

Design of a 1200 V, 100 kW Power Converter: How Good are the Design and Modelling Tools?

The Future of Simulation in Power Electronics Packaging for Thermal and Stress Management - ECPE Workshop

Thomas LAGIER, Cyril BUTTAY, Piotr DWORAKOWSKI, Benhur ZOLETT

Introduction

- → During the design phases, the mistakes must be reduced
- → Accurate simulations can help the designers to reduce the risks
- → However, several limitations have been found in the tools
- Purpose of the presentation
 - > To identify the main limitations
 - > To propose a enhanced simulation flow

Context

Limiting the design mistakes for high power converters

- Motivations
 - Design flow validation
 - Performance estimation
- 1 year design & implementation (2014-2015)
- Design from a "blank page"
- Specifications of our prototype
 - Input voltage : 900-1200 V
 - Output voltage : 450-600 V
 - Nominal power : 100 kW
 - Switching frequency : 20 kHz
 - Cooling : Forced air

Specifications of the power modules

- > Half bridge power module
- > 5 MOSFET dies & 5 diodes dies per switch position
- > 1,7 kV 2 x 250 A

Design & simulation flows

General approach

Institute

System level studies

- > Use of Matlab calculation scripts
- > First estimation of the losses
- > Specification of the power modules

Power modules design

- Number of dies in parallel
- > Use of the datasheet of the dies
- > Thermal characteristic of similar power module

3DFE simulations

- Determination of the parasitic inductance and current distribution
- > System simulations

Electromagnetic simulations

Electromagnetic simulations (Ansys Q3D ®)

- Parasitic elements (inductances, resistances, capacitances)
- Frequency domain simulation (DC to 100 MHz)

Reduced model

- S parameters matrices
 - RLGC matrices
 - Equivalent circuit

Circuit simulations (Ansys Simplorer ®)

- Overvoltages
- Current reparation between the dies
- Temporal simulation domain

Components considered

- Power modules
- Busbars
- > Gate driver

System time domain simulations

- Complexity of the model
 - 80 MOSFET & diode dies to considered
 - > High order (several hundreds) reduced models
- Impossible to simulate the entire circuit

No electro-thermal transient simulations for multi terminal systems

Circuit simulations (Ansys Simplorer ®) Current densities (Ansys Maxwell 3D ®)

Thermal simulations

→ Multi terminal systems : no transient solver

Use of "DC conduction solver"

- > Consideration of the RMS values of the current
- > No proximity/skin effects considered
- > Validity for thermal simulations ?

Accurate models are required to predict the losses

ond approximation
(Matlab script)Polynomial approximation from double pulse
Spontaneous commutation lossless15 %

Next step : losses estimation with simulations ?

Conclusion on the approach used

Global system level simulation

- > Too complicated electro-magnetic reduced models
- > No Bbehavioral models for the power switches
- No complete simulations of the system (control + power circuits)
- No losses estimation
- Limited ElectroMagnetic Disturbances consideration

No accurate thermal simulations

- Complexity to consider both AC+DC excitations
- No coupling between thermal and electromagnetic simulations
- No coupling between thermal and mechanical simulations

No dielectric simulations

➔ Issues during the tests

- > ElectroMagnetic Disturbances
- > Thermo-mechanical deformation on the power modules

Enhanced simulation flow

Electromagnetics reduced models

Reduced models are satisfying but the order might be reduced

→ Open circuit

→ Short circuit

- → Capacitance @ 5 MHz
 - Measurement : 4,04 nF
 - Simulation : 3,95 nF

SuperGrid

- ➔ Inductance @ 5 MHz
 - Measurement : 49,7 nH
 - Simulation : 42 nH
- First order behavior
 - > Use of simplified models in order to increase the simulation speed ?

Behavioral models for power switches

Behavioral models are the keys for simulation

Several possibilities

- > Spice, VHDL-AMS
- Models available in the software

Datasheets are not accurate enough to tune the models

Precise characterization are necessary

Behavioral models power switches

Behavioral models are good but might be improved

Clamped inductive load test

- 1200 V 500 A
- > Power module based on CPM2-1700-0045B & CPW5-1700-Z050B dies

	Switching losses comparison (IEC 60474)				
		Measure	Simulation		
	Turn off (mJ)	40	30	- 25 %	
Ŷ	Turn on (mJ)	35	45	+ 30 %	-
SuperGrid Institute	of a 1200 V, 100 kW Power Conver	ter: How Good are the Des	sign and Modelling Tools? - Thoma	as LAGIER 21/11/2018	16

Electro-thermal simulations

Simulation results

Temperature

Losses in the connections

- Operating point : 1,2 kV 125 A 20 kHz $T_c = 20 \text{ °C}$
- → 98 % of the losses are in the dies
- → 2 % of the losses in the connections
- Experimental validation to be performed

Conclusion & perspective

- → 3DFE simulation is necessary in the design of components
- → Global system level simulation helps to validate the design
- Simplified models are the key for system level simulations
 - > Behavioral models for power switches
 - Simplified 3DFE reduced models
 - > The compromise between accuracy and simulation cost has to be found

Thank you for your attention

