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Abstract

We consider d independent walkers in the same random environment in Z. Our
assumption on the law of the environment is such that a single walker is transient
to the right but subballistic. We show that — no matter what d is — the d walkers
meet infinitely often, i.e. there are almost surely infinitely many times for which all
the random walkers are at the same location.
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1 Introduction and statement of the main results

1.1 Motivation and main result

Meetings, or collisions, of random walks have been studied since the early works of
Pólya [34]. Indeed, Pólya [34] proves that almost surely, two independent simple random
walks meet infinitely often in Z or Z2, but only a finite number of times in Z3. Proving
this result was his main motivation for proving his celebrated result on transience
and recurrence of simple random walks in Zd, d ≥ 1 (see Pólya [35] “Two incidents”).
Moreover, Dvoretzky and Erdös [17] stated that almost surely, in Z, 3 independent
simple random walks meet (simultaneously) infinitely often whereas 4 independent
simple random walks meet only a finite number of times.

More recently, the question whether two or three independent random walks meet
infinitely often or only a finite number of times has been studied on some other graphs,
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Collisions of transient RWRE

for example wedge combs, percolation clusters of Z2 and some trees. See e.g. Krishnapur
and Peres [28], Chen, Wei and Zhang [11], Chen and Chen [9], [10], Barlow, Peres and
Sousi [4], Hutchcroft and Peres [23] and Chen [12]. For some applications of collisions
of random walks in physics and in biology, we refer to Campari and Cassi [8].

Meetings/collisions have also been considered recently for random walks in random
environments (RWRE) in Z. It was proved by Gantert, Kochler and Pène [21] that almost
surely, d independent random walks in the same (recurrent) random environment meet
infinitely often in the origin for any d ≥ 2. In other words, the d walkers together are a
recurrent Markov chain on Zd. Related questions have been studied by Gallesco [20]
and Zeitouni [39, p. 307]. A necessary and sufficient condition for several independent
(recurrent) Sinai walks and simple random walks to meet infinitely often (even if the
walkers together are a transient Markov chain) has been proved by Devulder, Gantert
and Pène [15]. Systems of several random walks in the same random environment have
also been investigated in some other papers, see e.g. Andreoletti [1], and Peterson et
al. [32], [30] and [25], but these papers do not consider collisions, which are our main
object of study.

The aim of the present paper is to investigate if there are infinitely many meetings in
the (zero speed) transient case, that is, when each random walk is transient with zero
speed in the same random environment. In this case, the d walkers together are clearly
a transient Markov chain, but it turns out that — no matter what d is — the d walkers
meet infinitely often, almost surely.

Let ω := (ωx)x∈Z be a collection of i.i.d random variables, taking values in (0, 1) and
with joint law P. A realization of ω is called an environment. Let d ≥ 2, and (x1, . . . , xd) ∈
Zd. Conditionally on ω, we consider d independent Markov chains

(
S

(j)
n

)
n∈N, 1 ≤ j ≤ d,

defined for all 1 ≤ j ≤ d by S(j)
0 = xj and for every n ∈ N, y ∈ Z and z ∈ Z,

P (x1,...,xd)
ω

(
S

(j)
n+1 = z|S(j)

n = y
)

=


ωy if z = y + 1,

1− ωy if z = y − 1,

0 otherwise.
(1.1)

We say that each
(
S

(j)
n

)
n∈N is a random walk in random environment (RWRE). So,

S(j) :=
(
S

(j)
n

)
n∈N, 1 ≤ j ≤ d are d independent random walks in the same (random)

environment ω. Here and throughout the paper, N denotes the set of nonnegative
integers, including 0.

The probability P (x1,...,xd)
ω is called the quenched law. We also consider the annealed

law, which is defined by

P(x1,...,xd)(·) =

∫
P (x1,...,xd)
ω (·)P(dω).

Notice in particular that
(
S

(j)
n

)
n∈N, 1 ≤ j ≤ d, is not Markovian under P(x1,...,xd). We

sometimes consider Sn := S
(1)
n , n ∈ N. We then denote by P xω the quenched law

for a single RWRE starting at x ∈ Z, and write Pω instead of P xω when x = 0, and

P(·) =
∫
Pω(·)P(dω) the corresponding annealed law. We denote by E, E(x1,...,xd)

ω , E,

Eω and Exω the expectations under P, P (x1,...,xd)
ω , P, Pω and P xω respectively. We also

introduce

ρx :=
1− ωx
ωx

, x ∈ Z.

We assume that there exists ε0 ∈ (0, 1/2) such that

P
[
ω0 ∈ [ε0, 1− ε0]

]
= 1. (1.2)
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Collisions of transient RWRE

This ellipticity condition is standard for RWRE. Solomon [38] proved that (Sn)n is P-
almost surely recurrent when E(log ρ0) = 0, and transient to the right when E(log ρ0) < 0.
In this paper we only consider the transient, subballistic case. More precisely, we assume
that

E(log ρ0) < 0 (1.3)

hence
(
Sn
)
n∈N is a.s. transient to the right, and

there exists 0 < κ < 1 such that E
(
ρκ0
)

= 1. (1.4)

In this case, κ is unique and it has been proved by Kesten, Koslov and Spitzer [26]
that, under the additional hypothesis that log ρ0 has a non-arithmetic distribution, Sn is
asymptotically of order nκ as n→ +∞ (we do not make this assumption in the present
paper). Notice that due to our hypotheses (1.3) and (1.4), ω0 is non-constant. This
excludes the degenerate case of simple random walks, which behave very differently.

Our main result is the following.

Theorem 1.1. Assume (1.2), (1.3) and (1.4). Let x1, ..., xd ∈ Z with the same parity,
where d ≥ 2. Then P(x1,...,xd)-almost surely, there exist infinitely many n ∈ N such that

S(1)
n = S(2)

n = . . . = S(d)
n .

Notice in particular that each random walk S(j) is transient, however d independent
random walks S(j), 1 ≤ j ≤ d meet simultaneously infinitely often, for every d > 1.
Theorem 1.1 remains true for −1 < κ < 0 when E(log ρ0) > 0 by symmetry (i.e., by
replacing ωj by 1− ω−j for every j ∈ Z). To the best of our knowledge, this is the first
example of a transient random walk, for which arbitrary many independent realizations
of this random walk meet simultaneously infinitely often.

Also, notice that we do not require a non-arithmetic distribution in our Theorem 1.1.
In this paper, we use quenched techniques. For more information and results about

quenched techniques for RWRE in the case 0 < κ < 1, we refer to Enriquez, Sabot and
Zindy [18], [19], Peterson and Zeitouni [33] and Dolgopyat and Goldsheid [16]. For a
quenched study of the continuous time analogue of RWRE, that is, diffusions in a drifted
Brownian potential expressed in terms of h-extrema, we refer to Andreoletti et al. [2]
and [3].

Our results may be rephrased in terms of the capacity of the diagonal {y ∈ Zd : y1 =

. . . = yd} for the Markov chain
(
S

(1)
n , S

(2)
n , . . . , S

(d)
n

)
on Zd, see [5].

1.2 Sketch of the proof and organization of the paper

We introduce, in Section 2, the potential V for the RWRE, and we provide some useful
estimates concerning this potential. In particular, we prove a key lemma, Lemma 2.5,
which will enable us to control the invariant probability measure of a RWRE reflected
inside a typical valley.

In Section 3, we show that P-almost surely, there exist successive valleys [ai, ci], i ≥ 1,
for the potential V , with bottom bi and depth at least fi ≈ log(i!) for some deterministic
sequence (fi)i, with ai < bi < ci < ai+1 < . . . , so that the valleys [ai, ci] are disjoint.

We also show (see Propositions 3.4 and 3.5) that almost surely for infinitely many
i, (a) the depth of the i-th valley [ai, ci] is larger than fi + zi for some deterministic zi,
and there exists no valley of depth at least fi before it, and (b) the invariant probability
measure of a RWRE reflected inside this valley is uniformly large at the bottom bi of the
i-th valley (due to Lemma 2.5). We denote the sequence of these indices i by (i(n))n∈N.
The valleys number i(n), n ∈ N, are called the very deep valleys. See Figure 1 for the
pattern of the potential for a very deep valley.
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Collisions of transient RWRE

The advantage of such a very deep valley is that thanks to (a), with high probability,
the particles S(1), . . . , S(d) will arrive quickly to the bottom bi(n) of this valley (see
Lemma 4.1), and stay together a long time inside this valley (see Lemma 4.3). This
will ensure, thanks to a coupling argument (detailed in Subsection 4.2) and to (b),
that S(1), ..., S(d) will meet simultaneously in the valley of bottom bi(n) with a quenched
probability greater than some strictly positive constant. We conclude in Subsection 4.3
that with a quenched probability greater than some strictly positive constant, S(1), ..., S(d)

will meet simultaneously for an infinite number of n. This, combined with a result of
Doob, will ensure that P(x1,...,xd)-almost surely, S(1), ..., S(d) will meet simultaneously for
an infinite number of n.

Finally, we prove in Section 5 two identities in law related to random walks condi-
tioned to stay nonnegative or conditioned to stay strictly positive.

2 Potential and some useful estimates

2.1 Potential and hitting times

We recall that the potential V is a function of the environment ω, which is defined on
Z as follows:

V (x) :=


∑x
k=1 log 1−ωk

ωk
if x > 0,

0 if x = 0,

−
∑0
k=x+1 log 1−ωk

ωk
if x < 0.

(2.1)

Here and throughout the paper, log denotes the natural logarithm. We will write

V (−·) for the process (V (−y), y ∈ Z) . (2.2)

For x ∈ Z, we define the hitting times of x by (Sn)n by

τ(x) := inf{k ∈ N : Sk = x}, (2.3)

where inf ∅ = +∞ by convention. We also define for x ≥ 0 and y ∈ Z,

τ(x, y) := inf{k ∈ N : Sτ(x)+k = y}. (2.4)

We recall the following facts, which explain why the potential plays a crucial role for
RWRE.

Fact 2.1 (Golosov [22], Lemma 7 and Shi and Zindy [36] eq. (2.4) and (2.5) with a slight
modification for the second inequality, obtained from the first one by symmetry). We
have,

P bω[τ(c) < k] ≤ k exp

(
min

`∈[b,c−1]
V (`)− V (c− 1)

)
, b < c , (2.5)

P bω[τ(a) < k] ≤ k exp

(
min

`∈[a,b−1]
V (`)− V (a)

)
, a < b . (2.6)

The following statements about hitting times can be found e.g. respectively in [39,
(2.1.4)] and [14, Lemma 2.2] coming from [39, p. 250].

Fact 2.2. Let a < b < c be three integers.Then

P bω[τ(c) < τ(a)] =

(
b−1∑
k=a

eV (k)

)(
c−1∑
k=a

eV (k)

)−1

, (2.7)

Ebω[τ(a) ∧ τ(c)] ≤ ε−1
0 (c− a)2 exp

(
max

a≤`≤k≤c−1, k≥b
(V (k)− V (`))

)
, (2.8)

Ebω[τ(a) ∧ τ(c)] ≤ ε−1
0 (c− a)2 exp

(
max

a≤`≤k≤c−1, `≤b−1
(V (`)− V (k))

)
, (2.9)
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Collisions of transient RWRE

where we write a ∧ b = min(a, b). Note that (2.8) comes from a comparison with the
RWRE reflected at a and (2.9) comes from a comparison with the RWRE reflected at c.

2.2 Excursions of the potential

We now define by induction, as Enriquez, Sabot and Zindy in [18] and [19], the weak
descending ladder epochs for V as

e0 := 0, ei := inf{k > ei−1 : V (k) ≤ V (ei−1)}, i ≥ 1. (2.10)

In particular, the excursions (V (k + ei)− V (ei), 0 ≤ k ≤ ei+1 − ei), i ≥ 0 are i.i.d.
Recall that, by classical large deviation results (see e.g. [18] Lemma 4.2, stated

when log ρ0 has a non-lattice distribution but also valid in the lattice case), there exists a
function I such that I(0) > 0 and

∀k ≥ 1,∀y ≥ 0, P[V (k) ≥ ky] ≤ exp[−kI(y)]. (2.11)

One consequence of such large deviations is that E(e2
1) < ∞, since for every k ≥ 1,

P(e1 > k) ≤ P[V (k) ≥ 0] ≤ exp[−kI(0)].
We also introduce the height Hi of the excursion [ei, ei+1] of the potential, that is,

Hi := max
ei≤k≤ei+1

[V (k)− V (ei)], i ≥ 0. (2.12)

Recall that due to a result of Cramér (see e.g. [27], Theorem 3 in the lattice and in
the non-lattice case, see also [31, Prop 2.1]), there exists CM > 0 such that

P

(
sup
y≥0

V (y) ≥ z
)
∼z→+∞,z∈Γ CMe

−κz, (2.13)

where Γ = R if V is non-lattice and where Γ = aZ if the potential V is lattice and if
a ∈ R∗+ is the largest positive real number such that P(V (n) ∈ aZ, ∀n ≥ 1) = 1. The
same result is true with > instead of ≥, with CM replaced by a positive constant C ′M
(C ′M = CM is the non-lattice case but C ′M = CMe

−κa in the lattice case with the previous
notation), i.e. we have

P

(
sup
y≥0

V (y) > z

)
∼z→+∞,z∈Γ C

′
Me
−κz. (2.14)

As a consequence, there exists a constant C ′′M ≥ 1 such that

∀z ∈ R, P

(
sup
y≥0

V (y) ≥ z
)
≤ C ′′Me−κz. (2.15)

We will use in the rest of the paper the following result. It is already known when the
distribution of log ρ0 is non-lattice and we extend it for the lattice case.

Proposition 2.3. (adapted from Iglehart [24]) Under Hypotheses (1.2), (1.3) and (1.4),
there exists CI > 0 such that

P (H1 > h) ∼h→+∞,h∈Γ CIe
−κh as h→∞ in Γ , (2.16)

where Γ = R if V is non-lattice and where Γ = aZ if the potential V is lattice and if
a ∈ R∗+ is the largest positive real number such that P(V (n) ∈ aZ, ∀n ≥ 1) = 1.

Proof. When V is non-lattice, the result is proved in [24, Thm 1]. When V is lattice, the
proof is the same as the proof of [24, Thm 1] with the use of (2.14) instead of [24, Lemma
1]. However, since the proof is short, we write it below with our notations.

EJP 24 (2019), paper 100.
Page 5/25

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP344
http://www.imstat.org/ejp/


Collisions of transient RWRE

First, notice that for z > 0,

P
[

sup
N

V > z
]

= P
[

sup
N

V > z,H0 > z
]

+ P
[

sup
N

V > z,H0 ≤ z
]

= P
[
H0 > z

]
+ E

[
1{H0≤z}P

(
sup
N

V > z − y
)∣∣∣∣

y=V (e1)

]
by the strong Markov property applied at stopping time e1. Hence,

eκzP
[
H0 > z

]
= eκzP

[
sup
N

V > z
]
− E

[
1{H0≤z}e

κV (e1)α(z)

]
, (2.17)

where

α(z) :=

(
eκ(z−y)P

(
sup
N

V > z − y
))∣∣∣∣

y=V (e1)

.

Notice that when z → +∞ with z ∈ Γ, 1{H0≤z} → 1 a.s. since V is transient to
−∞, whereas α(z) → C ′M a.s. by (2.14) since (z − V (e1)) ∈ Γ and goes to infinity.
Also, supz>0

∣∣1{H0≤z}e
κV (e1)α(z)

∣∣ ≤ C ′′M a.s. by (2.15) and since V (e1) ≤ 0. So by the
dominated convergence theorem,

E

[
1{H0≤z}e

κV (e1)α(z)

]
→z→+∞,z∈Γ C

′
ME
[
eκV (e1)

]
.

This together with (2.17) and (2.14) gives eκzP
[
H0>z

]
→z→+∞,z∈ΓC

′
M

(
1−E

[
eκV (e1)

])
=:

CI > 0, which ends the proof in the lattice and in the non-lattice case. �

Observe that, in the lattice case, (2.16) is not true for h→∞ in R (it is even not true
in 1

2Γ) but that, in any case, under Hypotheses (1.2), (1.3) and (1.4), there exist C(0)
I > 0

and C(1)
I > 0 such that

∀h ∈ R+, C
(0)
I e−κh ≤ P (H1 > h) ≤ P (H1 ≥ h) ≤ C(1)

I e−κh . (2.18)

2.3 An estimate for the hitting time of the first valley

Let us define the maximal increase of the potential between 0 and x, and then between
x and y, by

V ↑(x) := max
0≤i≤j≤x

[V (j)− V (i)], x ∈ N,

V ↑(x, y) := max
x≤i≤j≤y

[V (j)− V (i)], x ≤ y.

We also introduce

T ↑(h) := min{x ≥ 0, V ↑(x) ≥ h}, h > 0,

m1(h) := min
{
x ≥ 0, V (x) = min

[0,T↑(h)]
V
}
, h > 0, (2.19)

↑Th(y) := max{x ∈ Z, x ≤ m1(h), V (x)− V [m1(h)] ≥ y}, h > 0, y > 0, (2.20)

TV (A) := min{x ≥ 1, V (x) ∈ A}, A ⊂ R, (2.21)

TV (−·)(A) := min{x ≥ 1, V (−x) ∈ A}, A ⊂ R, (2.22)

where we take the convention max ∅ = −∞ in (2.20).
The following inequality (the proof of which uses our assumptions and Proposition

2.3) is useful to bound the expectation of the hitting time of the first valley of height h
for (V (x), x ≥ 0). It is proved in [18] when the distribution of log ρ0 is non-lattice and we
prove that it remains true in the lattice case.
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Fact 2.4. (adapted from [18, Lemma 4.9]) Under hypotheses (1.2), (1.3) and (1.4), there
exists C0 > 1 such that

∀h > 0, E|0
[
τ
(
T ↑(h)− 1

)]
≤ C0e

h, (2.23)

where E|0 denotes the expectation under the annealed law P|0 of the RWRE (Sn)n on
N starting from 0 and reflected at 0 (that is, on the environment ω (under P) with ω0

replaced by 1).

Proof. Assume (1.2), (1.3) and (1.4). If the distribution of log ρ0 is non-lattice, (2.23) is
proved in [18, Lemma 4.9] for large h and then for all h > 0 up to a change of the value
of C0, which we can choose to be greater than 1.

Notice that at least up to their equation (4.15), the proof of [18, Lemma 4.9] does
not use P (H1 > h) ∼h→+∞ CIe

−κh but only uses (2.18) instead of it. Since (2.18) is true
when the distribution of log ρ0 is lattice, the proof of [18, Lemma 4.9], which does not
use the non-lattice hypothesis anywhere else, remains valid in the lattice case at least
up to their equation (4.15).

So it only remains to prove that E[J0|H0 < h] ≤ Ce(1−κ)h for some C > 0 for large
h, where J0 :=

∑e1
k=0 e

V (k). We simplify the rest of the proof as follows. For x ∈ R, we
denote by bxc the integer part of x. Since P[H0 < h]→ 1 when h→ +∞ and 0 ≤ V (k) ≤ h
for 0 ≤ k ≤ e1 on {H0 < h}, we have for large h,

E
[
J0|H0 < h

]
≤ E

[( ∞∑
k=0

eV (k)1{0≤V (k)≤h}

)
1{H0<h}

P[H0 < h]

]

≤ 2E

[ ∞∑
k=0

eV (k)

bhc∑
p=0

1{p≤V (k)<p+1}1{H0<h}

]

≤ 2E

[ ∞∑
k=0

bhc∑
p=0

ep+11{p≤V (k)<p+1}

]

= 2

bhc∑
p=0

ep+1E

[
1{TV ([p,p+1[)<∞}

∞∑
k=0

1{p≤V (k)<p+1}

]

= 2

bhc∑
p=0

ep+1E

[
1{TV ([p,p+1[)<∞}E

( ∞∑
k=0

1{p≤V (k)+x<p+1}

)∣∣∣∣
x=V (TV ([p,p+1[))

]
by the strong Markov property. Hence for large h,

E
[
J0|H0 < h

]
≤ 2

bhc∑
p=0

ep+1P
[
TV ([p, p+ 1[) <∞

]
E

( ∞∑
k=0

1{−1≤V (k)≤1}

)
.

But the expectation in the right hand side of the previous line is finite because V is a
random walk transient to −∞, whereas P

[
TV ([p, p+1[) <∞

]
≤ P

[
supN V ≥ p

]
≤ C ′′Me−κp

by (2.15), so there exists C > 0 such that for large h,

E
[
J0|H0 < h

]
≤ C

bhc∑
p=0

e(1−κ)p = O
(
e(1−κ)h

)
as h→ +∞ since 0 < κ < 1. This ends the proof of (2.23) also when log ρ0 has a lattice
distribution, for large h and then for all h > 0 up to a change of constant. So Fact 2.4 is
proved in both cases. �
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Collisions of transient RWRE

2.4 An estimate for the invariant measure

The following lemma will be useful to control the invariant probability measure of a
RWRE reflected inside our valleys, and to show that the invariant measure at the bottom
of some of these valleys (introduced below in Proposition 3.5) is uniformly large.

Lemma 2.5. Under hypotheses (1.2), (1.3) and (1.4), there exist constants C2 > 0 and
h0 > 0 such that for every h > h0,

E

[ ∑
m1(h)≤x≤T↑(h)

e−(V (x)−V (m1(h))

]
≤ C2 (2.24)

and

E

[ ∑
↑Th(h)≤x<m1(h)

e−(V (x)−V (m1(h))

∣∣∣∣ ↑Th(h) ≥ 0

]
≤ C2. (2.25)

Proof. Recall that ω0 is non degenerate, which together with (1.4) gives P[log ρ0 > 0] > 0

and P[log ρ0 < 0] > 0. Also limx→+∞ V (x) = −∞ by (1.3), so we can use Propositions
5.1 and 5.2. Since (V (x+m1(h))− V (m1(h)), 0 ≤ x ≤ T ↑(h)−m1(h)) is equal in law to
(V (x), 0 ≤ x ≤ TV ([h,+∞[) |TV ([h,+∞[) < TV (]−∞, 0[)) by Proposition 5.2, we have,

E

( ∑
m1(h)≤x≤T↑(h)

e−(V (x)−V (m1(h))

)

= E

( ∑
0≤x≤TV ([h,+∞[)

e−V (x)
∣∣∣TV ([h,+∞[) < TV (]−∞, 0[)

)

=

∞∑
x=0

E
(
1{x≤TV ([h,+∞[)}e

−V (x)
∣∣∣TV ([h,+∞[) < TV (]−∞, 0[)

)
. (2.26)

Note that (V (x))x∈N is a Markov chain starting from 0. We will write Py for the law of
this Markov chain starting from y ∈ R, which is the law of (y + V (x))x∈N (we will use
this notation in (2.28) below with y = V (x)). We first notice that for all x > 0 and h > 0,

E
(
1{x≤TV ([h,+∞[)}e

−V (x)1{V (x)≥
√
x}

∣∣∣TV ([h,+∞[) < TV (]−∞, 0[)
)
≤ e−

√
x. (2.27)

Let h0 := 8κ/I(0), where I(0) > 0 is introduced in (2.11). Hence, using e−V (x) ≤ 1 and

P
[
TV ([h,+∞[) < TV (]−∞, 0[)

]
≥ P

[
TV ([h,+∞[) < TV (]−∞, 0])

]
≥ C(0)

I e−κh (see (2.18))
in the first inequality, then, due to the Markov property at x, we have for all h > 0 and
x ≥ 0,

E
(
1{x≤TV ([h,+∞[)}e

−V (x)1{V (x)<
√
x}

∣∣∣TV ([h,+∞[) < TV (]−∞, 0[)
)

≤ [C
(0)
I ]−1eκhE

(
1{x≤TV ([h,+∞[)}1{V (x)<

√
x}1{TV ([h,+∞[)<TV (]−∞,0[)}

)
=

eκh

C
(0)
I

E
(
1{x≤TV ([h,+∞[), V (x)<

√
x, x<TV (]−∞,0[)}P

V (x)[TV ([h,+∞[) < TV (]−∞, 0[)]
)

≤ [C
(0)
I ]−1eκhE

(
1{V (x)≥0}P

[
sup
y≥0

V (y) ≥ h−
√
x

])
≤ [C

(0)
I ]−1eκhP[V (x) ≥ 0]C ′′Me

−κ(h−
√
x)

≤ [C
(0)
I ]−1e−xI(0)C ′′Me

κ
√
x, (2.28)

where we used (2.15) and (2.11) in the last two inequalities.
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Finally, using (2.26) and summing (2.27) and (2.28) over x, we get for every h > h0,

E

( ∑
m1(h)≤x≤T↑(h)

e−(V (x)−V (m1(h))

)
≤
∑
x≥0

(
e−
√
x +

C ′′M

C
(0)
I

eκ
√
x−xI(0)

)
=: C2 <∞ (2.29)

since I(0) > 0, which proves (2.24) for all h > h0.
We now turn to (2.25). Recall V (−·) and TV (−·) from (2.2) and (2.22). Due to

Proposition 5.1, the left hand side of (2.25) is equal to

E

[ ∑
0<x≤TV (−·)([h,+∞[)

e−V (−x)
∣∣∣TV (−·)([h,+∞[) < TV (−·)(]−∞, 0])

]

≤ E

[∑
x≥0

e−V (−x)1{V (−x)≥0}
1{TV (−·)([h,+∞[)<TV (−·)(]−∞,0])}

P[TV (−·)([h,+∞[) < TV (−·)(]−∞, 0])]

]

≤ E

[∑
x≥0

∞∑
p=0

e−V (−x)1{p≤V (−x)<p+1}

]
1

P[infN∗ V (−·) > 0]

≤
∞∑
p=0

e−pE

[
1{TV (−·)([p,p+1[)<∞}

∑
x≥0

1{p≤V (−x)<p+1}

]
1

P[infN∗ V (−·) > 0]

≤
∞∑
p=0

e−pE

(∑
x≥0

1{−1≤V (−x)≤1}

)
1

P[infN∗ V (−·) > 0]
=: C3 <∞,

due to the strong Markov property in the last line, and since V (−·) is a random walk
transient to +∞, and so the expectation in the previous line is finite and P[infN∗ V (−·) >
0] = P[supN∗ V < 0] > 0. This proves (2.25) and then the lemma, up to a change of
constants. �

3 Construction of the very deep valleys

We fix some ε ∈]0, 1−κ
2κ [, which is possible since 0 < κ < 1 by (1.4). We first build a

succession of very deep valleys for the potential, with probability 1. To this end, we set
for i ≥ 1, recalling C0 from Fact 2.4,

Ni :=
⌊
C0i

1+ε(i!)
1+ε
κ

⌋
, (3.1)

fi := log(Ni/C0)− (1 + ε) log i ∼i→+∞
1 + ε

κ
log(i!) ∼i→+∞

1 + ε

κ
i log i . (3.2)

We now define (recall that Hk and ek were respectively defined in (2.12) and (2.10)),

σ(0) := −1, σ(i) := inf{k > σ(i− 1) : Hk ≥ fi}, i > 0.

Notice that P-almost surely, σ(i) < ∞ for all i ∈ N, since the Hk, k ∈ N are i.i.d. and
thanks to (2.16). We also introduce for i ≥ 1 (see Figure 1),

bi := eσ(i),

ai := max
(
eσ(i−1)+1, sup{k < bi : V (k) ≥ V (bi) + fi + zi}

)
,

αi := max
(
eσ(i−1)+1, sup{k < bi : V (k) ≥ V (bi) + fi/2}

)
,

γi := inf{k > bi : V (k) ≥ V (bi) + fi/2} ≤ eσ(i)+1 − 1,

ci := min
(
eσ(i)+1 − 1, inf{k > bi : V (k) ≥ V (bi) + fi + zi}

)
,

with zi := (log i)/κ. We call [ai, ci] the valley number i. Its bottom is bi, and we call Hσ(i)

its height. We also define for i ≥ 1,

β−i := sup{k < bi : V (k) ≥ V (bi) + fi},
β+
i := inf{k > bi : V (k) ≥ V (bi) + fi}.
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ai bi = eσ(i)

0

fi + zi

ci

fi

y

αi γi

fi/4

fi + zi

Hσ(i)

β+
iβ−i

fi/4

↑Tfi(y)

fi

eσ(i)+1

fi/2

Figure 1: Pattern of the potential V for a very deep valley for i = i(n), ω ∈ Ω̃ and
representation of different quantities.

Remark 3.1. Since the r.v. eσ(i)+1, i ≥ 1, are stopping times with respect to the σ-field(
σ(V (1), ..., V (n)), n ≥ 0

)
, the random variables

Yi :=
(
V (z + eσ(i))− V (eσ(i)); z = eσ(i−1)+1 − eσ(i), ..., eσ(i)+1 − eσ(i)

)
, i ≥ 1,

are mutually independent by the strong Markov property.

Remark 3.2. Since the derivative of x 7→ E[exV (1)] at 0 is E[V (1)] < 0 thanks to (1.2),
(1.3) and (1.4), there exists κ0 ∈]0, κ[ such that v0 := E[ρκ0

0 ] = E
[
eκ0V (1)

]
< 1.

Let C4 >
2(κ+κ0)
| log v0| . For every i ≥ 1, we consider the following sets

Ω
(i)
1 :=

{
ai = sup{k < bi : V (k) ≥ V (bi) + fi + zi}

}
,

Ω
(i)
2 :=

{
bi ≤ T ↑(fi)− 1 ≤ i eκfi

}
,

Ω
(i)
3 := {ci − ai ≤ C4(fi + zi)} ,

Ω
(i)
4 :=

{
inf

]ai,ci[\]αi,γi[
V > V (bi) +

fi
4

}
,

Ω
(i)
5 :=

{
γi∑

k=αi

e−(V (k)−V (bi)) < 7C2

}
,

Ω
(i)
6 :=

{
Hσ(i) ≥ fi + zi

}
= {ci = inf{k > bi : V (k) ≥ V (bi) + fi + zi}} .

In particular, the set Ω
(i)
1 ensures that the valley [ai, ci] of bottom bi is well separated

from the previous valleys [aj , cj ], j < i, which we will use for example in Lemma 4.3.

Also, on Ω
(i)
2 , the heights of the previous valleys are less than fi, whereas on Ω

(i)
6 , the

height of the valley [ai, ci] is greater than or equal to fi + zi. So the valley [ai, ci] is

significantly higher than the previous ones on Ω
(i)
2 ∩Ω

(i)
6 , which will be used to get (3.15),

itself necessary to prove Lemma 4.1. Also, Ω
(i)
3 guarantees that the length ci − ai of the

valley [ai, ci] is not too big. Finally, Ω
(i)
3 , Ω

(i)
4 and Ω

(i)
5 help to ensure that the invariant
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probability measure of a RWRE reflected in the valley [ai, ci] is greater than a positive

constant at location bi (which is necessary in Lemma 4.7), and Ω
(i)
4 will be useful in

Lemma 4.5 to ensure that the coupling in Section 4.2 happens quickly, which is itself
necessary in Lemma 4.7. We now estimate the probability of these events.

Proposition 3.3. We have

3∑
j=1

∑
i≥1

P
[(

Ω
(i)
j

)c]
<∞,

∑
i≥1

P
[(

Ω
(i)
4

)c
∩ Ω

(i)
6

]
<∞ .

Proof of Proposition 3.3.

• Control on Ω
(i)
1 . Observe that for i ≥ 1,

P
[
(Ω

(i)
1 )c

]
= P

[
sup{k < bi : V (k) ≥ V (bi) + fi + zi} < eσ(i−1)+1

]
= P

[
∀k ∈ {eσ(i−1)+1, ..., bi}, V (k) < V (bi) + fi + zi

]
≤ P

[
V (bi) > V (eσ(i−1)+1)− fi − zi

]
= P [V (m1(fi)) > −fi − zi]

by the strong Markov property applied at stopping time eσ(i−1)+1. Thus,

P
[
(Ω

(i)
1 )c

]
≤ P [m1(fi) < TV (]−∞,−fi − zi])]

≤ P [ni < TV (]−∞,−fi − zi])] + P [m1(fi) < TV (]−∞,−fi − zi]) ≤ ni]
≤ P [ni < TV (]−∞,−fi − zi])] + P [m1(fi) < ni] , (3.3)

setting ni =
⌈
2κ0

fi+zi
| log v0|

⌉
. On the first hand, for every m > 0 and every positive

integer n, we have

P [TV (]−∞,−m]) > n] ≤ P[V (n) ≥ −m] ≤ E
[
eκ0(V (n)+m)

]
= vn0 e

κ0m,

since E
(
eκ0V (n)

)
=
[
E
(
eκ0V (1)

)]n
= vn0 because (ωx)x∈Z are i.i.d. This leads to

∀i ≥ 1, P [TV (]−∞,−fi − zi]) > ni] ≤ vni0 eκ0(fi+zi) ≤ e−κ0(fi+zi) ≤ e−κ0fi (3.4)

since zi ≥ 0.

In order to estimate P [m1(fi) < ni], we introduce the strict descending ladder
epochs for V as

e′0 := 0, e′i := inf{k > e′i−1 : V (k) < V (e′i−1)}, i ≥ 1. (3.5)

H ′i := max
e′i≤k≤e′i+1

[V (k)− V (e′i)], i ≥ 0. (3.6)

In particular for i ≥ 1, there exists j ∈ N such that m1(fi) = e′j and H ′j ≥ fi. Hence,
for every i ≥ 1,

P [m1(fi)<ni] ≤ P
[
m1(fi)<e

′
ni

]
≤ P

[
∪ni−1
j=0 {H

′
j≥fi}

]
≤ niP[H ′1 ≥ fi] ≤ C ′′Mnie−κfi

(3.7)
since P[H ′1 ≥ fi] ≤ P[supN V ≥ fi] ≤ C ′′Me

−κfi by (2.15). Combining (3.2), (3.3),

(3.4), (3.7) leads to
∑
i≥1 P

[
(Ω

(i)
1 )c

]
<∞ since zi = (log i)/κ.

• Control on Ω
(i)
2 . Let i > 1. Note that

P
[
(Ω

(i)
2 )c

]
≤ P

[
bi > T ↑(fi)− 1

]
+ P

[
T ↑(fi)− 1 > i eκfi

]
. (3.8)
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Also, by definition of ej , Hj , σ(·) and bi,

V ↑(bi) = max(Hj , 0 ≤ j ≤ σ(i)− 1)

= max[max(Hσ(j), 1 ≤ j ≤ i− 1),max(Hj , σ(i− 1) + 1 ≤ j ≤ σ(i)− 1)],

and recall that max(Hj , σ(i− 1) + 1 ≤ j ≤ σ(i)− 1) < fi by definition of σ(i). Thus,
by definition of σ(·), fi and Ni, and by (2.18), for some constant C5 > 0,

P
[
bi ≥ T ↑(fi)

]
= P

[
V ↑(bi) ≥ fi

]
≤

i−1∑
j=1

P
[
Hσ(j) ≥ fi

]
=

i−1∑
j=1

P [H1 ≥ fi|H1 ≥ fj ]

≤ C5

i−1∑
j=1

exp (−κ[fi − fj ]) = C5

i−1∑
j=1

(
Nj
Ni

)κ(
i

j

)κ(1+ε)

≤ C5

(
C0

C0 − 1

)κ i−1∑
j=1

(
j!

i!

)1+ε

≤ C5

(
C0

C0 − 1

)κ 1

i1+ε
+

i−2∑
j=1

1

[(i− 1)i]1+ε


≤ O

(
i−1−ε) . (3.9)

Moreover, setting Ki := ieκfi + 1, we have for i large enough,

P
[
T ↑(fi) > Ki

]
≤ P

[
eb Ki

2E[e1]
c > Ki

]
+ P

[
T ↑(fi) > eb Ki

2E[e1]
c

]
≤ P

[
eb Ki

2E[e1]
c − E[eb Ki

2E[e1]
c] >

Ki

2

]
+
(
1− P [H1 ≥ fi]

)b Ki
2E[e1]

c

≤ 2var(e1)

KiE[e1]
+
(

1− C(0)
I e−κfi

) Ki
2E[e1]

−1

≤ O(K−1
i ) + exp

(
−
C

(0)
I e−κfi(Ki − 2E[e1])

2E[e1]

)
= O

(
K−1
i + exp

(
−
C

(0)
I i

4E[e1]

))
, (3.10)

where we used the fact that ek+1 − ek, k ≥ 0 are i.i.d. so that E(e`) = `E(e1) and
var(e`) = ` var(e1) for ` ∈ N, and {T ↑(fi) > e`} = ∩`−1

k=0{Hk < fi} where Hk, k ∈ N
are also i.i.d., the Bienaymé-Chebychev inequality since E(e2

1) <∞ (as explained
after (2.11)), 1− x ≤ e−x for x ∈ R, and (2.18). The quantities appearing in (3.10)

and in (3.9) are summable (since ε > 0) and so, due to (3.8),
∑
i≥1 P

[
(Ω

(i)
2 )c

]
<∞.

• Control on Ω
(i)
3 . Let i ≥ 1. Observe that in every case, ai ≥ sup{k < bi : V (k) ≥

V (bi) + fi + zi}, and so in particular, V (ai + 1) < V (bi) + fi + zi. Since V (bi) =

V (eσ(i)) = min[0,eσ(i)+1−1] V , this leads to

∀0 ≤ k ≤ eσ(i)+1 − 1, V (k) ≥ V (bi) > V (ai + 1)− fi − zi.

Notice that on
(
Ω

(i)
3

)c
, we have ci − ai > C4(fi + zi), and so

ai + bC4(fi + zi)c ≤ ci ≤ eσ(i)+1 − 1.
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Hence,
(
Ω

(i)
3

)c ⊂ {V [ai+bC4(fi+zi)c] ≥ V (ai+1)−fi−zi}. Consequently, summing
over all the possible values of ai+1 when it is less than or equal to Ki+1 = ieκfi +1,

P
[(

Ω
(i)
3

)c ∩ Ω
(i)
2

]
≤ P

(
V [ai + bC4(fi + zi)c] ≥ V (ai + 1)− fi − zi, ai ≤ bi ≤ Ki

)
≤

Ki+1∑
x=1

P
[
V
(
x+ bC4(fi + zi)c − 1

)
− V (x) ≥ −fi − zi

]
≤ (Ki + 1)P

[
V
(
bC4(fi + zi)c − 1

)
+ fi + zi ≥ 0

]
by the Markov property. Hence, using P(X ≥ 0) = P[eκ0X ≥ 1] ≤ E[eκ0X ] (due to the
Markov inequality since κ0 > 0), Remark 3.2 and E

(
eκ0V (n)

)
=
[
E
(
eκ0V (1)

)]n
= vn0

for n ≥ 1, we get

P
[(

Ω
(i)
3

)c ∩ Ω
(i)
2

]
≤ 2KiE

[
exp

(
κ0

(
V
(
bC4(fi + zi)c − 1

)
+ fi + zi

))]
≤ 2ieκfieκ0(fi+zi)v

bC4(fi+zi)c−1
0 ≤ 2ie(κ+κ0)(fi+zi)v

C4(fi+zi)−2
0

≤ 2v−2
0 ie(κ+κ0+C4(log v0))(fi+zi) .

Since fi + zi ≥ i for large i, v0 < 1 and C4 >
2(κ+κ0)
| log v0| , this gives

P
[(

Ω
(i)
3

)c] ≤ P
[(

Ω
(i)
2

)c]
+ P
[(

Ω
(i)
3

)c ∩ Ω
(i)
2

]
≤ P

[(
Ω

(i)
2

)c]
+O

(
ie−(κ+κ0)i

)
. (3.11)

Thanks to the control on Ω
(i)
2 and since κ+ κ0 > 0, this gives

∑
i≥1 P

[
(Ω

(i)
3 )c

]
<∞.

• Control on Ω
(i)
4 . Now let us prove that

∑
i≥1 P

(
(Ω

(i)
4 )c ∩ Ω

(i)
6

)
<∞. We set for x ≤ y

and h > 0,

E↑x,y(h) :=

{inf{k > 0 : V (x+ k) ≥ V (x) + h} ≤ min(y − x, inf{k > 0 : V (x+ k) ≤ V (x)})} .

This event corresponds to the case where, after location x, the potential increases
at least h before y and before becoming again smaller than or equal to its value at
x. Let i ≥ 1. Note that (

Ω
(i)
4

)c ⊂ Ai ∪ Bi ,
with Ai := ∪ai<u<αi{V (u) ≤ V (bi) + fi/4} and Bi := ∪γi<u<ci{V (u) ≤ V (bi) + fi/4}.
Notice that if Ai 6= ∅, then αi > ai ≥ eσ(i−1)+1, so V (αi) ≥ V (bi) + fi/2. On Ai,
denote by x the largest u satisfying the conditions defining Ai. Starting from x,
the potential hits V (αi) ∈ [V (bi) + fi/2,+∞[⊂ [V (x) + fi/4,+∞[ before going back
to ]−∞, V (x)] and before bi since αi < bi. Then from bi = eσ(i), the potential hits
[V (bi) + fi,+∞[ before going back to ]−∞, V (bi)], because Hσ(i) ≥ fi, and before
ci.

Similarly on Bi ∩ Ω
(i)
6 , denote by y the largest u satisfying the conditions defining

Bi. Notice that V (ci) ≥ V (bi) + fi + zi ≥ V (y) + 3fi/4 since ω ∈ Ω
(i)
6 . Starting

from bi, the potential hits V (γi) ∈ [V (bi) + fi/2,+∞[ at location γi (and so before
y), and before going back to ] − ∞, V (bi)]. Also, starting from y > γi, it hits
[V (bi) + fi + zi,+∞[⊂ [V (y) + 3fi/4,+∞[ before going back to ] − ∞, V (y)] and
before ci. Hence,

Ai ⊂
⋃

x∈]ai,αi[

E↑x,bi

(
fi
4

)
∩E↑bi,ci(fi) and Bi∩Ω

(i)
6 ⊂

⋃
y∈]γi,ci[

E↑bi,y

(
fi
2

)
∩E↑y,ci

(
3fi
4

)
.
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Since ai, αi, bi and γi are not stopping times, we sum over their possible values,
using bi ≤ ieκfi = Ki − 1 and ci − ai ≤ C4(fi + zi) on Ω

(i)
2 ∩ Ω

(i)
3 and 0 ≤ ai ≤

αi ≤ bi ≤ γi ≤ ci as follows. For large i, by the Markov property at times b and y,
followed by (2.18),

P
[(

Ω
(i)
4

)c ∩ Ω
(i)
6 ∩ Ω

(i)
2 ∩ Ω

(i)
3

]
≤

∑
0≤x≤Ki

∑
b∈]x,x+C4(fi+zi)]

P

[
E↑x,b

(
fi
4

)
∩ E↑b,Ki+C4(fi+zi)

(fi)

]

+
∑

0≤b≤Ki

∑
y∈]b,b+C4(fi+zi)]

P

[
E↑b,y

(
fi
2

)
∩ E↑y,Ki+C4(fi+zi)

(
3fi
4

)]

≤ 2Ki C4(fi + zi)

(
P

[
H1 ≥

fi
4

]
P [H1 ≥ fi] + P

[
H1 ≥

fi
2

]
P

[
H1 ≥

3fi
4

])
≤ O

(
Kifie

− 5κfi
4

)
= O

(
ifie

−κfi4
)
.

From this, we conclude that
∑
i≥1 P

(
(Ω

(i)
4 )c ∩ Ω

(i)
6

)
<∞, thanks to (3.2) and to the

controls on Ω
(i)
2 and Ω

(i)
3 . �

We now turn to Ω
(i)
5 and Ω

(i)
6 .

Proposition 3.4. We have ∑
i≥1

P
[
Ω

(i)
5 ∩ Ω

(i)
6

]
=∞ .

Proof. We have for i ≥ 1, due to the strong Markov property at stopping time β+
i ,

P
[
Ω

(i)
5 ∩ Ω

(i)
6

]
≥ P

[
Ω

(i)
5 ∩ Ω

(i)
6 ∩ {β

−
i ≥ eσ(i−1)+1}

]
≥ P

 β+
i∑

k=β−i

e−(V (k)−V (bi)) < 7C2, β
−
i ≥ eσ(i−1)+1

 P [H1 > zi]

≥ P

 T↑(fi)∑
k=↑Tfi (fi)

e−[V (k)−V (m1(fi))] < 7C2,
↑Tfi(fi) ≥ 0

C(0)
I e−κzi ,

where we used the Markov property at stopping time eσ(i−1)+1 and (2.18) in the last line.
Finally, due to the Markov inequality and to Lemma 2.5, we obtain

P
[
Ω

(i)
5 ∩ Ω

(i)
6

]
≥ P

 T↑(fi)∑
k=↑Tfi (fi)

e−[V (k)−V (m1(fi))] < 7C2

∣∣↑Tfi(fi) ≥ 0

 P
[↑Tfi(fi) ≥ 0

]
C

(0)
I e−κzi

=

1− P

 T↑(fi)∑
k=↑Tfi (fi)

e−[V (k)−V (m1(fi))] ≥ 7C2

∣∣↑Tfi(fi) ≥ 0

P
[↑Tfi(fi) ≥ 0

]
C

(0)
I e−κzi

≥

1−
E
[∑T↑(fi)

k=↑Tfi (fi)
e−[V (k)−V (m1(fi))]

∣∣↑Tfi(fi) ≥ 0
]

7C2

 P
[↑Tfi(fi) ≥ 0

]
C

(0)
I e−κzi

≥ (1− 2/7) P
[↑Tfi(fi) ≥ 0

]
C

(0)
I e−κzi ,
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for all i large enough, where we used the fact that (V (x+m1(fi))− V (m1(fi)), x ≥ 0) is,
by Proposition 5.2 and the strong Markov property at stopping time T ↑(fi), independent
of (V (x+m1(fi))− V (m1(fi)), x ≤ 0) in the last inequality while applying Lemma 2.5.
Moreover, due to Proposition 3.3 and once more the strong Markov property,

P
[↑Tfi(fi) ≥ 0

]
≥ P

(
Ω

(i)
1

)
→i→+∞ 1.

The result follows then from the fact that e−κzi = 1/i. �

Proposition 3.5. The set Ω̃ of environments such that there exists a strictly increasing
sequence (i(n))n∈N of integers satisfying the following properties for every n ∈ N has
probability P

(
Ω̃
)

= 1:

i(n) ≥ max
(
n, n

1+ε
1/κ−1−3ε/2

)
, (3.12)

ai(n) = sup{k < bi(n) : V (k) ≥ V (bi(n)) + fi(n) + zi(n)} , (3.13)

ci(n) − ai(n) ≤ C4(fi(n) + zi(n)) , (3.14)

bi(n) ≤ T ↑(fi(n))− 1 , (3.15)

inf
]ai(n),ci(n)[\]αi(n),γi(n)[

V > V (bi(n)) +
fi(n)

4
, (3.16)

ci(n)∑
k=ai(n)

e−(V (k)−V (bi(n))) < 8C2 , (3.17)

Hσ(i(n)) ≥ fi(n) + zi(n). (3.18)

Note that 1
κ − 1− 3ε

2 > 0 since ε ∈]0, 1−κ
2κ [ and 0 < κ < 1, see the beginning of Section

3. The valley number i(n), that is, [ai(n), ci(n)], n ∈ N, is called the n-th very deep valley.

Proof. Due to Proposition 3.3 and to the Borel-Cantelli lemma, P-a.s., there exists i0 ≥ 1

(we denote by i0 the smallest one) such that for every i ≥ i0, ω ∈ ∩4
j=1Ω

(i)
j or ω ∈

(
Ω

(i)
6

)c
.

That is, for every i ≥ i0, ω ∈
(
Ω

(i)
6

)c
or the following holds true

ai = sup{k < bi : V (k) ≥ V (bi) + fi + zi}, ci − ai ≤ C4(fi + zi) ,

bi ≤ T ↑(fi)− 1 ≤ ieκfi , inf
]ai,ci[\]αi,γi[

V > V (bi) +
fi
4
,

so that ω ∈
(
Ω

(i)
6

)c
or ∑
k∈]ai,ci[\]αi,γi[

e−(V (k)−V (bi)) ≤ C4(fi + zi)e
−fi/4 ≤ C2 ,

for every i large enough, and so for all i ≥ i0 (up to a change of the value of i0). Moreover,
due to Remark 3.1, the events Ω

(i)
5 ∩ Ω

(i)
6 , i ≥ 1 are independent. So, Proposition 3.4

and the Borel-Cantelli lemma ensure that, P-almost surely, the set I (depending on the
environment) of positive integers i ≥ i0 such that:

γi∑
k=αi

e−(V (k)−V (bi)) < 7C2 and Hσ(i) ≥ fi + zi

is infinite. We construct now (i(n))n∈N by induction as follows: i(0) := inf I and for
n ≥ 1,

i(n) := inf{j ≥ max(i(n− 1) + 1, n, n
1+ε

1/κ−1−3ε/2 ) : j ∈ I} . (3.19)

By construction (i(n))n∈N is strictly increasing, satisfies (3.12)-(3.18) for every n ∈ N,
and i(n) ∈ N for every n ∈ N on a event Ω̃ having probability 1. �
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In the rest of the paper, for every n ∈ N, i(n) denotes the random variable (uniquely)
defined by (3.19), and depending only on the environment.

4 Quenched estimates for the RWRE

This section is devoted to the proof of the main result, Theorem 1.1. We first need to
prove some preparatory lemmas, for which we use quenched techniques. See Figure 1
for a schema of the potential for a very deep valley.

4.1 Hitting times and exit times of very deep valleys

For any y ∈ Z, recall that we write τ(y) for the time of the first visit of S to y:

τ(y) := inf{k ≥ 0 : Sk = y}.

Also for x ∈ Z, let Px(·) :=
∫
P xω (·)P(dω) be the annealed law of a RWRE in the environ-

ment ω, starting from x. The first lemma of this subsection says that for large n ∈ N, a
RWRE in the environment ω hits relatively quickly the bottom bi(n) of the n-th very deep
valley.

Lemma 4.1. Let x ∈ Z and recall (3.1). Then, Px-almost surely,

∃n0 ≥ 1, ∀n ≥ n0, τ(bi(n)) ≤ Ni(n)/10 . (4.1)

We will only use the weaker statement.

Corollary 4.2. Let x ∈ Z. For P-almost every environment ω,

P xω [τ(bi(n)) ≤ Ni(n)/10]→n→+∞ 1 . (4.2)

Proof. Clearly, (4.2) follows from (4.1) since (4.1) says that for almost every environment
ω, 1{τ(bi(n))≤Ni(n)/10} →n→+∞ 1, P xω -almost surely, and taking expectations gives (4.2). �

Proof of Lemma 4.1. We start with the case x = 0. We consider the RWRE S′ reflected
at 0, obtained by deleting the excursions of S in Z \N. More precisely, let r0 := 0 and

rk+1 := min{` > rk : S` ≥ 0, S`−1 ≥ 0}, k ∈ N.

We define formally S′ := (S′k)k∈N by S′k := Srk for every k ∈ N. Its hitting times are
denoted by

τ ′(y) := inf{k ≥ 0 : S′k = y}, y ∈ N.

Notice that, under P 0
ω, S′ is a RWRE in the environment ω, reflected at 0 on the right

side (that is, a RWRE with transition probabilities given by (1.1) in which we replace ω0

by 1 and S(1) by S′). So S′ has, under P, the same law as S under P|0 (defined in Fact
2.4).

Consequently, for every positive integer i, due to the Markov inequality and to Fact
2.4, we have (Ni and fi being defined respectively in (3.1) and (3.2)),

P
[
τ ′
(
T ↑(fi)− 1

)
> Ni/40

]
≤ 40N−1

i E
[
τ ′
(
T ↑(fi)− 1

)]
= 40N−1

i E|0
[
τ(T ↑(fi)− 1

)]
≤ 40N−1

i C0e
fi

= 40i−1−ε .

This gives
∑
i≥1P[τ ′(T ↑(fi)− 1) > Ni/40] <∞. Hence, due to the Borel-Cantelli lemma,

P-almost surely, for all i large enough, τ ′(T ↑(fi)− 1) ≤ Ni/40. Moreover,

τ
(
T ↑(fi)− 1

)
− τ ′

(
T ↑(fi)− 1

)
≤ #{k ≥ 0 : Sk ≤ 0, Sk+1 ≤ 0} <∞ P− a.s. ,
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since, due to [38], Sk → +∞ P-almost surely as k goes to infinity because E(log ρ0) < 0

by (1.3) in our setting. Therefore P-almost surely, for all i large enough, τ(T ↑(fi)− 1) ≤
Ni/20 and, in particular, for n large enough, τ(bi(n)) ≤ τ(T ↑(fi(n))− 1) ≤ Ni(n)/20 due to
(3.15). This proves the lemma in the case x = 0.

We now assume that x < 0. We use the simple decomposition τ(bi(n)) = τ(0) +

[τ(bi(n))− τ(0)]. Since the RWRE S is transient to +∞, τ(0) <∞ Px-almost surely, and
so τ(0) ≤ Ni(n)/20 for large n, Px-almost surely. Also, for P -almost every ω, (Sk+τ(0) −
Sτ(0))k∈N has under P xω the same law as S under P 0

ω by the strong Markov property,
so we can apply to it the results of the case x = 0. Hence, the hitting time of bi(n) by
(Sk+τ(0) − Sτ(0))k∈N, that is, τ(bi(n)) − τ(0), is less than Ni(n)/20 for large n, P xω -almost
surely, for P-almost every ω. Summing these two inequalities proves the lemma in the
case x < 0.

Finally, assume that x > 0. We use a simple coupling argument. Possibly in an
enlarged probability space, we can consider our RWRE S starting from x in the environ-
ment ω, and a RWRE Z in the same environment ω but starting from 0, independent of
S conditionally on ω. That is, for every ω, (S,Z) has the law of

(
S(1), S(2)

)
under P (x,0)

ω

as defined in (1.1), so with a slight abuse of notation, we denote by P (x,0)
ω the law of

(S,Z) conditionally on ω. Denote by τZ(x) the hitting time of x by Z, which is finite
almost surely since Z0 = 0 < x and Z is transient to +∞. We can now define Z ′k := Zk

if k ≤ τZ(x) and Z ′k = Sk−τZ(x) otherwise. Conditionally on ω, Z ′ is, under P (x,0)
ω , a

RWRE in the environment ω, starting from 0. Hence we can apply to it and to its hitting
times τZ′ the previous result for x = 0, and so τ(bi(n)) = τS(bi(n)) ≤ τZ′(bi(n)) ≤ Ni(n)/20

for large n, P (x,0)
ω -almost surely for P-almost every ω, which proves the lemma when

x > 0. �

The next lemma says that with large probability, after first hitting bi(n), each RWRE
S(j) stays a long time between ai(n) and ci(n).

Lemma 4.3. For every ω ∈ Ω̃,

lim
n→+∞

P
bi(n)
ω

[
τ
(
ai(n) − 1

)
∧ τ
(
ci(n) + 1

)
< 2Ni(n)

]
= 0.

Proof. Let ω ∈ Ω̃ and n ≥ 1. Observe that 0 ≤ eσ(i(n)−1)+1 ≤ ai(n) < bi(n) < ci(n) ≤
eσ(i(n))+1 by (3.13) and (3.18). Hence, min[ai(n),ci(n)] V = V (bi(n)). Also, recall that

|V (y)− V (y − 1)| ≤ log(ε−1
0 ) for any y ∈ Z by (1.2). So by Fact 2.1,

P
bi(n)
ω

[
τ
(
ai(n) − 1

)
∧ τ
(
ci(n) + 1

)
< 2Ni(n)

]
≤ 2(2Ni(n))ε

−1
0 exp[−(fi(n) + zi(n))]

= 4ε−1
0 Ni(n) exp[−(logNi(n) − logC0 + [1/κ− 1− ε] log i(n))]

= 4C0ε
−1
0 (i(n))−(1/κ−1−ε).

Since 1/κ− 1− ε > 0 (recall that 0 < κ < 1 and ε ∈]0, 1−κ
2κ [, see the beginning of Section

3), the lemma is proved. �

4.2 Coupling

Similarly as in [15, Subsection 5.3] (see also [7] and [2] for diffusions in random
potentials), we use a coupling between S starting from bi(n), and a reflected RWRE Ŝ,

defined as follows. For fixed n and ω ∈ Ω̃, we define ω̂ai(n)
= 1, ω̂ci(n)

= 0 and ω̂y = ωy

for every y ∈ Z \ {ai(n), ci(n)}. For x ∈ {ai(n), . . . , ci(n)}, we consider a RWRE Ŝ in the

environment ω̂ := (ω̂y)y∈Z, starting from x, and denote its quenched law by P xω̂ . So, Ŝ
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satisfies (1.1) with ω̂ instead of ω and Ŝ instead of S(1). That is, Ŝ is a RWRE in the
environment ω, reflected at ai(n) and ci(n). Now, define the measure µ̂n on Z by

µ̂n(ai(n)) := e−V (ai(n)), µ̂n(ci(n)) := e−V (ci(n)−1),

∀x ∈]ai(n), ci(n)[, µ̂n(x) := e−V (x) + e−V (x−1) ,

and µ̂n(x) := 0 for all x /∈ [ai(n), ci(n)]. Note that, for fixed environment ω and fixed

n, µ̂n/µ̂n(Z) is the invariant probability measure of Ŝ (indeed, a classical and direct
computation shows that µ̂n(x) = ω̂x−1µ̂n(x− 1) + (1− ω̂x+1)µ̂n(x+ 1) for all x ∈ Z). Thus,
an invariant probability measure for

(
Ŝ2k)k∈N is ν̂n, defined by

ν̂n(x) := µ̂n(x)12Z+bi(n)
(x)/µ̂n(2Z+ bi(n)), x ∈ Z . (4.3)

That is, P ν̂nω̂
(
Ŝ2k = x

)
= ν̂n(x) for all x ∈ Z and k ∈ N, with P ν̂nω̂ (·) :=

∑
x∈Z ν̂n(x)P xω̂ (·).

For fixed n and ω ∈ Ω̃, we consider a coupling Q(n)
ω of S and Ŝ such that:

Q(n)
ω

(
Ŝ ∈ ·

)
= P ν̂nω̂

(
Ŝ ∈ ·

)
, Q(n)

ω (S ∈ ·) = P
bi(n)
ω (S ∈ ·), (4.4)

such that under Q(n)
ω , Ŝ and S move independently until

τŜ=S := inf
{
k ≥ 0 : Ŝk = Sk

}
,

then Ŝk = Sk for every τŜ=S ≤ k < τexit, where

τexit := inf
{
k > τŜ=S : Sk 6∈ [ai(n), ci(n)]

}
,

then Ŝ and S move independently again after τexit. We stress that ω̂, τŜ=S and τexit
depend on n, but we do not write n as a subscript.

In order to show that the coupling occurs quickly under Q(n)
ω , i.e. that τŜ=S is small,

we prove the two following lemmas. As before, for x ∈ Z, τ(x) denotes the hitting time
of x by S (not by Ŝ).

Lemma 4.4. For every ω ∈ Ω̃, we have

lim
n→+∞

Q(n)
ω

(
max

(
τ(αi(n)), τ(γi(n))

)
>
Ni(n)

2

)
= 0.

Proof. Let ω ∈ Ω̃. Due to the Markov inequality and to (2.9) and (3.14), we first observe
that

P
bi(n)
ω

(
τ(αi(n)) ∧ τ(ci(n)) >

Ni(n)

2

)
≤ (Ni(n)/2)−1ε−1

0 (ci(n) − αi(n))
2 exp

(
max

αi(n)≤`≤k≤ci(n)−1, `≤bi(n)−1
(V (`)− V (k))

)
≤ (Ni(n)/2)−1ε−1

0 (2C4 logNi(n))
2 exp

(
max

[αi(n),bi(n)−1]
V − V (bi(n))

)
≤ C6(Ni(n))

−1(logNi(n))
2 exp

(
fi(n)/2

)
≤ C7

(logNi(n))
2

(i(n))
1+ε
2

√
Ni(n)

(4.5)

for every n large enough since V (αi(n)) ≤ V (bi(n)) + fi(n)/2 + log(ε−1
0 ). Moreover, due to

(2.7) and (3.14), for n large enough

P
bi(n)
ω

[
τ(αi(n)) > τ(ci(n))

]
≤
∑bi(n)−1

j=αi(n)
eV (j)∑ci(n)−1

j=αi(n)
eV (j)

≤
(2C4 logNi(n))ε

−1
0 e

fi(n)
2

ε0e
fi(n)+zi(n)

, (4.6)
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where we used the fact
∑ci(n)−1

j=αi(n)
eV (j) ≥ eV (ci(n)−1) ≥ ε0e

V (bi(n))+fi(n)+zi(n) due to (3.18)
and (1.2). Using (4.4), then combining (4.5) and (4.6), we obtain

Q(n)
ω

(
τ(αi(n)) >

Ni(n)

2

)
= P

bi(n)
ω

(
τ(αi(n)) >

Ni(n)

2

)
→n→+∞ 0. (4.7)

We prove analogously that

Q(n)
ω

(
τ(γi(n)) >

Ni(n)

2

)
= P

bi(n)
ω

(
τ(γi(n)) >

Ni(n)

2

)
→n→+∞ 0, (4.8)

using (2.8) instead of (2.9). Finally, (4.7) together with (4.8) prove the lemma. �

Lemma 4.5. For every ω ∈ Ω̃, we have

lim
n→+∞

Q(n)
ω

[
τŜ=S > max

(
τ(αi(n)), τ(γi(n))

)]
= 0 .

Proof. Let ω ∈ Ω̃. We fix n ∈ N. First, notice that due to (3.14) and (3.16),

ν̂n
(
[ai(n), αi(n)]

)
+ ν̂n

(
[γi(n), ci(n)]

)
≤

∑
k∈[ai(n),ci(n)]\]αi(n),γi(n)−1[

e−[V (k)−V (bi(n))]

≤ C4(fi(n) + zi(n)) ε
−1
0 e−

fi(n)
4 . (4.9)

Also, observe that

Q(n)
ω

[
τŜ=S > max

(
τ(αi(n)), τ(γi(n))

)]
≤ Q(n)

ω

(
τŜ=S > τ(αi(n)), Ŝ0 < S0

)
+Q(n)

ω

(
τŜ=S > τ(γi(n)), Ŝ0 > S0

)
. (4.10)

Because of the definitions (4.3) and (4.4) of ν̂n and Q(n)
ω , Ŝ0 − S0 = Ŝ0 − bi(n) ∈ 2Z, Q(n)

ω -

almost surely. Moreover, the possible increments of (Ŝk−Sk)k are contained in {−2, 0, 2}.
Therefore the walks Ŝ and S cannot cross without meeting, hence Ŝ0 < S0, τŜ=S > m

implies for m ≥ 0 that Ŝm < Sm. So,

Q(n)
ω

(
τŜ=S > τ(αi(n)), Ŝ0 < S0

)
≤ Q(n)

ω

(
Ŝτ(αi(n)) < Sτ(αi(n)), τŜ=S > τ(αi(n))

)
≤ Q(n)

ω

(
Ŝ2bτ(αi(n))/2c ≤ αi(n), τŜ=S > τ(αi(n))

)
≤ ν̂n

(
[ai(n), αi(n)]

)
≤ C4 ε

−1
0 (fi(n) + zi(n))e

−
fi(n)

4 , (4.11)

where we used (4.9) in the last inequality and where the previous inequality comes from
the independence of Ŝ with S and its hitting times τ(·) up to τŜ=S under Q(n)

ω , and from

the fact that Q(n)
ω

(
Ŝ2k = x

)
= P ν̂nω̂

(
Ŝ2k = x

)
= ν̂n(x) for all x ∈ Z and k ∈ N. Analogously,

we obtain that

Q(n)
ω

(
τŜ=S > τ(γi(n)), Ŝ0 > S0

)
≤ ν̂n

(
[γi(n), ci(n)]

)
≤ C4 ε

−1
0 (fi(n) + zi(n))e

−
fi(n)

4 . (4.12)

Finally, combining (4.10), (4.11) and (4.12) proves the lemma. �

Finally, the following lemma says that for large n, with large Q(n)
ω probability, Ŝ and

S are equal between times Ni(n)/2 and 2Ni(n):

Proposition 4.6. For every ω ∈ Ω̃, we have

lim
n→+∞

Q(n)
ω

(
τŜ=S >

Ni(n)

2

)
= 0, lim

n→+∞
Q(n)
ω

(
τexit < 2Ni(n)

)
= 0 .
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Proof. The first limit is a direct consequence of Lemmas 4.4 and 4.5. The second one
follows from

Q(n)
ω

(
τexit < 2Ni(n)

)
≤ Q(n)

ω

[
τ
(
ai(n) − 1

)
∧ τ
(
ci(n) + 1

)
< 2Ni(n)

]
= P

bi(n)
ω

[
τ
(
ai(n) − 1

)
∧ τ
(
ci(n) + 1

)
< 2Ni(n)

]
→n→+∞ 0

by (4.4) and Lemma 4.3. �

4.3 Conclusion

The following lemma relies on the coupling of the previous subsection, and on the
fact that ν̂n(bi(n)) is greater than some positive constant, uniformly in n and ω.

Lemma 4.7. There exists C8 > 0 such that, for every ω ∈ Ω̃,

lim inf
n→+∞

inf
k∈[Ni(n)/2,2Ni(n)[∩(2Z)

P
bi(n)
ω

[
Sk = bi(n)

]
≥ C8 . (4.13)

Proof. We fix ω ∈ Ω̃. First, notice that for every n ∈ N, µ̂n(2Z+ bi(n)) =
∑ci(n)−1

j=ai(n)
e−V (j),

so using (4.3) and (3.17),

∀n ∈ N, ν̂n(bi(n)) ≥
e−V (bi(n))∑ci(n)−1

j=ai(n)
e−V (j)

≥ 1

8C2
=: C8 > 0. (4.14)

Using the definition of the coupling (first (4.4), and then Ŝj = Sj for every τŜ=S ≤ j <

τexit), we get for every n ∈ N and k ∈
[Ni(n)

2 , 2Ni(n)

[
,

P
bi(n)
ω

[
Sk = bi(n)

]
= Q(n)

ω

[
Sk = bi(n)

]
≥ Q(n)

ω

[
Sk = bi(n), τŜ=S ≤

Ni(n)

2
≤ k < 2Ni(n) ≤ τexit

]
= Q(n)

ω

[
Ŝk = bi(n), τŜ=S ≤

Ni(n)

2
≤ k < 2Ni(n) ≤ τexit

]
≥ Q(n)

ω

[
Ŝk = bi(n)

]
−Q(n)

ω

[
τŜ=S >

Ni(n)

2
or τexit < 2Ni(n)

]
.

Since Q(n)
ω

[
Ŝk = bi(n)

]
= P ν̂nω̂

[
Ŝk = bi(n)

]
= ν̂n

(
bi(n)

)
for every even k (by (4.4) and due

to the remark after (4.3)), and using Proposition 4.6, we get

lim inf
n→+∞

inf
k∈[Ni(n)/2,2Ni(n)[∩(2Z)

P
bi(n)
ω

[
Sk = bi(n)

]
≥ lim inf

n→+∞
ν̂n
(
bi(n)

)
≥ C8

due to (4.14). Since this is true for every ω ∈ Ω̃, this proves the lemma. �

We now set N ′i(n) = Ni(n) − 1{(Ni(n)−bi(n))∈(1+2Z)}, for all n ∈ N and ω ∈ Ω̃, so that
N ′i(n) and bi(n) have the same parity.

Lemma 4.8. Let x ∈ (2Z). For P-almost every environment ω,

lim inf
n→+∞

P xω
[
SN ′

i(n)
= bi(n)

]
≥ C8

2
.

Proof. Define Fk := σ(S0, S1, . . . , Sk, ω) for k ∈ N. Let x ∈ (2Z) and ω ∈ Ω̃. Due to the
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strong Markov property,

P xω
[
SN ′

i(n)
= bi(n)

]
= Exω

[
P xω

(
SN ′

i(n)
= bi(n)

∣∣Fτ(bi(n))

)]
≥ Exω

[
1{τ(bi(n))≤Ni(n)/10}P

bi(n)
ω

[
Sk = bi(n)

] ∣∣∣∣
k=N ′

i(n)
−τ(bi(n))

]

≥ C8

2
P xω

[
τ(bi(n)) ≤

Ni(n)

10

]
(4.15)

for large n, since
(
N ′i(n) − τ(bi(n))

)
∈ [

8Ni(n)

10 , Ni(n)] ∩ (2Z) uniformly for large n on
{τ(bi(n)) ≤ Ni(n)/10}, and due to Lemma 4.7. Finally by (4.2), P xω [τ(bi(n)) ≤ Ni(n)/10]

→n→+∞ 1 for P-almost every environment ω. This, combined with (4.15), proves the
lemma. �

Proof of Theorem 1.1. Set D for the set of (x1, ..., xd) ∈ (2Z)d∪(2Z+1)d. Let (x1, ..., xd) ∈
D.

First, notice that if (x1, ..., xd) ∈ (2Z)d, for P-almost every ω, for n large enough,

P (x1,...,xd)
ω

[
S

(1)
N ′
i(n)

= . . . = S
(d)
N ′
i(n)

]
≥

d∏
j=1

P xjω

[
SN ′

i(n)
= bi(n)

]
≥
(
C8

4

)d
=: C9 > 0,

by independence of S(1), . . . , S(d) under P
(x1,...,xd)
ω and thanks to Lemma 4.8. As a

consequence, if (x1, ..., xd) ∈ (2Z+ 1)d, for P-almost every ω, for n large enough, by the
Markov property,

P (x1,...,xd)
ω

[
S

(1)
N ′
i(n)

+1 = ... = S
(d)
N ′
i(n)

+1

]
= E(x1,...,xd)

ω

[
P

(S
(1)
1 ,...,S

(d)
1 )

ω

(
S

(1)
N ′
i(n)

= ... = S
(d)
N ′
i(n)

)]
≥ C9.

For every nonnegative integer n, let us write An and E for the events:

An :=
{
S(1)
n = . . . = S(d)

n

}
and E :=

{
An i.o.

}
= ∩N≥0 ∪n≥N An,

and define θn := N ′i(n) if (x1, ..., xd) ∈ (2Z)d, and θn := N ′i(n) + 1 if (x1, ..., xd) ∈ (2Z+ 1)d.
It follows from the two previous inequalities that, for every (x1, . . . , xd) ∈ D, for P-almost

every ω, for n large enough, P (x1,...,xd)
ω

[
Aθn

]
≥ C9.

As a consequence, for every (x1, ..., xd) ∈ D, for P-almost every ω,

P (x1,x2,...,xd)
ω

[
E
]
≥ P (x1,x2,...,xd)

ω

 ⋂
N≥0

⋃
n≥N

Aθn


= lim

N→+∞
P (x1,x2,...,xd)
ω

 ⋃
n≥N

Aθn


≥ lim sup

n→+∞
P (x1,x2,...,xd)
ω

[
Aθn

]
≥ C9 > 0 . (4.16)

Observe moreover that, for a given ω,
(
S

(1)
n , ..., S

(d)
n

)
n

is a Markov chain and that 1E is
measurable, bounded and stationary (i.e. shift-invariant). Therefore, due to a result of
Doob (see e.g. [29, Proposition V-2.4]),

∀(x1, ..., xd) ∈ Zd, lim
n→+∞

P
(S(1)
n ,...,S(d)

n )
ω

[
E
]

= 1E P (x1,...,xd)
ω −almost surely. (4.17)
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Also, for every (x1, ..., xd) ∈ D, P (x1,...,xd)
ω -almost surely, for every n ≥ 1,

(
S

(1)
n , ..., S

(d)
n

)
∈

D. Due to (4.16), we obtain that, for P-almost every ω, for every (x1, ..., xd) ∈ D,

P
(S(1)
n ,...,S(d)

n )
ω [E] ≥ C9 for every n, P (x1,...,xd)

ω -almost surely. Combining this with (4.17), we

conclude that for P-almost every ω, for every (x1, ..., xd) ∈ D, P (x1,...,xd)
ω -a.s., 1E ≥ C9 > 0

i.e. 1E = 1, and so that P (x1,...,xd)
ω (E) = 1. This ends the proof of Theorem 1.1. �

5 About random walks conditioned to stay positive

The following proposition gives the law of the potential at the left of m1(h), and more
precisely between ↑Th(h) and m1(h) (defined in (2.19) and (2.20)) when ↑Th(h) ≥ 0. It
is maybe already known, however we did not find it in the literature (in which m1(h) is
generally replaced by the local minimum of V before a deterministic time instead of our
stopping time T ↑(h), see e.g. Bertoin [6]).

Proposition 5.1. Let V be a random walk given as in (2.1) by the sequence of partial
sums of i.i.d. r.v. log ρi, i ∈ Z, such that P[log ρ0 > 0] > 0 and P[log ρ0 < 0] > 0 (this result
does not require Hypotheses (1.2), (1.3) or (1.4)). Recall V (−·) and TV (−·) from (2.2) and
(2.22). Let h > 0. Then the process

(
V
[
m1(h)− k

]
− V

[
m1(h)

]
, 0 ≤ k ≤ m1(h)− ↑Th(h)

)
conditioned on {↑Th(h) ≥ 0} has the same law as

(
V (−k), 0 ≤ k ≤ TV (−·)([h,+∞[)

)
conditioned on {TV (−·)([h,+∞[) < TV (−·)(]−∞, 0])}.

Proof. First, notice that due to our hypotheses, m1(h) < T ↑(h) < ∞ P-almost surely,
and P

[↑Th(h) ≥ 0
]
> 0. We denote by

⊔
the disjoint union. We write N∗ for N \ {0}.

Let ψ :
⊔
t∈N∗ R

t → [0,+∞[ be a nonnegative measurable function with respect to the
σ-algebra {

⊔
t∈N∗ At : ∀t ∈ N∗, At ∈ B(Rt)}. In this proof, to simplify the notation, we

set m1 := m1(h) and ↑T := ↑Th(h). We have,

E
[
ψ
(
V (m1 − k)− V (m1), 0 ≤ k ≤ m1 − ↑T

)
1{↑T≥0}

]
=

∞∑
`=0

∞∑
u=1

E
[
ψ
(
V (`+ u− k)− V (`+ u), 0 ≤ k ≤ u

)
1{↑T=`, m1=`+u}

]
=

∞∑
`=0

∞∑
u=1

E
[
ψ
(
V (`+ u− k)− V (`+ u), 0 ≤ k ≤ u

)
, inf
[0,`+u[

V > V (`+ u),

∀0 ≤ i < `+ u, V (i)− inf [0,i] V < h, TV`+u([h,+∞[) < TV`+u(]−∞, 0[),

max
]`,`+u[

V < V (`+ u) + h ≤ V (`)
]
, (5.1)

where V`+u denotes the process (V (`+u+x)−V (`+u), x ≥ 0), since the first 3 conditions
in the expectation in (5.1) mean m1 = `+ u whereas the last one means ↑T = `. Hence,

(5.1) =

∞∑
`=0

∞∑
u=1

E
[
ψ
(
V (`+ u− k)− V (`+ u), 0 ≤ k ≤ u

)
, inf
[`,`+u[

V > V (`+ u),

∀0 ≤ i ≤ `, V (i)− inf [0,i] V < h, TV`+u([h,+∞[) < TV`+u(]−∞, 0[),

max
]`,`+u[

V < V (`+ u) + h ≤ V (`)
]

(5.2)

= Π1(ψ)Π2, (5.3)

where we used inf [0,`] V > V (`)− h ≥ V (`+ u) and V (i)− inf [0,i] V ≤ max]`,`+u[ V − V (`+

u) < h for ` < i < `+u to prove that (5.2) = (5.1) (in particular for proving (5.2) ≤ (5.1)),
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followed by the Markov property applied at times ` and `+ u in the last equality, where

Π1(ψ) :=

∞∑
u=1

E
[
ψ
(
V (u− k)− V (u), 0 ≤ k ≤ u

)
, inf
[0,u[

V > V (u),max
]0,u[

V < V (u) + h ≤ 0
]
,

Π2 :=

∞∑
`=0

P
[
∀0 ≤ i ≤ `, V (i)− inf [0,i] V < h

]
P
[
TV ([h,+∞[) < TV (]−∞, 0[)

]
.

Thus, since (V (u− k)− V (u), k ≥ 0) has the same law as (V (−k), k ≥ 0),

Π1(ψ)

=

∞∑
u=1

E
[
ψ
(
V (−k), 0 ≤ k ≤ u

)
, inf
k∈]0,u]

V (−k) > 0, max
k∈]0,u[

V (−k) < h ≤ V (−u)
]

=

∞∑
u=1

E
[
ψ
(
V (−k), 0 ≤ k ≤ u

)
, u = TV (−·)([h,+∞[) < TV (−·)(]−∞, 0])

]
= E

[
ψ
(
V (−k), 0 ≤ k ≤ TV (−·)([h,+∞[)

)
, TV (−·)([h,+∞[) < TV (−·)(]−∞, 0])

]
. (5.4)

Applying this and (5.3) to ψ = 1, we get

P
[↑T ≥ 0

]
= Π1(1)Π2 = Π2P

[
TV (−·)([h,+∞[) < TV (−·)(]−∞, 0])

]
,

which is non zero due to our hypotheses. This, together with (5.1), (5.3) and (5.4) gives

E
[
ψ
(
V (m1 − k)− V (m1), 0 ≤ k ≤ m1 − ↑T

) ∣∣ ↑T ≥ 0
]

= E
[
ψ
(
V (−k), 0 ≤ k ≤ TV (−·)([h,+∞[)

) ∣∣ TV (−·)([h,+∞[) < TV (−·)(]−∞, 0])
]
.

This proves the lemma. �

Moreover, the following proposition is useful in the proofs of Lemma 2.5 and Propo-
sition 3.4. Notice in particular that we get an identity in law with a random walk
conditioned to hit [h,+∞[ before ]−∞, 0[, instead of ]−∞, 0] in the previous proposition.

Proposition 5.2. Let h > 0. Under the same hypotheses as in Proposition 5.1, if
moreover lim infx→+∞ V (x) = −∞,

(i) The processes
(
V
[
m1(h) − k

]
− V

[
m1(h)

]
, 0 ≤ k ≤ m1(h)

)
and

(
V
[
m1(h) + k

]
−

V
[
m1(h)

]
, 0 ≤ k ≤ T ↑(h)−m1(h)

)
are independent.

(ii) The process
(
V
[
m1(h) + k

]
− V

[
m1(h)

]
, 0 ≤ k ≤ T ↑(h)−m1(h)

)
is equal in law to(

V (k), 0 ≤ k ≤ TV ([h,+∞[)
)

conditioned on {TV ([h,+∞[) < TV (]−∞, 0[)}.

Proof. We write N∗ for N \ {0}. Let ψ1 and ψ2 be two nonnegative functions,
⊔
t∈N∗ R

t →
[0,+∞[, measurable with respect to the σ-algebra {

⊔
t∈N∗ At : ∀t ∈ N∗, At ∈ B(Rt)}. To

simplify the notation, we set m1 := m1(h) and T ↑ := T ↑(h).
We also recall e′i and H ′i, i ∈ N, from (3.5) and (3.6). Notice in particular that m1 = e′L,

where L := min{` ≥ 0, H ′` ≥ h} <∞ a.s. Hence, summing over the values of L, we get

E
[
ψ1

(
V (m1 − k)− V (m1), 0 ≤ k ≤ m1

)
ψ2

(
V (m1 + k)− V (m1), 0 ≤ k ≤ T ↑ −m1

)]
=

∞∑
`=0

E
[
ψ1

(
V
(
e′` − k

)
− V

(
e′`
)
, 0 ≤ k ≤ e′`

)
1∩`−1

i=0{H′i<h}
1{H′`≥h}

× ψ2

(
V
(
e′` + k

)
− V

(
e′`
)
, 0 ≤ k ≤ TV (·+e′`)−V (e′`)

([h,+∞[)
)]

= Π3Π4,
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by the strong Markov property at stopping time e′`, where

Π3 :=

∞∑
`=0

E
[
ψ1

(
V
(
e′` − k

)
− V

(
e′`
)
, 0 ≤ k ≤ e′`

)
1∩`−1

i=0{H′i<h}
]
P[H ′` ≥ h]

=

∞∑
`=0

E
[
ψ1

(
V
(
e′` − k

)
− V

(
e′`
)
, 0 ≤ k ≤ e′`

)
1{L=`}

]
= E

[
ψ1

(
V (m1 − k)− V (m1), 0 ≤ k ≤ m1

)]
and, since P[H ′` ≥ h] = P[TV ([h,+∞[) < TV (]−∞, 0[)],

Π4 := E
[
ψ2

(
V (k), 0 ≤ k ≤ TV ([h,+∞[)) | TV ([h,+∞[) < TV (]−∞, 0[)

]
.

Since this is true for any ψ1 and ψ2, this proves the proposition. �
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