , (a m , b m , c m ))
dans l'ordre croissant suivant l'ordre ci-dessus. On construit un mot en écrivant dans l'ordre de la suite S j si (a j , b j , c j ) est supprimable et A j si (a j , b j , c j ) est ajoutable. On supprime dans ce mot toutes les occurrences consécutives de type S i A j , de façon inductive, de manière à ne plus avoir de telles occurrences dans notre mot. Alors soit le mot obtenu n'admet aucune lettre de type A et on note dans ce cas f j λ = 0. Sinon notre mot s'écrit sous la forme:

A i1 . . . A i k S i k+1 . . . S ir
avec donc i 1 < . . . < i r . On considère la partition µ tel que

Y(µ) = Y(λ) {(a i k , b i k , c i k )}
On définit alors f j λ = µ. Définition 3.1. -Le cristal de l'espace de Fock de niveau l et de charge s associé à e ∈ Z >1 est le graphe avec :

-Sommets : l'ensemble des l-partitions de n pour n ∈ Z ≥0 -Flèches : on a λ → µ si et seulement si il existe n ∈ Z ≥0 avec λ l n, µ l n + 1 et il existe j ∈ Z/eZ tel que f j λ = µ.

Comme pour le niveau 1, il est facile de voir que de toute l-partition part au moins une flèche. La structure de ce graphe peut être relativement complexe. Il possède plusieurs composantes connexes dont une va jouer un rôle important par la suite : celle contenant la multipartition vide.

Définition 3.2. -Soit e ∈ Z >1 , n ∈ Z ≥0 et s ∈ Z l .
Les l-partitions de n apparaissant dans la composante connexe de la l-partition vide du cristal correspondant sont appelées multipartitions de Uglov. L'ensemble des multipartitions de Uglov associé à ces données est noté Φ e s (n). Suivant la section précédente, les multipartitions de Uglov dans le cas l = 1 correspondent aux partitions e-régulières que nous avons déjà rencontrées dans le première section (voir la définition 2.4).

Exemple 3.3. -La figure 3 donne le cristal en niveau 2, s = (0, 0) et e = 2 (le symbole -indique le diagramme de Young de la partition vide.) On voit dans l'exemple du sl e -cristal en niveau 2, s = (0, 0) et e = 2 que l'on a donc : Si s change, l'ensemble des l-partitions de Uglov change également. Par exemple :

Φ 2 (0,0) (3) = {((3), ∅), ((2, 1), ∅), ( (2) 
Φ 2 (0,4) (3) = {(∅, (3)), (∅, (2, 1)), ((1) 
, ( 2))}. Remarque 3.4. -Lorsque l = 1 et e = p est premier, le graphe de branchement de l'algèbre de Hecke est donc exactement le même que celui du groupe symétrique en caractéristique p. Ce n'est pas un hasard, les théories des représentations de ces deux objets sont en interactions (voir par exemple [27, Ch.6 Sec. 2]). C'est même une des motivations pour l'étude des représentations d'algèbres de Hecke.

3.3.

Modules simples et règle de branchement. -Les questions qui vont nous intéresser dans cette partie sont analogues à celles posées pour le groupe symétrique. Nous supposerons dans toute la suite que q est une racine primitive de l'unité d'ordre e > 1. La première question est celle de savoir comment déterminer les modules simples de notre nouvelle algèbre. Pour ceci, nous allons procéder avec la même stratégie que pour le groupe symétrique, en considérant tout d'abord un ordre sur les lpartitions qui va dépendre des données de départ. Cet ordre ≺ s est défini dans [10, Def. 5.5.19] en terme de symbole de Lusztig. Il n'est pas utile de donner sa définition dans ce survol, définition qui généralise l'ordre de dominance que nus avons déjà rencontré dans le cas l = 1. Il est important cependant de constater que cet ordre dépend fortement du choix de s. Le théorème suivant se trouve dans [10, Th 6.7.2] C'est une combinaison de plusieurs résultats. Théorème 3.5 (Ariki, Ariki-Mathas, Geck-Jacon). -Soit M un CH s (q)-module simple où q est une racine primitive de l'unité d'ordre e > 1. Alors il existe une unique l-partition λ n qui est dans Φ e s (n) et qui vérifie :

1. M est un facteur de composition de S λ M et sa multiplicité est de 1, 2. Si M est un facteur de composition de S λ M alors λ ≺ s λ M . L' application suivante bijective:

Ψ : Irr(F S n ) → Φ e s (n) M → λ M
Il suit que les modules simples s'indexent naturellement par l'ensemble des l-partitions de Uglov. Dans la suite, on va noter pour tout M ∈ Irr(CH s (q)),

D λ M s := Ψ -1 (λ M ) = M . De sorte que Irr(CH s (q)) = {D µ s | µ ∈ Φ e s ( 
n)} Si nous avons déjà remarqué que la description des modules simples dans le cas du groupe symétrique et de la caractéristique positive n'était pas explicite, celle-ci, dans un certain sens, l'est encore moins car l'ensemble des multipartitions de Uglov est un ensemble plus complexe a priori que l'ensemble des partitions p-régulières. En particulier, en général, il n'existe pas de définition non récursive de celles-ci, même si des descriptions relativement agréables existent (voir [10, §5.7] et [START_REF] Jacon | Kleshchev multipartitions and extended Young diagrams[END_REF]). On peut maintenant définir un graphe de branchement de manière abstraite : Définition 3.6. -Le graphe de branchement de (CH s (q)) n∈Z>0 est le graphe avec -Sommets : l'ensemble des l-partitions Φ e s (n) de Uglov de n pour n ∈ Z ≥0 -Flèches : on a λ → µ pour (λ, µ) ∈ Φ e s (n) × Φ e s (n + 1) si et seulement si D µ s est un facteur direct de Soc(Ind(D λ s )). Par convention D ∅ est l'unique module simple lorsque n = 0 et Ind(D ∅ )) est la somme directe de tous les modules simples lorsque n = 1.

L'analogue au théorème 2.12 est donc le suivant. Ariki [START_REF] Ariki | Proof of the modular branching rule for cyclotomic Hecke algebras[END_REF] a tout d'abord prouvé le théorème dans un cas particulier et le cas général s'en déduit aisément grâce à des résultats de théorie des représentations donnés dans [START_REF] Jacon | On the one dimensional representations of Ariki-Koike algebras at roots of unity[END_REF], voir la section ci-dessous. Théorème 3.7 (Ariki). -Le graphe de branchement de (CH s (q)) n∈Z>0 correspond à la composante connexe du cristal de l'espace de Fock de niveau l associée à s et e contenant la l-partition vide.

3.4. Isomorphismes de cristaux. -Reprenons les notations ci-dessus en considérant une algèbre de Ariki-Koike CH s (q), où q est une racine primitive de 1 d'ordre e > 1. Bien sûr, la structure de cet algèbre dépend du choix des données de s. Mais on peut remarquer que si on permute deux éléments de s, disons s i et s j , alors l'algèbre reste la même ! Il en est de même si on ajoute à un s i un multiple de e. On peut formaliser ceci en considérant le groupe symétrique affine étendu S l . Ce groupe peut être vu comme le produit semi-direct Z l S l dont la définition se trouve dans [10, §6. Les σ c agissent donc comme des permutations et les y c comme des translations. Alors on remarque que si s et s sont dans la même orbite modulo cette action, on a CH s (q) = CH s (q). Il suit en particulier que l'on a : Irr(CH s (q)) = Irr(CH s (q)) Par le théorème 3.5, nous pouvons donc définir une bijection Ψ s,s : Φ e s (n) → Φ e s (n) uniquement définie de la manière suivante. Soit λ ∈ Φ e s (n). Alors il existe une unique Ψ s,s (λ

) ∈ Φ e s (n) telle que D λ s = D Ψ s,s (λ) s 
. Une question naturelle est donc : quelle est cette bijection ? on peut en fait l'interpréter et la calculer à l'aide de la théorie des cristaux. Pour éviter les confusions, notons f s j (avec j ∈ Z/eZ) les opérateurs de Kashiwara associés au cristal de l'espace de Fock de niveau l et de charge s et f s j (avec j ∈ Z/eZ) les opérateurs de Kashiwara associés au cristal de l'espace de Fock de niveau l et de charge s . Le résultat suivant se trouve dans [START_REF] Jacon | On the one dimensional representations of Ariki-Koike algebras at roots of unity[END_REF]. Théorème 3.8 (Jacon). -Sous les notations ci-dessus, soit λ ∈ Φ e s (n). Alors, il existe (j 1 , . . . , j n ) ∈ (Z/eZ) n tel que

f s j1 . . . f s jn ∅ = λ Alors f s j1 . . . f s jn ∅ = Ψ s,s (λ) 
Il est possible d'obtenir un calcul plus direct de cette bijection. Un tel calcul a été proposé dans [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U( sle)-modules of higher level[END_REF] en utilisant la combinatoire des cristaux. Ces bijections permettent souvent de ramener l'étude de la théorie des représentations à des cas particuliers. Par exemple, la preuve du théorème 3.7 ci-dessus suit de l'existence de cette bijection, de ce théorème combiné avec un résultat de Ariki qui prouve le théorème pour un cas particulier de s mais qui couvre un domaine fondamental pour l'action ci-dessus.

Représentations d'algèbres de Cherednik rationnelles

Nous montrons maintenant comment ces cristaux d'espaces de Fock interviennent en théorie des représentations d'autres algèbres qui ont été récemment beaucoup étudiées : les algèbres de Cherednik rationnelles.

4.1. Définition. -Nous donnons ici la définition des algèbres de Cherednik rationnelles dans le cadre général. Soit W ⊂ GL(V ) un groupe de réflexions complexes où V est un C-espace vectoriel. On note S = {s ∈ W | rang(Id V -s) = 1} l'ensemble des réflexions de W . Soit h un C-espace vectoriel de dimension minimal tel qu'il existe une représentation ρ : W → GL(h) injective. On se donne c : S → C une application invariante sur chaque classe de conjugaison. Pour chaque réflexion s ∈ S, il existe α s ∈ h et α ∨ s ∈ h * des vecteurs propres associés à des valeurs propres différentes de 1 tels que α s , α ∨ s = 2 où ., . : h × h * → C est le produit scalaire usuel.

L'algèbre de Cherednik rationnelle CH c (W ) est la C-algèbre définie comme quotient de T (h ⊕ h * ) C[W ] (où T désigne l'algèbre tensorielle) par les relations :

[x, x ] = 0, [y, y ] = 0, [y, x] = x, y - s∈S c(s) α s , y x, α ∨ s s avec x, x ∈ h et y, y ∈ h * .
Ces algèbres ont été largement étudiées durant ces dernières années, elles sont liées à bon nombre de théories, citons entre autres :

les représentations d'algèbres de Hecke (voir la remarque 4.4 ci-dessous.) les résolutions de singularités les schémas de Hilbert etc .. Nous nous réferons à [START_REF] Chlouveraki | Hecke algebras and symplectic reflection algebras, Commutative Algebra and Noncommutative Algebraic Geometry, I[END_REF][START_REF]I Rational Cherednik Algebras[END_REF][START_REF] Rouquier | Representations of rational Cherednik algebras[END_REF] pour des articles d'expositions sur ces algèbres et leurs applications. L'un des intérêts de ces algèbres de dimension infini réside dans leurs théorie des représentations, qui a de nombreuses similarités avec celle des algèbres enveloppantes des algèbres de Lie semisimples :

-On a un théorème de type Poicaré-Birkoff-Witt qui donne une décomposition triangulaire de cette algèbre. Elle est isomorphe en tant que C-espace vectioriel à C Par convention L(∅) est l'unique module simple lorsque n = 0. Suivant [14, §2.3], on peut associer au choix de c une charge s que l'on peut supposer dans Z l et un entier e que nous pouvons supposer dans Z >1 ce que nous allons faire pour donner les résultats qui nous intéressent ici. On sait que le graphe de branchement est un graphe sur l'ensemble de toutes les l-partitions. Shan [START_REF] Shan | Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras[END_REF] a montré que celui-ci est en fait donné par le cristal de l'espace de Fock associé à la charge s et à e, comme définie précédemment. La preuve utilise des résultats de catégorification par Chuang et Rouquier [START_REF] Chuang | Derived equivalences for symmetric groups and sl2-categorification[END_REF]. Théorème 4.2 (Shan). -Le graphe de branchement de (CH c (G(l, 1, n))) n∈Z ≥0 correspond au cristal de l'espace de Fock de niveau l associé à une certaine charge s et e.

[h] ⊗ C[W ] ⊗ C[h * ]. -Il
Considérons maintenant la seconde question : il s'agit ici de savoir comment reconnaître les CH c (W )modules simples de dimension finie. Losev [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF] et Shan-Vasserot [START_REF] Shan | Heisenberg algebras and rational double affine Hecke algebras[END_REF] ont construit un opérateur sur l'ensemble des l-partitions, associé à un foncteur exact de O(G(l, 1, n -em)) vers O(G(l, 1, n)) pour un entier m tel que em < n. Nous passons sur la façon dont on construit cet opérateur, de manière algébrique ou combinatoire (voir aussi [START_REF] Gerber | Triple crystal action in Fock spaces. à paraître à Advances in Mathematics[END_REF] pour des descriptions explicites). Cet opérateur commute avec les opérateurs de Kashiwara et on peut donc ajouter à notre cristal de niveau l un ensemble de flèches qui reflètent l'action de cet opérateur (le graphe associé à ces flèches s'appelle le H-cristal). On définit alors les sources de ce graphe comme étant les l-partitions du graphe vers lesquelles aucune des flèches du (double)-graphe ne pointent. La figure 4 -Les représentations de dimension finie sont les sources du cristal de l'espace de Fock de niveau l associé à s.

Le problème de déterminer explicitement une caractérisation de ces sources a été considérée dans [START_REF] Jacon | A combinatorial decomposition of higher level Fock spaces[END_REF] et un résultat complet obtenu par Gerber dans [START_REF] Gerber | Triple crystal action in Fock spaces. à paraître à Advances in Mathematics[END_REF].

Remarque 4.4. -Dans [START_REF] Ginzburg | On the category O for rational Cherednik algebras[END_REF] est défini un foncteur de la catégorie O(G(l, 1, n)) vers la catégorie des modules de dimension finie sur l'algèbre de Hecke CH s (q) (où q est une racine de l'unité d'ordre e) : le foncteur KZ. Dans [START_REF] Chlouveraki | Cell modules and canonical basic sets for Hecke algebras from Cherednik algebras[END_REF], il est montré que l'image par ce foncteur des modules simples L(λ) est :

nul si λ / ∈ Φ s (n) -D λ s sinon Si on identifie les modules L(λ) et D λ s avec leurs l-partitions associées, le foncteur KZ "tue" tous les éléments non contenu dans la composante connexe de la l-partition vide et laisse invariant les autres (sous cette identification).

Remarque 4.5. -Les cristaux d'espaces de Fock apparaissent dans un autre aspect de la théorie des représentations : la théorie de représentations des groupes réductifs et plus particulièrement la théorie de Harish-Chandra. Là encore, on trouve que des cristaux de niveaux deux s'interprétent en terme de règle de branchement (voir [START_REF] Gerber | Harish-Chandra series in finite unitary groups and crystal graphs[END_REF] et [START_REF] Dudas | Categorical actions on unipotent representations I. Finite unitary groups[END_REF]). 
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  Exemple 2.1. -Si n ≥ 1, l'ensemble des modules de Specht contient deux modules de dimension 1, c'est le cas de la partition λ = (n) et le cas de la partition λ = (1, . . . , 1 Le module de Specht indexé par la partition (n) correspond au module trivial, comme F -espace vectoriel, il est donc isomorphe à F et S n agit trivialement sur celui-ci. 2. Le module de Specht indexé par la partition (1, . . . , 1Le résultat suivant indique que ces modules de Specht fournissent des modèles pour les modules simples dans le cas de la caractéristique 0 (voir [21, Th 7.1.9]).
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	1. Théorème 2.2. -Supposons F = Q alors les modules de Specht sont deux à deux non isomorphes et
	on a :
	Irr(QS n ) = {S λ | λ n}.
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n fois ) correspond au module signe (c'est à dire que la représentation est le morphisme signe), comme F -espace vectoriel, il est donc isomorphe à F . Ces deux modules sont non isomorphes excepté dans le cas p = 2.

  existe une catégorie remarquable de représentations. Cette catégorie O(W ) est la catégorie des CH Peut-on caractériser les CH c (W )-modules simples de dimension finies sur C.4.2. Interprétation en terme de cristal. -Nous allons tout d'abord nous intéresser au premier problème. Pour ceci, le premier problème consiste en la définition de règle de branchement et la solution est moins directe que lors des sections précédentes car l'algèbre CH c (G(l, 1, n)) ne se voit pas directement comme sous-algèbre de CH c (G(l, 1, n + 1)). Un procédé d'induction de O(G(l, 1, n)) à O(G(l, 1, n + 1))a cependant été défini par Bezrukavnikov et Etingof[START_REF] Bezrukavnikov | Parabolic induction and restriction functors for rational Cherednik algebras[END_REF], mais celui-ci est beaucoup plus complexe que dans les cas précédents. On a donc néanmoins l'existence d'un opérateur induction Ind et, de là, d'une règle de branchement.

c (W )-modules de type fini sur lequel h agit de manière localement nilpotente. On peut montrer que cette catégorie admet des objets simples indexés par les irréductibles du groupe de réflexions complexes associés.

Nous allons considérer le groupe de réflexions complexes G(l, 1, n). Dans ce cas, h est isomorphe à C n et on peut décrire les relations (voir [14, §2.2]). L'ensemble des CH c (W )-modules simples de la catégorie O(W ) est quant-à elle donnée par l'ensemble :

{L(λ) | λ l n}.

Les questions qui vont nous intéresser ici sont les suivantes :

-Quel est l'équivalent de la règle de branchement pour ces algèbres ? -