
HAL Id: hal-01939841
https://hal.science/hal-01939841

Submitted on 29 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Biometric Systems Private by Design: Reasoning about
privacy properties of biometric system architectures

Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

To cite this version:
Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer. Biometric Systems Private by
Design: Reasoning about privacy properties of biometric system architectures. Transactions on Data
Privacy, 2018, 11 (2), pp.111-137. �hal-01939841�

https://hal.science/hal-01939841
https://hal.archives-ouvertes.fr

TRANSACTIONS ON DATA PRIVACY 11 (2018) 111–137

Biometric Systems Private by Design: Rea-
soning about privacy properties of biomet-
ric system architectures
Julien Bringer∗, Hervé Chabanne∗,∗∗, Daniel Le Métayer∗∗∗, Roch Lescuyer∗
∗Idemia, France.
∗∗Télécom ParisTech, Paris, France.
∗∗∗Inria, Université de Lyon, France.

E-mail: {julien.bringer,herve.chabanne,roch.lescuyer}@idemia.com,

daniel.le-metayer@inria.fr

Received 2 March 2017; received in revised form 11 December 2017; accepted 23 December 2017

Abstract. The goal of the work presented in this paper is to show the applicability of the privacy
by design approach to biometric systems and the benefit of using formal methods to this end. We
build on a general framework for the definition and verification of privacy architectures introduced
at STM 2014 and show how it can be adapted to biometrics. The choice of particular techniques and
the role of the components (central server, secure module, biometric terminal, smart card, etc.) in the
architecture have a strong impact on the privacy guarantees provided by a biometric system. Some
architectures have already been analysed but on a case by case basis, which makes it difficult to draw
comparisons and to provide a rationale for the choice of specific options. In this paper, we describe
the application of a general privacy architecture framework to specify different design options for
biometric systems and to reason about them in a formal way.

Keywords. Privacy by design, data protection, regulation, formal methods, verification, biometric
systems.

1 Introduction

Many applications of biometric recognition have been developed during the last decades
in a variety of contexts, from criminal investigations and identity documents to a wealth of
public and private usages, like physical access control or smartphone authentication. Bio-
metric systems involve two main phases: enrolment and verification (either authentication
or identification) [22]. enrolment is the registration phase, in which the biometric traits of a

∗This work has been partially funded by the French ANR-12-INSE-0013 project BIOPRIV and the European
FP7-ICT-2013-1.5 project PRIPARE. Earlier and partial versions of this work appeared in FM 2015 [10] and ISC
2015 [11] conferences. This work provides a global and consistent view of these earlier publications.

111

112 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

person are collected and recorded within the system. During this phase, the identity of the
user is associated with his recorded biometric trait. In the authentication mode, a fresh bio-
metric trait is collected and compared with the registered biometric reference to check that
it corresponds to the claimed identity. In the identification mode, a fresh biometric data
is collected and the corresponding identity is searched in a database of enrolled biometric
references. During each phase, to enable efficient and accurate comparison, the collected
biometric data are converted into discriminating features, leading to what is called a bio-
metric template.

The increased use of biometric systems has generated a lot of interest in privacy issues
and the risks related to biometric trait processing. Since the leakage of biometric traits may
lead to serious privacy risks, including tracking and identity theft, it is necessary to follow
a privacy by design approach for this type of systems.

The security of biometric systems has been an active research area since at least fifteen
years and a wide-array of well-documented primitives have been studied, such as encryp-
tion, homomorphic encryption, secure multi-party computation, hardware security or bio-
metric template protection. These building blocks have been used in a variety of privacy
preserving biometric systems. Some solutions involve dedicated cryptographic primitives
such as secure sketches [14] and fuzzy vaults [23, 45], others rely on adaptations of existing
cryptographic tools [30] or the use of secure hardware solutions [37]. The choice of par-
ticular techniques and the role of the components (central server, secure module, terminal,
smart card, etc.) in the architecture have a strong impact on the privacy guarantees pro-
vided by a solution. However, existing proposals were made on a case by case basis, which
makes it difficult to compare them, to provide a rationale for the choice of specific options
and to capitalize on past experience.

The objective of the work presented in this paper is to show the applicability of the privacy
by design approach to biometric systems and the benefit of using formal methods to this
end. We build on a general framework introduced in [2] for the formal definition and
validation of privacy architectures. The goal is to specify the various design options in a
consistent and comparable way, and then to reason about them in a formal way in order
to justify their design in terms of trust assumptions and privacy properties. This work has
been conducted within the French ANR research project BioPriv [6], an interdisciplinary
project involving lawyers and computer scientists. The BioPriv project itself built on the
results of the Turbine European project 1 which studied the best practices for privacy by
design applied to biometric systems [27].

The privacy by design approach is often praised by lawyers as well as computer scientists
as an essential step towards a better privacy protection. It is now enshrined in the General
Data Protection Regulation [36] that will be applied in Europe in May 2018. Nevertheless,
it is one thing to impose by law the adoption of privacy by design, quite another to de-
fine precisely what it is intended to mean technically-wise and to ensure that it is put into
practice by developers. The overall philosophy is that privacy should not be treated as
an afterthought but rather as a first-class requirement in the design phase of systems: in
other words, designers should have privacy in mind from the start when they define the
features and architecture of a system. However, the practical application raises a number of
challenges: first of all the privacy requirements must be defined precisely; then it must be
possible to reason about potential tensions between privacy and other requirements and to
explore different combinations of privacy enhancing technologies to build systems meeting
all these requirements.

17th European Framework Program.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 113

In Section 2, we provide an outline of the framework introduced in [2] for defining privacy
architectures and reasoning about their properties. Then we show how this framework can
be used to apply a privacy by design approach to the implementation of biometric sys-
tems. In Section 3, we introduce the basic terminology used in this paper and the common
features of the biometric architectures considered in the paper. In Section 4, we describe
several architectures for biometric systems, considering both existing systems and more
advanced solutions, and show that they can be defined in this framework. This makes it
possible to highlight their commonalities and differences especially with regard to their
underlying trust assumptions.

In the second part of this paper, we address a security issue which cannot be expressed
in the framework presented in Section 2. The origin of the problem is that side-channel
information may leak from the execution of the system. This issue is acute for biometric
systems because the result of a matching between two biometric data inherently provides
some information, even if the underlying cryptographic components are correctly imple-
mented [12, 40, 38]. To adress this issue we propose in Section 5 an extension of the formal
framework, in which information leaks spanning over several sessions of the system can
be expressed. In Section 6, we apply the extended model to analyse biometric information
leakage in several variants of biometric system architectures.

Finally, Section 7 sketches related works and Section 8 concludes the paper with sugges-
tions of avenues for further work.

2 General approach

The work presented in [2] can be seen as a first step towards a formal and systematic ap-
proach to privacy by design. In practice, this framework makes it possible to express pri-
vacy and integrity requirements (typically the fact that an entity must obtain guarantees
about the correctness of a value), to analyse their potential tensions and to make reasoned
architectural choices based on explicit trust assumptions. The motivations for the approach
come from the following observations:

• First, one of the key decisions that has to be made in the design of a privacy compli-
ant system is the location of the data and the computations: for example, a system
in which all data is collected and all results are computed on a central server brings
strong integrity guarantees to the operator at the price of a loss of privacy for data
subjects. Decentralized solutions may provide better privacy protections but weaker
guarantees for the operator. The use of privacy enhancing technologies such as ho-
momorphic encryption or secure multi-party computation can in some cases reconcile
both objectives.

• The choice among the architectural options should be guided by the trust assump-
tions that can be placed by the actors on the other actors and on the components of
the architecture. This trust itself can be justified in different ways (security protocol,
secure or certified hardware, accredited third party, etc.).

As far as the formal model is concerned, the framework proposed in [2] relies on a ded-
icated epistemic logic. Indeed, because privacy is closely connected with the notion of
knowledge, epistemic logics [16] form an ideal basis to reason about privacy properties.
However, standard epistemic logics based on possible worlds semantics suffer from a weak-
ness (called “logical omniscience” [21]) which makes them unsuitable in the context of pri-
vacy by design.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

114 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

We assume that the functionality of the system is expressed as the computation of a set
of equations Ω := {X = T} over a language Term of terms T defined as follows, where c
represents constants (c ∈ Const), X variables (X ∈ V ar) and F functions (F ∈ Fun):

T ::= X | c | F (T1, . . . , Tn)

An architecture is defined by a set of components Ci, for i ∈ [1, N], and a set A of relations.
The relations define the capacities of the components and the trust assumptions. We use
the following language to define the relations:

A ::= {R}
R ::= Hasi(X) | Receivei,j({St}, {X}) | ComputeG(X = T)

| V erifyi(St) | Trusti,j

St ::= Pro | Att Att ::= Attestk({Eq})
Pro ::= Proofi({P}) Eq ::= Pred(T1, . . . , Tm)
P ::= Att | Eq

The notation {Z} denotes a set of terms of category Z. Hasi(X) denotes the fact that
component Ci possesses (or is the origin of) the value of X , which may correspond to
situations in which X is stored on Ci or Ci is a sensor collecting the value of X . In this
paper, we use the set of predicates Pred := {=,∈}. ComputeG(X = T) means that the
components in the set G can compute the term T and assign its value to X and Trusti,j
represents the fact that component Ci trusts component Cj . Receivei,j({St}, {X}) means
that Ci can receive the values of variables in {X} together with the statements in {St} from
Cj .

We consider two types of statements here:

• Attestations: Attestk({Eq}) is the declaration by the component Ck that the proper-
ties in {Eq} hold.

• Proofs: Proofi({P}) is a proof of properties P provided by Ci.

V erifyi(St) is the verification by component Ci of statement St. If St is a proof state-
ment, V erifyi(St) is the verification of the correctness of St. In contrast, if St is an attesta-
tion statement Attestk({Eq}), then V erifyi(St) is the verification of the authenticity of the
sender, that is to sayCk. The actual implementation of the relations defining an architecture
is not defined at this level. In practice, the verification of an attestation can be implemented
as a digital signature verification.

Graphical data flow representations can be derived from architectures expressed in this
language. For the sake of readability, we use both notations in the next sections.

The subset of the privacy logic used in this paper is the following dedicated epistemic
logic:

ϕ ::= Hasi(X) | Hasnonei (X) | Ki(Prop) | ϕ1 ∧ ϕ2

Prop ::= Pred(T1, . . . , Tn) | Prop1 ∧ Prop2

Hasi(X) and Hasnonei (X) denote the facts that component Ci respectively can or cannot
get the value of X . Ki denotes the epistemic knowledge following the “deductive algorith-
mic knowledge” philosophy [16, 39] that makes it possible to avoid the logical omniscience

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 115

Hasi(X) ∈ A
H1

A ` Hasi(X)

ComputeG(X = T) ∈ A Ci ∈ G
H3

A ` Hasi(X)

Receivei,j(S,E) ∈ A X ∈ E
H2

A ` Hasi(X)

Depi(Y,X) ∀X ∈ X , A ` Hasi(X)
H5

A ` Hasi(Y)

A 0 Hasi(X)
HN

A ` Hasnonei (X)

E .i Eq0 ∀Eq ∈ E : A ` Ki(Eq)
K.

A ` Ki(Eq0)

ComputeG(X = T) ∈ A Ci ∈ G
K1

A ` Ki(X = T)

V erifyi(Proofj(E)) ∈ A Eq ∈ E
K3

A ` Ki(Eq)

V erifyi(Proofj(E)) ∈ A Attestk(E′) ∈ E Eq ∈ E′ Trusti,k ∈ A
K4

A ` Ki(Eq)

V erifyi(Attestj(E)) ∈ A Trusti,j ∈ A Eq ∈ E
K5

A ` Ki(Eq)

Figure 1: A subset of rules from the axiomatics of [2]

problem. In this approach, the knowledge of a component Ci is defined as the set of prop-
erties that this component can actually derive using its own information and his deductive
system .i.

Another relation, Depi, is used to take into account dependencies between variables. Depi(Y,X)
means that if Ci can obtain the values of each variable in the set of variables X , then it may
be able to derive the value of Y . The absence of such a relation is an assumption that Ci

cannot derive the value of Y from the values of the variables in X . It should be noted that
this dependency relation is associated with a given component: different components may
have different capacities. For example, if component Ci is the only component able to de-
crypt a variable ev to get the clear text v, then Depi(v, {ev}) holds but Depj(v, {ev}) does
not hold for any j 6= i.

The semantics S(A) of an architectureA is defined as the set of states of the componentsCi

of A resulting from compatible execution traces [2]. A compatible execution trace contains
only events that are instantiations of relations (e.g. Receivei,j , ComputeG, etc.) of A (as
further discussed in Section 5.1). The semantics S(ϕ) of a property ϕ is defined as the set
of architectures meeting ϕ. For example, A ∈ S(Hasnonei (X)) if for all states σ ∈ S(A),
the sub-state σi of component Ci is such that σi(X) = ⊥, which expresses the fact that the
component Ci cannot assign a value to the variable X .

To make it possible to reason about privacy properties, an axiomatics of this logic is pre-
sented and is proven sound and complete. A ` ϕ denotes that ϕ can be derived from A
thanks to the deductive rules (i.e. there exists a derivation tree such that all steps belong to
the axiomatics, and such that the leaf is A ` ϕ). A subset of the axioms useful for this paper
is presented in Figure 1.

3 Biometric systems architectures

Before starting the presentation of the different biometric architectures in the next sections,
we introduce in this section the basic terminology used in this paper and the common
features of the architectures. For the sake of readability, we use upper case sans serif letters

TRANSACTIONS ON DATA PRIVACY 11 (2018)

116 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

S, T, etc. as index variables i for components. Type letters dec, br, etc. denote variables.
The set of components of an architecture is denoted by J .

The variables used in biometric system architectures are the following:

• A biometric reference template br built during the enrolment phase, where a tem-
plate corresponds to a set or vector of biometrics features that are extracted from raw
biometric data in order to be able to compare biometric data accurately.

• A raw biometric data rd provided by the user during the verification phase.

• A fresh template bs derived from rd during the verification phase.

• A threshold thr which is used during the verification phase as a closeness criterion
for the biometric templates.

• The output dec of the verification which is the result of the matching between the
fresh template bs and the enrolled templates br, considering the threshold thr.

Two components appear in all biometric architectures: a component U representing the
user, and the terminal T which is equipped with a sensor used to acquire biometric traits.
In addition, biometric architectures may involve an explicit issuer I, enrolling users and
certifying their templates, a server S managing a database containing enrolled templates, a
module (which can be a hardware security module, denoted HSM) to perform the matching
and eventually to take the decision, and a smart card C to store the enrolled templates (and
in some cases to perform the matching). Figure 2 introduces some graphical representations
used in the figures of this paper.

User Encrypted
database

Terminal Card
Location

of the
comparison

Figure 2: Graphical representations

In this paper, we focus on the verification phase and assume that enrolment has already
been done. Therefore the biometric reference templates are stored on a component which
can be either the issuer (HasI(br)) or a smart card (HasC(br)). A verification process is
initiated by the terminal T receiving as input a raw biometric data rd from the user U. T
extracts the fresh biometric template bs from rd using the function Extract ∈ Fun. All
architectures A therefore include ReceiveT,U({}, {rd}) and ComputeT(bs = Extract(rd))
and the DepT relation is such that (bs, {rd}) ∈ DepT. In all architectures A, the user re-
ceives the final decision dec (which can typically be positive or negative) from the termi-
nal: ReceiveU,T({}, {dec}) ∈ A. The matching itself, which can be performed by different
components depending on the architecture, is expressed by the function µ ∈ Fun which
takes as arguments two biometric templates and the threshold thr.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 117

4 Application of the framework to several architectures for
biometric systems with various protection levels

In this section, we describe several architectures for biometric systems, considering both
existing systems and more advanced solutions, and we show that they can be defined in
the framework presented in Section 3.

4.1 Protecting the reference templates with encryption

Let us consider first the most common architecture deployed for protecting biometric data.
When a user is enrolled his reference template is stored encrypted, either in a terminal
with an embedded database, or in a central database. During the identification process,
the user supplies a fresh template, the reference templates are decrypted by a component
(which can be typically the terminal or a dedicated hardware security module) and the
comparison is done inside this component. The first part of Figure 3 shows an architecture
Aed in which reference templates are stored in a central database and the decryption of the
references and the matching are done inside the terminal. The second part of the figure
shows an architecture Ahsm in which the decryption of the references and the matching are
done on a dedicated hardware security module. Both architectures are considered in turn
in the following paragraphs.

U

rd

dec

T

rd→ bs
thr

ebr

S

ebr

I

br→ ebr

Encrypted database

U

rd

dec

T

rd→ bs

bs, ebr

dec

M

thr

ebr

S

ebr

I

br→ ebr

Encrypted database with a hardware security module (HSM)

Figure 3: Classical architectures with an encrypted database

While the solutions described in this section can be seen as superseded by the ones of the
next section, we introduce them for two purposes: firstly, for a pedagogical reason in order
to prepare the reader to better understand the more sophisticated techniques of section 4.2
and secondly, to start with the presentation of in-the-field solutions as they are commonly
deployed today.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

118 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

4.1.1 Use of an encrypted database

The first architecture Aed is composed of a user U, a terminal T, a server S managing an en-
crypted database ebr and an issuer I enrolling users and generating the encrypted database
ebr. The set Fun includes the encryption and decryption functions Enc and Dec. When
applied to an array, Enc is assumed to encrypt each entry of the array. At this stage, for
the sake of conciseness, we consider only biometric data in the context of an identification
phase. The same types of architectures can be used to deal with authentication, which does
not raise any specific issue. The functionality of the architecture is Ω := {ebr = Enc(br),
br′ = Dec(ebr), bs = Extract(rd), dec = µ(br′, bs, thr)}, and the architecture is defined
as:

Aed :=
{
HasI(br), HasU(rd), HasT(thr), ComputeI(ebr = Enc(br)),

ReceiveS,I({AttestI(ebr = Enc(br))}, {ebr}),
ReceiveT,S({AttestI(ebr = Enc(br))}, {ebr}), T rustT,I,
V erifyT(AttestI(ebr = Enc(br))), ReceiveT,U({}, {rd}),
ComputeT(bs = Extract(rd)), ComputeT(br′ = Dec(ebr)),

ComputeT(dec = µ(br′, bs, thr)), ReceiveU,T({}, {dec})
}

The properties of the encryption scheme are captured by the dependence and deductive
relations. The dependence relations are: (ebr, {br}) ∈ DepI, and {(bs, {rd}), (dec, {br′,
bs, thr}), (br′, {ebr}), (br, {ebr})} ⊆ DepT. Moreover the deductive algorithm relation
contains: {ebr = Enc(br)} . {br = Dec(ebr)}.

From the point of view of biometric data protection, the property that this architecture is
meant to ensure is the fact that the server should not have access to the reference template,
that is to say: HasnoneS (br), which can be proven using Rule HN (the same property holds
for br′):

HasS(br) 6∈ Aed @X : (br,X) ∈ DepS @T : ComputeS(br = T) ∈ Aed

@j ∈ J ,@S,@E,ReceiveS,j(S,E) ∈ Aed ∧ br ∈ E
HN

Aed ` HasnoneS (br)

It is also easy to prove, using H2 and H5, that the terminal has access to br′: HasT(br′).
As far as integrity is concerned, the terminal should be convinced that the matching is cor-

rect. The proof relies on the trust placed by the terminal in the issuer (about the correctness
of ebr) and the computations that the terminal can perform by itself (through ComputeT
and the application of .):

V erifyT({AttestI(ebr = Enc(br))}) ∈ Aed TrustT,I ∈ Aed
K5

Aed ` KT(ebr = Enc(br))

{ebr = Enc(br)} . {br = Dec(ebr)} Aed ` KT(ebr = Enc(br))
K.

Aed ` KT(br = Dec(ebr))

ComputeT(br′ = Dec(ebr)) ∈ Aed
K1

Aed ` KT(br′ = Dec(ebr))

Assuming that all deductive relations include the properties (commutativity and transitiv-
ity) of the equality, K. can be used to derive: Aed ` KT(br = br′). A further application of
K1 with another transitivity rule for the equality allows us to obtain the desired integrity
property:

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 119

Aed ` KT(br = br′)

ComputeT(dec = µ(br′, bs, thr)) ∈ Aed
K1

Aed ` KT(dec = µ(br′, bs, thr))
K.

Aed ` KT(dec = µ(br, bs, thr))

4.1.2 Encrypted database with a hardware security module

The architecture presented in the previous subsection relies on the terminal to decrypt the
reference template and to perform the matching operation. As a result, the clear reference
template is known by the terminal and the only component that has to be trusted by the
terminal is the issuer. If it does not seem sensible to entrust the terminal with this central
role, another option is to delegate the decryption of the reference template and computation
of the matching to a hardware security module so that the terminal itself never stores any
clear reference template. This strategy leads to architecture Ahsm pictured in the second
part of Figure 3.

In addition to the user U, the issuer I, the terminal T, and the server S, the set of compo-
nents contains a hardware security module M. The terminal does not perform the matching,
but has to trust M. This trust can be justified in practice by the level of security provided by
the HSM M (which can also be endorsed by an official security certification scheme). The
architecture is described as follows in our framework:

Ahsm :=
{
HasI(br), HasU(rd), HasM(thr), ComputeI(ebr = Enc(br)),

ReceiveS,I({AttestI(ebr = Enc(br))}, {ebr}),
ReceiveT,S({AttestI(ebr = Enc(br))}, {ebr}), T rustT,I,
V erifyT(AttestI(ebr = Enc(br))), ReceiveT,U({}, {rd}),
ComputeT(bs = Extract(rd)), ReceiveM,T({}, {bs, ebr}),
ComputeM(br′ = Dec(ebr)), ComputeM(dec = µ(br′, bs, thr)),

V erifyT({AttestM(dec = µ(br′, bs, thr))}), T rustT,M,
ReceiveT,M(A, {dec}), V erifyT({AttestM(br′ = Dec(ebr))})

}
where the set of attestations A received by the terminal from the module is
A := {AttestM(dec = µ(br′, bs, thr)), AttestM(br′ = Dec(ebr))}.
The trust relation between the terminal and the module makes it possible to apply rule K5

twice:
V erifyT({AttestM(dec = µ(br′, bs, thr))}) ∈ Ahsm TrustT,M ∈ Ahsm

Ahsm ` KT(dec = µ(br′, bs, thr))

V erifyT({AttestM(br′ = Dec(ebr))}) ∈ Ahsm TrustT,M ∈ Ahsm
K5

Ahsm ` KT(br′ = Dec(ebr))

The same proof as in the previous subsection can be applied to establish the integrity of
the matching. The trust relation between the terminal and the issuer and the rules K5, K.
make it possible to derive: Ahsm ` KT(br = Dec(ebr)). Then two successive applications of
K. regarding the transitivity of the equality lead to: Ahsm ` KT(dec = µ(br, bs, thr)).

As in architectureAed, the biometric references are never disclosed to the server. However,
in contrast with Aed, they are not disclosed either to the terminal, as shown by rule HN:

HasT(br) 6∈ Ahsm @X : (br,X) ∈ DepT @T : ComputeT(br = T) ∈ Ahsm

@j ∈ J ,@S, @E,ReceiveT,j(S,E) ∈ Ahsm ∧ br ∈ E
HN

Ahsm ` HasnoneT (br)

TRANSACTIONS ON DATA PRIVACY 11 (2018)

120 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

4.2 Enhancing protection with homomorphic encryption

In both architectures of Section 4.1, biometric templates are protected, but the component
performing the matching (either the terminal or the secure module) gets access to the ref-
erence templates. In this section, we show how homomorphic encryption can be used to
ensure that no component gets access to the biometric reference templates during the veri-
fication.

Homomorphic encryption schemes [18] makes it possible to compute certain functions
over encrypted data. For example, if Enc is a homomorphic encryption scheme for multi-
plication then there is an operation ⊗ such that:

c1 = Enc(m1) ∧ c2 = Enc(m2)⇒ c1 ⊗ c2 = Enc(m1 ×m2).

Figure 4 presents an architecture Ahom derived from Ahsm in which the server performs the
whole matching computation over encrypted data. The user supplies a template that is
sent encrypted to the server (denoted ebs). The server also owns an encrypted reference
template ebr. The comparison, i.e. the computation of the distance between the templates,
is done by the server, leading to the encrypted distance edec, but the server does not get
access to the biometric data or to the result. This is made possible through the use a ho-
momorphic encryption scheme. On the other hand, the module gets the result, but does
not get access to the templates. Let us note that Ahom is just one of the possible ways to
use homomorphic encryption in this context: the homomorphic computation of the dis-
tance could actually be made by another component (for example the terminal itself) since
it does not lead to any leak of biometric data.

U

rd

dec

T

rd→ bs
bs→ ebs

edec

dec

M

edec→ dec

ebs

edec

S

thr ebr

I

br→ ebr

Figure 4: Comparison over encrypted data with homomorphic encryption

The homomorphic property of the encryption scheme needed for this application depends
on the matching algorithm. An option is to resort to a fully homomorphic encryption
scheme (FHE) [18] as in the solution described in [44] which uses a variant of a FHE scheme
for face-recognition. However, schemes with simpler homomorphic functionalities can also
be sufficient (examples can be found in [8, 7]). Since we describe our solutions at the ar-
chitecture level, we do not need to enter into details regarding the chosen homomorphic
scheme. We just need to assume the existence of a homomorphic matching functionHom-µ
with the following properties captured by the algorithmic knowledge relations:

{ebr = Enc(br), ebs = Enc(bs),

edec = Hom-µ(ebr, ebs, thr)} . {Dec(edec) = µ(br, bs, thr)} (1)

The dependence relations include the following: {(bs, {rd}), (ebs, {bs})} ⊆ DepT; (ebr, {br}) ∈
DepI; {(br, {ebr}), (bs, {ebs}), (dec, {edec})} ⊆ DepM. Architecture Ahom is defined as fol-

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 121

lows:

Ahom :=
{
HasI(br), HasU(rd), HasS(thr), ComputeI(ebr = Enc(br)),

ReceiveS,I({AttestI({ebr = Enc(br)})}, {ebr}), ReceiveT,U({}, {rd}),
ComputeT(bs = Extract(rd)), ComputeT(ebs = Enc(bs)),

ReceiveS,T({}, {ebs}), ComputeS(edec = Hom-µ(ebr, ebs, thr)),

ReceiveT,S(A, {edec}), V erifyT(AttestI({ebr = Enc(br)})),
V erifyT(AttestS({edec = Hom-µ(ebr, ebs, thr)})), T rustT,S,
T rustT,I, ReceiveM,T({}, {edec}), ComputeM(dec = Dec(edec)),

ReceiveT,M({AttestM({dec = Dec(edec)})}, {dec}), T rustT,M,
V erifyT(AttestM({dec = Dec(edec)})), ReceiveU,T({}, {dec})

}
where the set A of attestations received by the terminal from the server is:
A := {AttestI({ebr = Enc(br)}), AttestS({edec = Hom-µ(ebr, ebs, thr)})}.
In order to prove that the terminal can establish the integrity of the result dec, we can

proceed in two steps, proving first the correctness of edec and then deriving the correct-
ness of edec using the properties of homomorphic encryption. The first step relies on the
capacities of component T and the trust assumptions on components I and S using rules K1
and K5 respectively.

ComputeT(ebs = Enc(bs)) ∈ Ahom
K1

Ahom ` KT(ebs = Enc(bs))

V erifyT({AttestI(ebr = Enc(br))}) ∈ Ahom TrustT,I ∈ Ahom
K5

Ahom ` KT(ebr = Enc(br))

V erifyT({AttestS(edec = Hom-µ(br, bs, thr))}), TrustT,S ∈ Ahom
K5

Ahom ` KT(edec = Hom-µ(br, bs, thr))

The second step can be done through the application of the deductive algorithmic knowl-
edge regarding the homomorphic encryption property (with LHS1 the left hand-side of
equation (1)) :

LHS1 . {Dec(edec) = µ(br, bs, thr)} ∀Eq ∈ LHS1 : Ahom ` KT(Eq)
K.

Ahom ` KT(Dec(edec) = µ(br, bs, thr))

The desired property is obtained through the application of rules K5 and K. exploiting the
trust relation between T and M and the transitivity of equality.

V erifyT({AttestM(dec = Dec(edec))}) ∈ Ahom TrustT,M ∈ Ahom
K5

Ahom ` KT(dec = Dec(edec))

Ahom ` KT(Dec(edec) = µ(br, bs, thr)) Ahom ` KT(dec = Dec(edec))
K.

Ahom ` KT(dec = µ(br, bs, thr))

As far as privacy is concerned, the main property that Ahom is meant to ensure is that no
component (except the issuer) has access to the biometric references. Rule HN makes it
possible to prove that U, T, and S never get access to br, as in Section 4.1. The same rule
can be applied here to proveAhom 0 HasM(ebr) exploiting the fact that neither (br, {edec})
nor (br, {dec}) belong to DepM.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

122 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

4.3 The Match-On-Card technology

Another solution can be considered when the purpose of the system is authentication rather
than identification. In this case, it is not necessary to store a database of biometric reference
templates and a (usually unique) reference template can be stored on a smart card. A smart
card based privacy preserving architecture has been proposed recently which relies on the
idea of using the card not only to store the reference template but also to perform the match-
ing itself. Since the comparison is done inside the card the reference template never leaves
the card. In this Match-On-Card (MOC) technology [37, 35, 19] (also called comparison-on-
card), the smart card receives the fresh biometric template, carries out the comparison with
its reference template, and sends the decision back (as illustrated in Figure 5).

U T C

rd

dec

rd→ bs

bs

dec

br

thr

Figure 5: Biometric verification using the Match-On-Card technology

In this architecture, the terminal is assumed to trust the smart card. This trust assumption
is justified by the fact that the card is a tamper-resistant hardware element. This architecture
is simpler than the previous ones but not always possible in practice (for a combination of
technical and economic reasons) and may represent a shift in terms of trust if the smart
card is under the control of the user.

More formally, the MOC architecture is composed of a user U, a terminal T, and a card C.
The card C attests that the templates br and bs are close (with respect to the threshold thr):

Amoc :=
{
HasC(br), HasU(rd), HasC(thr), ReceiveT,U({}, {rd}),
ComputeT(bs = Extract(rd)), ReceiveC,T({}, {bs}),
ComputeC(dec = µ(br, bs, thr)), ReceiveU,T({}, {dec}),
ReceiveT,C({AttestC(dec = µ(br, bs, thr))}, {dec}),
V erifyT({AttestC(dec = µ(br, bs, thr))}), T rustT,C

}
Using rule HN, it is easy to show that no component apart from C gets access to br. The
proof of the integrity property relies on the capacities of component T and the trust as-
sumption on component C using rules K1 and K5 respectively.

5 Extension of the framework to information leakage

In this section, we address a security issue which cannot be expressed in the framework
presented in Section 2. The origin of the problem is that side-channel information may leak
from the execution of the system. This issue is acute for biometric systems because the
result of a matching between two biometric data inherently provides some information,
even if the underlying cryptographic components are correctly implemented [12, 40, 38].

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 123

To address this issue we propose in Section 5.1 an extension of the architecture language
and in Section 5.2 an extension of the privacy logic.

5.1 Extension of the architecture language

Motivated by the need to analyse the inherent leakage of the result of a matching between
two biometric data in biometric systems (cf. [12, 40, 38]), we now propose an extension
of the formal framework sketched in Section 2, in which the information leaking through
several executions can be expressed. In fact, in this line of work, it is shown that someone
might mount an hill-climbing attack where he is trying, by repeated trials, to guess the
templates that are privately stored in a secure component. Doing that, he will exploit the
information leaked during one execution, e.g. the similarity result between his guess and
the templates which leaks more than a direct match vs no match output. At the end, his
strategy is to increase his knowledge of the templates, execution after execution. We thus
have to extend our static model used in previous sections, to handle this more dynamic
situation.

We highlight the difference with the framework introduced in Section 2 without repeating
their common part. The term language we use is now the following.

T ::= X̃ | c | F (X̃1, . . . , X̃m, c1, . . . , cq)

X̃ ::= X | X[k]

Functions may take as parameters both variables and constants. Variables X̃ can be simple
variables or arrays of variables. If X is an array, Range(X) denotes its size.

In this extended framework, in addition to defining a set of primitives, an architecture can
also provide a bound on the number of times a primitive can be used.

A ::= {R}
R ::= Has

(n)
i (X) | Hasi(c) | Receive

(n)
i,j ({St}, {X} ∪ {c})

| Trusti,j | Reset | Compute
(n)
G (X = T) | V erify

(n)
i ({St})

St ::= Pro | Att Att ::= Attesti({Eq})
Pro ::= Proofi({P}) Eq ::= Pred(T1, . . . , Tm)
P ::= Att | Eq

The superscript notation (n) denotes that a primitive can be carried out at most n ∈ (N \
{0}) ∪ {∞} times by the component(s) – where (∀n′ ∈ N: n′ < ∞). We assume that n is
never equal to 0. mul(α) denotes the multiplicity (n) of the primitive α, if any. The Reset
primitive is used to reinitialize the whole system.

As in the initial model, consistency assumptions are made about the architectures to avoid
meaningless definitions. For instance, we require that components carry out computations
only on the values that they have access to (either through Has, Compute, or Receive). We
also require that all multiplicities n specified by the primitives are identical in a consistent
architecture. As a result, a consistent architecture A is parametrized by an integer n ≥ 1
(we note A(n) when we want to make this integer explicit).

A key concept for the definition of the semantics is the notion of trace. A trace is a se-
quence of events and an event2 is an instantiation of an architectural primitive3. The notion

2Except for the Session event.
3Except for Trust primitives, which cannot be instantiated into events because they are global assumptions.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

124 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

of successive sessions is caught by the addition of a Session event4 . A trace θ of events is
said compatible with a consistent architecture A(n) if all events in θ (except the computa-
tions) can be obtained by instantiation of some architectural primitive from A, and if the
number of events between twoReset events corresponding to a given primitive is less than
the bound n specified by the architecture. We denote by T (A) the set of traces which are
compatible with an architecture A.

θ ::= Seq(ε)
ε ::= Hasi(X : V) | Hasi(c) | Receivei,j({St}, {X : V } ∪ {c})

| Session | Reset | ComputeG(X = T) | V erifyi({St})

An event can instantiate variables X with specific values V . Constants always map to the
same value. Let V al be the set of values the variables and constants can take. The set V al⊥
is defined as V al ∪ {⊥} where ⊥ 6∈ V al is a specific symbol used to denote that a variable
or a constant has not been assigned yet.

The semantics of an architecture follows the approach introduced in [2]. Each component
is associated with a state. Each event in a trace of events affects the state of each compo-
nent involved by the event. The semantics of an architecture is defined as the set of states
reachable by compatible traces.

The state of a component is either the Error state or a pair consisting of: (i) a variable
state assigning values to variables, and (ii) a property state defining what is known by a
component.

State⊥ = (StateV × StateP) ∪ {Error}
StateV = V ar ∪ Const→ List(V al⊥)
StateP = {Eq} ∪ {Trusti,j}

The data structure List over a set S denotes the finite ordered lists of elements of S, size(L)
denotes the size of the list L, and () is the empty list. For a non-empty list L = (e1, . . . , en) ∈
Sn where size(L) = n ≥ 1, L[m] denotes the element em for 1 ≤ m ≤ n, last(L) denotes
L[n], and append(L, e) denotes the list (e1, . . . , en, e) ∈ Sn+1. Let σ := (σ1, . . . , σN) denote
the global state (i.e. the list of states of all components) defined over (State⊥)N and σv

i and
σpk
i denote, respectively, the variable and the knowledge state of the component Ci.
The variable state assigns values to variables and to constants (each constant is either

undefined or taking a single value). σv
i (X)[m] (resp. σv

i (c)[m]) denotes the m-th entry of
the variable state of X ∈ V ar (resp. c ∈ Const). The initial state of an architecture A
is denoted by InitA = 〈InitA1 , . . . , InitAN 〉 where: ∀Ci: InitAi = (Empty, {Trusti,j | ∃Cj :
Trusti,j ∈ A}). Empty associates to each variable and constant a list made of a single
undefined value (⊥). We assume that, in the initial state, the system is in its first session.
Alternatively, we could set empty lists in the initial state and assume that every consistent
trace begins with a Session event.

Let ST : Trace × (State⊥)N → (State⊥)N and SE : Event × (State⊥)N → (State⊥)N

be the following two functions. ST is defined recursively by iteration of SE : for all state
σ ∈ (State⊥)N , event ε ∈ Event and consistent trace θ ∈ Trace, ST (〈〉, σ) = σ and ST (ε ·
θ, σ) = ST (θ, SE(ε, σ)). The modification of a state is noted σ[σi/(v, pk)] the variable and
knowledge states of Ci are replaced by v and pk respectively. σ[σi/Error] denotes that the
Error state is reached for component Ci. We assume that a component reaching an Error
state no longer gets involved in any later action (until a reset of the system). The function
SE is defined event per event.

4Computations can involve different values of the same variables from different sessions.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 125

The effect of Hasi(X : V) and Receivei,j(S, {(X : V)}) on the variable state of component
Ci is the replacement of the last value of the variable X by the value V : last(σv

i (X)) := V .
This effect is denoted by σv

i [X/V].
For instance, we have

SE(Hasi(X : V), σ) = σ[σi/(σ
v
i [X/V], σpk

i)]

where σv
i [X/V] means that new values V replace the values of the variables X , and σpk

i

stands for the property component of the state of Ci.
Similarly, one can write

SE(Receivei,j(S, {X : V }), σ) = σ[σi/(σ
v
i [X/V], σpk

i)]

In the case of constants, the value V is determined by the interpretation of c (as in the
function symbols in the computation).

The effect of ComputeG(X = T) is to assign to X , for each component Ci ∈ G, the value
V produces by the evaluation (denoted ε) of T . The new knowledge is the equationX = T .
A computation may involve values of variables from different sessions. As a result, some
consistency conditions must be met, otherwise an error state is reached:

SE(ComputeG(X = T), σ) =


σ[∀Ci ∈ G : σi/(σ

v
i [X/V], σpk

i ∪ {X = T})]
if the condition on the computation holds,

σ[σi/Error] otherwise,

where V := ε (T,∪Ci∈Gσ
v
i). For each X̃(n) ∈ T , the evaluation of T is done with respect

to the n last values of X̃ that are fully defined. An error state is reached if n such val-
ues are not available. The condition on the computation is then: ∀Ci ∈ G, X̃(n) ∈ T :
size
({
m
∣∣ σv

i

(
V
(
X̃
))

[m] is fully defined
})
≥ n.

Semantics of the verification events are defined according to the (implicit) semantics of the
underlying verification procedures. In each case, the knowledge state of the component is
updated if the verification passes, otherwise the component reaches an Error state. The
variable state is not affected.

SE(V erifyi(Proofj(E)), σ) =


σ[σi/(σ

v
i , σ

pk
i ∪ new

pk
Proof)]

if the proof is valid,
σ[σi/Error] otherwise,

SE(V erifyi(Attestj(E)), σ) =


σ[σi/(σ

v
i , σ

pk
i ∪ new

pk
Attest)]

if the attestation is valid,
σ[σi/Error] otherwise.

The new knowledge newpk
Proof and newpk

Attest are defined as:

newpk
Proof :=

{
Eq

∣∣∣∣ Eq ∈ E ∨ (∃Ck : Attestk(E′) ∈ E ∧ Eq ∈ E′
∧ Trusti,k ∈ σpk

i

)}
and

newpk
Attest := {Eq | Eq ∈ E ∧ Trusti,j ∈ σpk

i }.

In the session case, the knowledge state is reinitialized and a new entry is added in the
variable states:

SE(Session, σ) = σ[∀i : σi/(upd
v, {Trusti,j | ∃Cj : Trusti,j ∈ A})],

TRANSACTIONS ON DATA PRIVACY 11 (2018)

126 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

where the new variable state updv is such that σv
i (X) := append(σv

i (X),⊥) for all variables
X ∈ V ar, and σv

i (c) := append(σv
i (c), last(σv

i (c))) for all constants c ∈ Const. The session
event is not local to a component, all component states are updated. As a result, we as-
sociate to each global state σ a unique number, noted s(σ), which indicates the number of
sessions. In the initial state, s(σ) := 1, and at each Session event, s(σ) is incremented.

In the reset case, all values are dropped and the initial state is restored: SE(Reset, σ) =
InitA.

This ends the definition of the semantics of trace of events. The semantics S(A) of an
architecture A is defined as the set of states reachable by compatible traces.

5.2 Extension of the privacy logic

The privacy logic is enhanced to express access to n values of a given variable. The formula
Hasi represents n ≥ 1 accesses by Ci to some variable X .

ϕ ::= Hasi(X
(n)) | Hasi(c) | Hasnonei (X) | Hasnonei (c) | Ki(Eq) | ϕ1 ∧ ϕ2

Eq ::= Pred(T1, . . . , Tm)

Several values of the same variables from different sessions can provide information about
other variables, which is expressed through the dependence relation.

The semantics S(ϕ) of a property ϕ ∈ LP remains defined as the set of architectures
where ϕ is satisfied. The fact that ϕ is satisfied by a (consistent) architecture A is defined as
follows.

• A satisfiesHasi(X(n)) if there is a reachable state in whichX is fully defined (at least)
n ≥ 1 times.

• A satisfies Hasi(c) if there is a reachable state in which c is fully defined.

• A satisfies Hasnonei (X) (resp. Hasnonei (c)) if no compatible trace leads to a state in
which Ci assigns a value to X (resp. c).

• A satisfies Ki(Eq) if for all reachable states, there exists a state in the same session in
which Ci can derive Eq.

• A satisfies ϕ1 ∧ ϕ2 if A satisfies ϕ1 and A satisfies ϕ2.

A set of deductive rules for this privacy logic is given in Figure 6. One can show that
this axiomatics is sound and complete with respect to the semantics above. The soundness
theorem states that for all A, if A ` ϕ, then A ∈ S(ϕ). Completeness means that for all A, if
A ∈ S(ϕ) then A ` ϕ.

Due to the length of the proofs and the lack of place, we only give sketch for these proofs.
Soundness is proved by induction on the derivation tree. For each theorem A ` ϕ, one
can find traces satisfying the claimed property, or show that all traces satisfy the claimed
property (depending on the kind of property). Completeness is shown by induction on
the property ϕ. For each property belonging to the semantics, one can exhibit a tree that
derives it from the architecture.

A trace is said to be a covering trace if it contains an event corresponding to each primitive
specified in an architecture A (except trust relations) and if for each primitive it contains as
much events as the multiplicity (n) of the primitive. As a first step to prove soundness, it
is shown that for all consistent architecture A, there exists a consistent trace θ ∈ T (A) that
covers A.

Then the soundness is shown by induction on the depth of the tree A ` ϕ.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 127

Has
(n)
i (X) ∈ A

H1
A ` Hasi(X

(n))

Receive
(n)
i,j (S,E) ∈ A X ∈ E

H2
A ` Hasi(X

(n))

A 0 Hasi(X
(1))

HN
A ` Hasnone

i (X)

Hasi(c) ∈ A
H1’

A ` Hasi(c)

Receive
(n)
i,j (S,E) ∈ A c ∈ E

H2’
A ` Hasi(c)

A 0 Hasi(c)
HN’

A ` Hasnone
i (c)

Compute
(n)
G (X = T) ∈ A Ci ∈ G

H3
A ` Hasi(X

(n))

A ` Hasi(X
(n)) 1 ≤ m ≤ n

H4
A ` Hasi(X

(m))

Depi(Y,X) ∀X(n) ∈ X : A ` Hasi(X
(n)) ∀c ∈ X : A ` Hasi(c)

H5
A ` Hasi(Y

(1))

Depi(c,X) ∀X(n) ∈ X : A ` Hasi(X
(n)) ∀c′ ∈ X : A ` Hasi(c

′)
H5’

A ` Hasi(c)

Compute
(n)
G (X = T) ∈ A Ci ∈ G

K1
A ` Ki(X = T)

A ` ϕ1 A ` ϕ2
I∧

A ` ϕ1 ∧ ϕ2

E .i Eq0 ∀Eq ∈ E: A ` Ki(Eq)
K.

A ` Ki(Eq0)

A ` Ki(Eq1) A ` Ki(Eq2)
K∧

A ` Ki(Eq1 ∧ Eq2)

V erify
(n)
i (Proofj(E)) ∈ A Eq ∈ E

K3
A ` Ki(Eq)

V erify
(n)
i (Proofj(E)) ∈ A Attestk(E

′) ∈ E Eq ∈ E′ Trusti,k ∈ A
K4

A ` Ki(Eq)

V erify
(n)
i (Attestj(E)) ∈ A Trusti,j ∈ A Eq ∈ E

K5
A ` Ki(Eq)

Figure 6: Set of deductive rules for the extended privacy logic

• Let us assume that A ` Hasi(X(n)), and that the derivation tree is of depth 1. By
definition of D, such a proof is obtained by application of (H1), (H2) or (H3). In
each case, it is shown (thanks to the existence of covering traces) that an appropriate
trace can be found in the semantics of A, hence A ∈ S(Hasi(X

(n))). The case of
A ` Hasi(c) is very similar.

• Let us assume that A ` Ki(Eq), and that the derivation tree is of depth 1. By defini-
tion of D, such a proof is obtained by application of (K1), (K2), (K3), (K4) or (K5). In
each case, starting from a state σ′ ∈ Si(A) such that s(σ′) ≥ n, it is first shown that
there exists a covering trace θ ≥ θ′ that extends θ′ and that contains n corresponding
events ComputeG(X = T) ∈ θ in n distinct sessions (for the K1 case, and other events
for the other rules). Then by the properties of the deductive algorithmic knowledge,
it is shown that the semantics of the property A ∈ S(Ki(X = T)) holds.

• Let us assume that A ` Hasi(X(n)), and that the derivation tree is of depth strictly
greater than 1. By definition of D, such a proof is obtained by application of (H4) or
(H5).

In the first case, by the induction hypothesis and the semantics of properties, there
exists a reachable state σ ∈ S(A) and n indices i1, . . . , in such that σv

i (X)[il] is fully
defined for all l ∈ [1, n]. This gives, a fortiori, A ∈ S(Hasi(X

(m))) for all m such that
1 ≤ m ≤ n.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

128 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

In the second case, we have that (Y, {X(n1)
1 , . . . , X

(nm)
m , c1, . . . , cq}) ∈ Depi, that ∀l ∈

[1,m] : A ` Hasi(X(nl)
l) and ∀l ∈ [1, q] : A ` Hasi(cl). The proof shows the existence

of a covering trace that contains an event ComputeG (Y = T) (where i ∈ G), allowing
to conclude that A ∈ S(Hasi(Y

(1))).

Again, the corresponding cases for constant are very similar.

• A derivation for Hasnone is obtained by application of (HN). The proof assume, to-
wards a contradiction, that A 6∈ S(Hasnonei (X)). It is shown, by the architecture
semantics, that there exists a compatible trace that enable to derive A ` Has(1)i (X).
However, since (HN) was applied, we have A 0 Has(1)i (X), hence a contradiction.

• The last case (the conjunction ∧) is fairly straightforward.

The completeness is proved by induction over the definition of ϕ.

• Let us assume that A ∈ S(Hasi(X
(n))). By the architecture semantics and the seman-

tics of traces, it is shown that the corresponding traces either contain events where
X is computed, received or measured, or that some dependence relation on X exists.
In the first case, we have A ` Hasi(X(n)) by applying (respectively) (H1), (H2), or
(H3) (after an eventual application of (H4)). In the last case, the proof shows how to
exhibit a derivation tree to obtain A ` Hasi(X(n)) (the (H5) rule is used).

• Let us assume that A ∈ S(Hasnonei (X)). By the semantics of properties, this means
that in all reachable states, X does not receive any value. The proof shows that
A 0 S(Hasi(X

(1))), otherwise A ∈ S(Hasnonei (X)) would be contradicted. So as
a conclusion, A ` Hasnonei (X) by applying (HN).

• The constant cases A ∈ S(Hasi(c) and A ∈ S(Hasnonei (c)) case are similar to the
variable cases.

• Let us assume that A ∈ S(Ki(Eq)). By the semantics of properties this means that for
all reachable states, there exists a later state in the same session where the knowledge
state enables to deriveEq. By the semantics of architecture, we can exhibit a compati-
ble trace that reaches a state whereEq can be derived. By the semantics of compatible
traces, the proof shows, by reasoning on the events on the traces, that A ` Ki(Eq) by
applying either (K1), (K2), (K3), (K4) or (K5).

• Finally the conjunctive case is straightforward.

6 Extension of the Match-On-Card to the identification paradigm

We now show of the extended framework can be used to reason about the privacy proper-
ties of a biometric system where some information leaks after several sessions of the same
protocol.

The biometric system introduced in [9] aims at extending the MOC technology (cf. Sec-
tion 4.3) to the identification paradigm. A quantized version – corresponding to short bi-
nary representations of the templates – of the database is stored inside a secure module,
playing the role of the card in the MOC case. From each biometric reference template, a
quantization is computed, using typically a secure sketch scheme [24, 14]. The reference

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 129

database is encrypted and stored outside the secure module, whereas the quantizations of
the templates are stored inside.

The verification step is processed as follows. Suppose one wants to identify himself in
the system. A terminal captures the fresh biometrics, extracts a template, computes its
quantization qs and sends them to the secure module. Then, the module proceeds to a
comparison between the fresh quantization and all enrolled quantizations qr. The C nearest
quantizations, for some parameter C of the system, are the C potential candidates for the
identification. Then, the module queries the C corresponding (encrypted) templates to the
database (by using the list of indices ind of those C nearest quantized versions qr of the
enrolled templates). This gives the module the access to the set sebr of the C encrypted
templates. The module decrypts them, and compares them with the fresh template bs. The
module finally sends its response to the terminal: 1 if one of the enrolled templates is close
enough to the fresh template, 0 otherwise. Figure 7 gives a graphical representation of the
resulting architecture.

U

rd

dec

T

rd→ bs
bs→ qs

ebr → sebr
ind qs

ind

bs, sebr

dec

M

ebr

S

ebr

I

BR → ebr

BR → qr
qr

Figure 7: Architecture of the extension of the Match-On-Card technology to biometric iden-
tification. The dotted red line indicates the location of the comparison.

N denotes the size of the database (i.e. the number of enrolled users), Q the size of the
quantizations, and C the number of indices asked by the card. The ranges areRange(BR, ebr, qr)
= N, Range(rd, THR, bs, qs, dec) = 1, and Range(ind, sebr, sbr) = C. The set Fun of func-
tions contains the extraction procedure Extract, the encryption and decryption procedures
Enc and Dec, the (non-invertible) quantization Quant of the biometric templates, the com-
parison of the quantizations QComp, which takes as inputs two sets of quantizations and
the parameter C, the selection of the encrypted templates EGet, and finally the matching
µ, which takes as arguments two biometric templates and the threshold THR.

The biometric reference templates are enrolled by the issuer (HasI(BR)). A verification
process is initiated by the terminal T receiving as input a raw biometric data rd from the
user U. T extracts the fresh biometric template bs from rd using the function Extract ∈
Fun. The architecture then contains, as other biometric systems, ReceiveT,U({}, {rd}) and
ComputeT(bs = Extract(rd)) and the DepT relation is such that (bs, {rd}) ∈ DepT. The
user receives the final decision dec from the terminal: ReceiveU,T({}, {dec}). To sum up,
the architecture is described as follows in the framework of Section 2:

Ami :=
{
HasI(BR), HasU(rd), HasM(C), HasM(THR),

ComputeI(ebr = Enc(BR)), ComputeI(qr = Quant(BR)),

ComputeT(bs = Extract(rd)), ComputeT(sebr = EGet(ebr, ind)),

TRANSACTIONS ON DATA PRIVACY 11 (2018)

130 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

ComputeT(qs = Quant(bs)), ComputeM(ind = QComp(qs, qr, C)),

ComputeM(sbr = Dec(sebr)), ComputeM(dec = µ(sbr, bs, THR)),

ReceiveS,I({AttestI(ebr = Enc(BR))}, {ebr}), ReceiveT,U({}, {rd}),
ReceiveT,S({AttestI(ebr = Enc(BR))}, {ebr}), ReceiveM,T({}, {qs}),
ReceiveM,I({AttestI(qr = Quant(BR))}, {qr}), ReceiveT,M({}, {ind}),
ReceiveM,T({}, {sebr, bs}), ReceiveT,M({}, {dec}),
T rustT,I, T rustM,I, T rustT,M, V erifyT(AttestI(ebr = Enc(BR))),

V erifyT({AttestM(dec = µ(sbr, bs, THR))}),
V erifyM(AttestI(qr = Quant(BR))), V erifyT({AttestM(sbr = Dec(ebr))})

}
The issuer encrypts the templates and computes the quantizations, which is expressed by
the dependencies: Depmi

I := {(ebr, {BR}), (qr, {BR})}. The terminal and module compu-
tations are reflected in the dependencies as well: Depmi

T := {(bs, {rd}), (qs, {bs})}, (sebr,
{bs, ind})}. The dependency relation of the module reflects its ability to decrypt the tem-
plates: Depmi

M := {(ind, {qs, qr, C}), (sbr, {sebr}), (dec, {sbr, bs, THR}), (BR, {ebr})}. The
absence of such a relation in other dependencies prevents the corresponding components
to get access to the plain references, even if they get access to the ciphertexts.

6.1 Learning from the selected quantizations

Let us now discuss the following point: the formalism of Section 2 is insufficient to consider
the leakage of the sensitive biometric data stored inside the module. In Ami, we would like
that the terminal gets no access to the quantizations: Ami ∈ HasnoneT (qr). It is indeed
possible to derive Ami ` HasnoneT (qr), thanks to the (HN) rule. According to the notations
of [2], where Hasi(X) stands for Hasi(X(1)) in this paper, we have:

@X : DepT(qr, X) ∈ Ami

HasT(qr) 6∈ Ami

@j, S : ReceiveT,j(S, {qr}) ∈ Ami

@T : ComputeT(qr = T) ∈ Ami

A 0 HasT(qr)
HN

A ` HasnoneT (qr)

This corresponds to the intuition saying that quantizations are protected since they are
stored in a secure hardware element.

However, an attack (described in [12]) shows that, in practice, quantizations can be learned
if a sufficient number of queries to the module is allowed. The attack roughly proceeds as
follows (we drop the masks for sake of clarity). The attacker maintains a N × Q table (say
T) of counters for each bit to be guessed. All entries are initialized to 0. Then it picks Q-
bits random vector Q and sends it to the module. The attacker observes the set of indices
ind ⊆ [1,N] corresponding to the encrypted templates asked by the module. It updates its
table T as follows, according to its query Q and the response ind: for each i ∈ [1,N] and
j ∈ [1, Q], it decrements the entry T [i][j] if Q[j] = 0, and increments it if Q[j] = 1. At the
end of the attack, the N quantizations are guessed from the signs of the counters.

The number of queries made to the module is the crucial point in the attack above (and
generally in other black-box attacks against biometric systems [12]). Our extended model
enables to introduce a bound on the number of actions allowed to be performed. We now
use this model to integrate such a bound in the formal architecture description. LetAmi-e(n)

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 131

be the following architecture, for some n ≥ 1:

Ami-e(n) :=
{
HasI(BR), Has

(n)
U (rd), HasM(C), HasM(THR),

Compute
(n)
I (ebr = Enc(BR)), Compute

(n)
I (qr = Quant(BR)),

Compute
(n)
T (bs = Extract(rd)), Compute

(n)
T (sebr = EGet(ebr, ind)),

Compute
(n)
T (qs = Quant(bs)), Compute

(n)
M (ind = QComp(qs, qr, C)),

Compute
(n)
M (sbr = Dec(sebr)), Compute

(n)
M (dec = µ(sbr, bs, THR)),

Receive
(n)
S,I ({AttestI(ebr = Enc(BR))}, {ebr}), Receive(n)T,U({}, {rd}),

Receive
(n)
T,S({AttestI(ebr = Enc(BR))}, {ebr}), Receive(n)M,T({}, {qs}),

Receive
(n)
M,I({AttestI(qr = Quant(BR))}, {qr}), Receive(n)T,M({}, {ind}),

Receive
(n)
M,T({}, {sebr, bs}), Receive(n)T,M({}, {dec}),

T rustT,I, T rustM,I, T rustT,M, V erify
(n)
T (AttestI(ebr = Enc(BR))),

V erify
(n)
T ({AttestM(dec = µ(sbr, bs, THR))}),

V erify
(n)
M (AttestI(qr = Quant(BR))),

V erify
(n)
T ({AttestM(sbr = Dec(ebr))})

}
In addition to the dependence of Ami, the dependence relations indicates that the leakage is
conditioned by a specific link mapping between the outsourced ciphertexts and the stored
quantizations: Depmi-e

T (qr, {ind(N·Q), qs(N·Q)}). Furthermore, the module may learn the en-
tire database ebr in a number of queries depending on the size of the database and the
number of indices asked by the module: Depmi-e

M (ebr, {sebr(dN/Ce)}).

6.2 Strengthened variants of the architecture

Now, based on some counter-measures of the attacks indicated in [12], we express several
variants of the architecture Ami-e. For each variant, the deductive rules D for the property
language LP are used to show that, for some conditions on the parameters, the quantiza-
tions qr are protected.

6.2.1 Variant 1

As a first counter-measure, the module could ask the entire database at each invocation.
It is rather inefficient, and, in some sense, runs against to initial motivation of its design.
However, this can be described within the language LA, and, in practice, can be manage-
able for small databases. This architecture, denoted Ami-e1, is given by Ami-e(n) for some
n ≥ 1, except that Depmi-e1

T := Depmi
T . It is now possible to prove that the quantizations are

protected, even in presence of several executions of the protocols. Since the relations DepT
no longer contains a dependence leading to qr, an application of (HN) becomes possible
and gives the expected property.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

132 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

@X : DepT(qr, X) ∈ Ami-e1

Has
(n)
T (qr) 6∈ Ami-e1

@j : Receive
(n)
T,j(S, {qr}) ∈ Ami-e1

@T : Compute
(n)
T (qr = T) ∈ Ami-e1

∀n : A 0 HasT(qr(n))
HN

A ` HasnoneT (qr)

6.2.2 Variant 2

In the precedent variant, the effect of the counter-measure is the withdrawal of the depen-
dence relation. We now consider architectures where such a dependency is still given, but
where counter-measures are used to prevent a critical bound on the number of queries to
be reached.

A first measure is to block the number of attempts the terminal can make. The module
can detect it and refuse to respond. This architecture, denoted Ami-e2, is given by Ami-e(B),
for some B � N · Q. As a result, the Hasnonei (qr) property can be derived. In particular one
must show that Ami-e2 0 HasT(ind(N·Q)), in order to prevent the dependence rule H5 to be
applied.

@S : Receive
(B)
T,M(S, {ind}) ∈ Ami-e2

Has
(B)
T (ind) ∈ Ami-e2 B < N · Q

@T : Compute
(B)
T (ind = T) ∈ Ami-e2

Ami-e2 0 HasT(ind(N·Q))

An application of HN enables to conclude.

Depmi-e2
T (qr, {ind(N·Q)}) ∈ Ami-e2

Has
(B)
T (qr) 6∈ Ami-e2

@j : Receive
(B)
T,j(S, {qr}) ∈ Ami-e2

Ami-e2 0 HasT(ind(N·Q)) @T : Compute
(B)
T (qr = T) ∈ Ami-e2

Ami-e2 0 HasT(qr(1))
HN

Ami-e2 ` HasnoneT (qr)

6.2.3 Variant 3

In the precedent variant, the terminal cannot accumulate enough information since he can-
not query the module enough times to derive a useful knowledge. We now describe a
variant where the terminal has no bound on the number of times it asks the module, but
where the system is regularly reinitialised, so that the accumulated information becomes
useless.

The leakage of the system runtime is dependent on some association between the quanti-
zations qr and the encrypted database ebr; namely the association π that maps the quanti-
zation qr[i] = Quant(BR[π(i)]) to the encrypted template from which it has been computed
ebr[π(i)] = Enc(BR[π(i)]). Once this mapping is changed, the information is canceled. For
instance the database can be randomly permuted after B queries to the secure module.

Formally, this is caught by adding a Reset primitive to the architecture. Let Ami-e3 be the
architecture defined asAmi-e3 :=Ami-e2∪{Reset}. The semantics of theReset events ensures
that no more than B values of ind will be gathered by the terminal for a fixed mapping.
The proof that Ami-e3 ` HasnoneT (qr) is as the proof that Ami-e2 ` HasnoneT (qr).

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 133

7 Related works

Privacy concerns related to the use of biometric data has attracted a lot of attention in the
media (for instance, with the introduction of a fingerprint identity sensor in iPhones) and
among lawyers and policy makers5. Most studies in the computer science community are
done on a case by case basis and at a lower level than the architectures described here.
For instance, [43] proposes a security model for biometric-based authentication taking into
account privacy properties – including impersonation resilience, identity privacy or trans-
action anonymity – and applies it to biometric authentication. The underlying proofs rely
on cryptographic techniques related to the ElGamal public key encryption scheme. Other
works such as [25, 28, 29] develop formal models from an information theoretic perspective
relying on specific representations of biometric templates akin to error correcting codes.

As far as formal approaches to privacy are concerned, two main categories can be iden-
tified: the qualitative approach and the quantitative approach. Most proposals of the first
category rely on a language that can be used to define systems and to express privacy prop-
erties. For example process calculi such as the applied pi-calculus [1] have been applied to
define privacy protocols [13]. Other studies [4, 5] involve dedicated privacy languages. The
main departure of the approach advocated in this paper with respect to this trend of work
is that we reason at the level of architectures, providing ways to express properties with-
out entering into the details of specific protocols. Proposals of the second category rely on
privacy metrics such as k-anonymity, l-diversity, or ε-differential privacy [15] which can be
seen as ways to measure the level of privacy provided by an algorithm. Methods [32] have
been proposed to design algorithms achieving privacy metrics or to verify that a system
achieves a given level of privacy. The contributions on privacy metrics are complementary
to the work described in this paper. We follow a qualitative (or logical) approach here,
proving that a given privacy property is met (or not) by an architecture. As suggested in
the next section, an avenue for further research would be to cope with quantitative rea-
soning as well, using inference systems to derive properties expressed in terms of privacy
metrics.

Several authors [20, 26, 33, 34, 41] have already pointed out the complexity of “privacy
engineering” as well as the “richness of the data space”[20] calling for the development of
more general and systematic methodologies for privacy by design. For example, [26, 31]
point out the complexity of the implementation of privacy and the large number of options
that designers have to face. To address this issue and favour the adoption of these tools,
[26] proposes a number of guidelines for the design of compilers for secure computation
and zero-knowledge proofs whereas [17] provides a language and a compiler to perform
computations on private data by synthesizing zero-knowledge protocols. None of these
proposals addresses the architectural level and makes it possible to get a global view of a
system and to reason about its underlying trust assumption.

8 Conclusion

This work is the result of a collaboration between academics, industry and lawyers to show
the applicability of the privacy by design approach to biometric systems and the benefit of
formal methods to this end. Indeed, even if privacy by design becomes a legal obligation
in the European Union [36] its application to real systems is far from obvious. We have

5For example with a proposal adopted by the French Senate in May 2014 to introduce stronger requirements
for the use of biometrics.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

134 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

presented in the same formal framework a variety of architectural options for privacy pre-
serving biometric systems. We also have introduced an extension of this formal framework
in order to catch the leakage due to the system runtime.

One of the main advantages of the approach is to provide formal justifications for the
architectural choices and a rigorous basis for their comparison. Table 1 summarizes the
main properties of the architectures reviewed in the first part of this paper. One of the
most interesting pieces of information is the trust assumptions which are highlighted by
the model. The first line shows that Aed is the architecture in which the strongest trust in
put in the terminal that does not have to trust any other component apart from the issuer
and is able to get access to br. Architecture Ahsm is a variant of Aed; it places less trust in
the terminal that has to trust the hardware security module to perform the matching. Ahom

is the architecture in which the terminal is less trusted: it has to trust the issuer, the hard-
ware security module and the server for all sensitive operations and its role is limited to
the collection of the fresh biometric trait and the computation of the fresh template. Archi-
tecture Amoc is similar to this respect but all sensitive operations are gathered into a single
component, namely the smart card. It should be clear that no solution is inherently better
than the others considering that extra, technical or non technical (organizational, economic,
etc.) constraints may have to be taken into account and, depending on the context of de-
ployment and the technology used, some trust assumptions may be more reasonable than
others. From the strict privacy point of view however, the match on card architecture pro-
vides the best guarantees since only the secure module has to be trusted and this module
hosts the matching operation and has exclusive access to the biometric reference template.
In any event, the most important in the design process is to be able to understand the un-
derlying trust assumptions of a particular choice of architecture and the consequences in
terms of privacy.

Arch. Computations Template protection Trust relations

Components Components
Location of accessing the accessing

the matching references br the query bs
Aed T I, T T (T, I)
Ahsm M I, M T, M (T, I), (T, M)
Ahom S I T (T, I), (T, M), (T, S)
Amoc M M T, M (T, M)

Components are: user U, terminal T, server S, secure module M (used as a generic name for a hardware security module or a card
C), issuer I.
A trust relation (i, j) means that component i trusts component j.

Table 1: Comparison between architectures

A benefit of the formal approach followed in this paper is that it can provide the founda-
tions for a systematic approach to privacy by design. A proof of concept implementation of
a system to support designers in their task has been proposed in [3]. In this system, the user
can introduce his privacy and integrity requirements (as well as any requirements imposed
by the environment such as the location of a given operation on a designated component)
and choose different options for the distribution of the operations and the trust assump-
tions. Architectures can be initially defined in a purely informal way and then translated
into a formal model. A tool integrating the approach can be used by designers to build and

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 135

verify architectures. Designers without any knowledge or even interest in formal methods
can use the non formal part of the framework. They can explore the design space based on
initial inputs provided in a non formal language and analyse the suggested architectures
based on their graphical representations. Designers who want to obtain formal guarantees
can try to prove properties of their architectures, either automatically or with the help of a
verification tool integrated within the design environment.

As stated above, we focus on the architectural level in this paper. As a result, we do not
cover the full development cycle. Preliminary work has been done to address the mapping
from the architecture level to the protocol level to ensure that a given implementation,
expressed as an applied pi-calculus protocol, is consistent with an architecture [42]. As far
as the formal approach is concerned, it would also be interesting to study how it could
be used in the context of future privacy certification schemes. This would be especially
interesting in the context of the European General Data Protection Regulation [36] which
promotes not only privacy by design but also privacy seals.

References

[1] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In
ACM Symposium on Principles of Programming Languages – POPL’01, pages 104–115. ACM Press,
2001.

[2] Thibaud Antignac and Daniel Le Métayer. Privacy architectures: Reasoning about data minimi-
sation and integrity. In Security and Trust Management – STM’14, volume 8743 of LNCS, pages
17–32. Springer, 2014.

[3] Thibaud Antignac and Daniel Le Métayer. Trust driven strategies for privacy by design. In Trust
Management – IFIP-TM’15, volume 454 of IFIP, pages 60–75. Springer, 2015.

[4] Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. Privacy and contextual
integrity: Framework and applications. In IEEE Symposium on Security and Privacy – S&P’06,
pages 184–198. IEEE Computer Society, 2006.

[5] Moritz Y. Becker, Alexander Malkis, and Laurent Bussard. S4P: A generic language for specify-
ing privacy preferences and policies. Technical report, Microsoft Research / IMDEA Software
/ EMIC, 2010.

[6] BioPriv. Biometric systems Private by design. French ANR research project ANR-
12-INSE-0013, 2013. http://www.agence-nationale-recherche.fr/?Project=
ANR-12-INSE-0013.

[7] Marina Blanton and Paolo Gasti. Secure and efficient protocols for iris and fingerprint identifi-
cation. In European Symposium on Research in Computer Security – ESORICS’11, volume 6879 of
LNCS, pages 190–209. Springer, 2011.

[8] Julien Bringer, Hervé Chabanne, Malika Izabachène, David Pointcheval, Qiang Tang, and
Sébastien Zimmer. An application of the Goldwasser–Micali cryptosystem to biometric au-
thentication. In Australasian Conference on Information Security and Privacy – ACISP’07, volume
4586 of LNCS, pages 96–106. Springer, 2007.

[9] Julien Bringer, Hervé Chabanne, Tom A. M. Kevenaar, and Bruno Kindarji. Extending match–
on–card to local biometric identification. In Conference on Biometric ID Management and Mul-
timodal Communication, BioID MultiComm’09, volume 5707 of LNCS, pages 178–186. Springer,
2009.

[10] Julien Bringer, Hervé Chabanne, Daniel Le Métayer, and Roch Lescuyer. Privacy by design
in practice: Reasoning about privacy properties of biometric system architectures. In Formal
Methods – FM’15, volume 9109 of LNCS, pages 90–107. Springer, 2015.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

http://www.agence-nationale-recherche.fr/?Project=ANR-12-INSE-0013
http://www.agence-nationale-recherche.fr/?Project=ANR-12-INSE-0013

136 Julien Bringer, Hervé Chabanne, Daniel Le Métayer, Roch Lescuyer

[11] Julien Bringer, Hervé Chabanne, Daniel Le Métayer, and Roch Lescuyer. Reasoning about pri-
vacy properties of biometric systems architectures in the presence of information leakage (Best
Paper Award). In Information Security Conference – ISC’15, volume 9290 of LNCS, pages 493–510.
Springer, 2015.

[12] Julien Bringer, Hervé Chabanne, and Koen Simoens. Blackbox security of biometrics (invited
paper). In Conference on Intelligent Information Hiding and Multimedia Signal Processing – IIH-
MSP’10, pages 337–340. IEEE Computer Society, 2010.

[13] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties of elec-
tronic voting protocols: A taster. In Towards Trustworthy Elections, New Directions in Electronic
Voting, volume 6000 of LNCS, pages 289–309. Springer, 2010.

[14] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Advances in Cryptology – EUROCRYPT’04, volume
3027 of LNCS, pages 523–540. Springer, 2004.

[15] Cynthia Dwork. Differential privacy. In International Colloquium on Automata, Languages and
Programming – ICALP’06, Part II, volume 4052 of LNCS, pages 1–12. Springer, 2006.

[16] Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning About Knowledge.
MIT Press, 2004.

[17] Cédric Fournet, Markulf Kohlweiss, George Danezis, and Zhengqin Luo. ZQL: A compiler for
privacy-preserving data processing. In USENIX’13 Security Symposium, pages 163–178. USENIX
Association, 2013.

[18] Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on Theory
of Computing – STOC’09, pages 169–178. ACM Press, 2009.

[19] Michelle Govan and Tom Buggy. A computationally efficient fingerprint matching algorithm
for implementation on smartcards. In Biometrics: Theory, Applications, and Systems – BTAS’07,
pages 1–6. IEEE, 2007.

[20] Sada Gürses, Carmela Troncoso, and Claudia Dı́az. Engineering Privacy by Design. Presented
at the Computers, Privacy & Data Protection conference, 2011.

[21] Joseph Y. Halpern and Riccardo Pucella. Dealing with logical omniscience. In Conference on
Theoretical Aspects of Rationality and Knowledge TARK’07, pages 169–176, 2007.

[22] Anil K. Jain, Arun Ross, and Salil Prabhakar. An introduction to biometric recognition. IEEE
Trans. Circuits Syst. Video Techn., 14(1):4–20, 2004.

[23] Ari Juels and Madhu Sudan. A fuzzy vault scheme. Des. Codes Cryptography, 38(2):237–257,
2006.

[24] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In ACM Conference on Computer
and Communications Security – CCS’99, pages 28–36. ACM Press, 1999.

[25] Alper Kanak and Ibrahim Sogukpinar. BioPSTM: a formal model for privacy, security, and trust
in template-protecting biometric authentication. Security and Communication Networks, 7(1):123–
138, 2014.

[26] Florian Kerschbaum. Privacy-preserving computation (position paper). In Annual Privacy Fo-
rum on Privacy Technologies and Policy – APF’12, volume 8319 of LNCS, pages 41–54. Springer,
2014.

[27] Els Kindt. Best practices for privacy and data protection for the processing of biometric data. In
Patrizio Campisi, editor, Security and Privacy in Biometrics, pages 339–367. Springer, 2013.

[28] Lifeng Lai, Siu-Wai Ho, and H. Vincent Poor. Privacy-security trade-offs in biometric security
systems – Part I: single use case. IEEE Transactions on Information Forensics and Security, 6(1):122–
139, 2011.

[29] Lifeng Lai, Siu-Wai Ho, and H. Vincent Poor. Privacy-security trade-offs in biometric secu-
rity systems – Part II: multiple use case. IEEE Transactions on Information Forensics and Security,

TRANSACTIONS ON DATA PRIVACY 11 (2018)

Biometric Systems Private by Design: Reasoning about privacy properties of biometric
system architectures 137

6(1):140–151, 2011.

[30] Huixian Li and Liaojun Pang. A novel biometric–based authentication scheme with privacy
protection. In Conference on Information Assurance and Security – IAS’09, pages 295–298. IEEE
Computer Society, 2009.

[31] Matteo Maffei, Kim Pecina, and Manuel Reinert. Security and privacy by declarative design.
In IEEE Symposium on Computer Security Foundations – CSF’13, pages 81–96. IEEE Computer
Society, 2013.

[32] Frank McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. In ACM Conference on Management of Data – SIGMOD’09, pages 19–30. ACM Press,
2009.

[33] Daniel Le Métayer. Privacy by design: A formal framework for the analysis of architectural
choices. In ACM Conference on Data and Application Security and Privacy – CODASPY’13, pages
95–104. ACM Press, 2013.

[34] Deirdre K. Mulligan and Jennifer King. Bridging the gap between privacy and design. University
of Pennsylvania Journal of Constitutional Law, 14:989–1034, 2012.

[35] National Institute of Standards and Technology (NIST). MINEXII – an assessment of Match–
On–Card technology, 2011. http://www.nist.gov/itl/iad/ig/minexii.cfm.

[36] Official Journal of the European Union. Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation), 2016.

[37] International Standard Organization. International standard iso/iec 24787:2010, information
technology – identification cards – on-card biometric comparison, 2010.

[38] Elena Pagnin, Christos Dimitrakakis, Aysajan Abidin, and Aikaterini Mitrokotsa. On the leak-
age of information in biometric authentication. In INDOCRYPT’14, volume 8885 of LNCS, pages
265–280. Springer, 2014.

[39] Riccardo Pucella. Deductive algorithmic knowledge. J. Log. Comput., 16(2):287–309, 2006.

[40] Koen Simoens, Julien Bringer, Hervé Chabanne, and Stefaan Seys. A framework for analyz-
ing template security and privacy in biometric authentication systems. IEEE Transactions on
Information Forensics and Security, 7(2):833–841, 2012.

[41] Sarah Spiekermann and Lorrie Faith Cranor. Engineering privacy. IEEE Trans. Software Eng.,
35(1):67–82, 2009.

[42] Vinh-Thong Ta and Thibaud Antignac. Privacy by design: On the conformance between pro-
tocols and architectures. In Foundations and Practice of Security – FPS’14, volume 8930 of LNCS,
pages 65–81. Springer, 2015.

[43] Qiang Tang, Julien Bringer, Hervé Chabanne, and David Pointcheval. A formal study of the
privacy concerns in biometric-based remote authentication schemes. In Information Security
Practice and Experience – ISPEC’08, volume 4991 of LNCS, pages 56–70. Springer, 2008.

[44] Juan Ramón Troncoso-Pastoriza and Fernando Pérez-González. Fully homomorphic faces. In
International Conference on Image Processing – ICIP’12, pages 2657–2660. IEEE Computer Society,
2012.

[45] Umut Uludag, Sharath Pankanti, and Anil K. Jain. Fuzzy vault for fingerprints. In Conference on
Audio– and Video–Based Biometric Person Authentication – AVBPA’05, volume 3546 of LNCS, pages
310–319. Springer, 2005.

TRANSACTIONS ON DATA PRIVACY 11 (2018)

http://www.nist.gov/itl/iad/ig/minexii.cfm

	Introduction
	General approach
	Biometric systems architectures
	Application of the framework to several architectures for biometric systems with various protection levels
	Protecting the reference templates with encryption
	Use of an encrypted database
	Encrypted database with a hardware security module

	Enhancing protection with homomorphic encryption
	The Match-On-Card technology

	Extension of the framework to information leakage
	Extension of the architecture language
	Extension of the privacy logic

	Extension of the Match-On-Card to the identification paradigm
	Learning from the selected quantizations
	Strengthened variants of the architecture
	Variant 1
	Variant 2
	Variant 3

	Related works
	Conclusion

