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Large deviations and heterogeneities in driven or non-driven glassy systems

Estelle Pitard1

1CNRS/ Université Montpellier 2, Laboratoire Charles Coulomb, 34090 Montpellier, France

Abstract. We give a short overview of the results for large deviations of dynamical quantities obtained for
models of glassy systems. We introduce the paper with the study of kinetically constrained models (KCMs),
first without external forcing. In these models, it has been shown using the thermodynamic formalism for
histories, that there is a coexistence between an active and an inactive phase. Later, it has been found that
adding a driving field to a KCM model leads to a singularity in the large deviation function of the current
at large fields. Finally we report on recent studies on realistic glassy systems, and open directions for future
research.

1 Introduction

Glasses are still a challenge for theorists. After decades of
active research, it has become evident that structural and
static differences between supercooled liquids and glasses
are minute, and that dynamics are essential to understand
the nature of glasses. Many studies rely on theories based
on a complex energy landscape to account for both ther-
modynamic and dynamical features (see [1]). Here, we re-
view on results obtained in the framework of simple mod-
els (KCMs- Kinetically Constrained Models) for which no
consideration on energy is needed. These models [2], for
which the focus is put on dynamical rules, allow for the
systematic study of relevant order parameters for space-
time trajectories such as the activity K(t) or the integrated
current Q(t), and of their fluctuations, more precisely their
large deviation function.

In the stationary state of these models, there is a coex-
istence between active and inactive trajectories. These tra-
jectories can be probed by tuning an external parameter s,
which plays the role of a chaoticity temperature. In mean-
field as well as in finite dimensional models, this translates
into a singularity in the large deviation function for the ac-
tivity at s = 0. This is a first-order transition, characterized
by a related discontinuity in the average activity.

The study of driven KCMs reveals the same kind of dy-
namical phase transitions, for the activity as well as for the
integrated current; moreover it becomes more evident to
relate this transition to microscopic spatial heterogeneities
of the current at large fields.

Finally we will present recent results for large devia-
tions in realistic glasses, for which the computational task
remains a challenge.

2 Glassy lattice models

The study of large deviations for dynamical quantities is
now a subject of expanding interest. It concerns the study
of out-of-equilibrium models, the simplest ones being the
SEP (Symmetric Exclusion Process) and ASEP (Asym-
metric Exclusion Process) and can be applied to chaotic
systems, dissipative systems, turbulence..

Is has been realized recently that the large deviation
approach can encompass both the equilibrium thermody-
namics ensemble formalism, and a thermodynamics for-
malism of space-time trajectories which can describe out-
of-equilibrium properties [3]. In this thermodynamics
formalism of histories, the theory is easier to formulate
and results are more tractable if the models are Marko-
vian [4, 5, 18]. Apart from analytical results which are
scarce in finite dimensions (see however [6, 7]), one has to
rely on different numerical methods for the computation
of large deviations and cumulants of the dynamical ob-
servables. These are Trajectory Path Sampling (TPS)[15],
cloning algorithm [16, 17], and density-matrix renormal-
ization group [19–21].

We briefly present here the formalism that can be used
for mean-field and finite-dimensional KCMs [11, 12] for
which a first-order dynamical phase transition is found.
Let us mention some other works on disordered systems,
such as spin glasses [8, 9], and REM (Random Energy
Model)[10] for which phase transitions between active and
inactives states are also found.

KCMs are spin models on a lattice (or lattice gases),
designed to mimic steric effects in amorphous materials.
On each node of the lattice one puts a spin variable (or,
equivalently, an occupation number) which can take two
possible values. The value si = 1, or ni = 1 defines a mo-
bile/active state (which corresponds, in a coarse-grained
view of an amorphous material, to a region of low density,
with fast dynamics). If si = −1, ni = 0, one has on the con-
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trary a blocked/inactive state (region of high density, and
slow dynamics). There is no interaction between spins but
the dynamical evolution is dictated by specific dynamical
rules. In the simplest case of the Fredrickson-Andersen
(FA) model in 1 dimension: a spin can flip only if at least
one of its nearest neighbours is in the mobile state. In par-
ticular, such transitions ↓↑↓⇋↓↓↓ are forbidden. In other
words, this is a diffusive system with geometric dynamical
constraints. In such systems, it is known that active and
inactive particles self-organize in space, leading to a slow,
glassy relaxation.

How to classify time-trajectories and their activity?
Following [4] one defines the activity K(t) of a trajec-
tory as the number of flips between 0 and t, given a
history, namely a succession of configurations C0 →

C1 → .. → Ct. For a Markovian system, the evolution
of the occupation probability follows a master equation:
∂P
∂t (C, t) =

∑

C′ W(C′ → C)P(C′, t) − r(C)P(C, t), where
r(C) =

∑

C′,C W(C → C′) and Ws are the transition rates.
If one introduces s (analog of a temperature), conjugated
to K, and define P̂(C, s, t) =

∑

K e−sK P(C,K, t), one obtains
a new evolution equation for P̂(C, s, t) and the generating
function of K is simply ZK(s, t) =

∑

C P̂(C, s, t) =< e−sK >.
For t → ∞, ZK(s, t) ≃ etψK (s), where ψK(s) is the large de-
viation function for the activity K.

The analogy with the canonical ensemble of standard
thermodynamics is straightforward. In the space of con-
figurations, at fixed β, Z(β) =

∑

C e−βH ≃ e−N f (β), N → ∞,
the free energy f (β) is (minus) the large deviation for the
energy. In the space of trajectories, at fixed s: ZK(s, t) =
∑

C,K e−sK P(C,K, t) ≃ e−t fK (s), t → ∞, fK(s) is free energy
for trajectories and ψK(s) = − fK(s) is the large deviation
function for the activity. The average activity in the s-state
is given by <K>(s,t)

Nt = − 1
Nψ
′
K(s), and all other cumulants

can be derived as well. Two distinct phases can be stud-
ied: the active phase for < K > (s, t)/(Nt) > 0 and s < 0;
and the inactive phase for < K > (s, t)/(Nt) = 0 and s > 0.
The central question is to try and understand whether there
is a phase transition separating those two phases.

A simple solution can be found for the mean-field
FA[11, 12]. In this model, one chooses the transition rates
as: Wi(0→ 1) = k′ n

N , Wi(1→ 0) = k n−1
N , where n =

∑

i ni

is the number of mobiles sites. The solution can be for-
mulated as a variational principle for ψK(s), involving a
Landau-Ginzburg free energy FK(ρ, s) (ρ: density of mo-
bile spins) with FK(ρ, s) = −2ρe−s(ρ(1−ρ)kk′)1/2+k′ρ(1−
ρ)+kρ2, and 1

NψK(s) = −minρ FK(ρ, s) . The inspection of
the minima of FK(ρ, s) at fixed s (see Figure 1) allows to
find the following phase diagram: (i) for s > 0: an inactive
phase with ρK(s) = 0, ψK(s)/N = 0; (ii) at s = 0: coexis-
tence between ρK(0) = 0 and ρK(0) = ρ∗, ψK(0) = 0, this
is a first order phase transition. (iii) s < 0: active phase,
ρK(s) > 0, ψK(s)/N > 0.

The importance of the dynamical constraints can be
checked by looking at the non-constrained version of
the mean-field FA model, namely with transition rates:
Wi(0 → 1) = k′, Wi(1 → 0) = k, for all i. Then the varia-
tional free energy reads: FK(ρ, s) = −2e−s(ρ(1−ρ)kk′)1/2+

Figure 1. Left figure:mean field free energy for the FA model,
two minima can be found at s = 0. Right figure: mean field free
energy without dynamical constraints, there is only one mini-
mum for all values of s.
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Figure 2. Large deviation function ψK(s) and average activity
K(s) for two different KCMs: the 1d FA and the 1d East model.
The finite-size study shows the convergence at large sizes to-
wards the inactive state for s > 0. From ref [12].

k′(1−ρ)+kρ and no phase transition is present (see Figure
1).

The study of KCMs in finite dimension is a much more
difficult task, and one has to use specifically-designed nu-
merical algorithms to give a good estimation of the large
deviation functions. Results were obtained in 1d, 2d, and
3d KCMs: in all cases a first-order transition in the ac-
tivity is found at s = 0, supported by a finite-size study,
using the cloning algorithm [11, 12] (see Figure 2). It is
also worth mentioning the mathematical works of [13, 14]
which allow for a more refined finite-size scaling study of
the large deviation function.

3 Glassy lattice models with external
forcing

Driving KCMs out-of-equilibrium by an external field pa-
rameter creates a flow of particles J in the system. Hence,
one can study large deviations of two different dynami-
cal quantities of interest, namely the activity K(t) and the
integrated current Q(t) =

∫ t

0
J(t′)dt′, defined as the num-

ber of moves in the direction of the field between time 0
and t. For a mean-field version of a driven FA model, a
first-order transition is found for the entropy production,
at s = 0 in [26]. The result seems to be true also for a 2d
KCM studied numerically by TPS.

In [22], another model is studied, namely a 2d Kob-
Andersen model (the partcle version of FA at fixed den-
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Figure 3. Large deviation function ψQ(s) and average integrated
current Q(s) for the directed 2d KA model. For large field E,
there is a first-order transition at s = 0. From ref [22].

sity) on a square lettice with an external driving by a static
field E; in other words, it is a ASEP model with dynami-
cal constraints. The flow dependence on the field E is in
itself interesting: at large densities of particles, the flow
is non-monotonic with E; it first increases with the field -
shear thinning- and then decreases when E becomes large
-shear thickening-.

The large deviation functions have been calculated nu-
merically using the cloning algorithm, checking the va-
lidity of the results by a finite-size study. The first-order
transition for the activity K at s = 0 exists for all values of
the driving field, and the jump of activity between active
trajectories and inactive ones increases with E. For the in-
tegrated current Q, the behaviour at small field does not
apparently show a dynamic transition. However, at large
fields (when the current decreases) the first-order transi-
tion is shown to occurs at s = 0 (see Figure 3). Indeed nu-
merical limitations start to appear for such slow systems,
as computation times increase dramatically with size, time
of the simulation and number of clones.

The existence of such a transition for Q has the fol-
lowing consequence: at stationarity, there is coexistence
between trajectories with a high current and trajectories
with a small current. More precisely, according to the
initial condition, the system can flow easily or be almost
blocked. The relation between the current and microscopic
features, in particular the heterogeneous, intermittent dy-
namics of the particles, distribution of velocities, transient
shear-banding and sizes of blocking walls have been de-
scribed in [23]. These allow to rationalize the average be-
haviour of the current as a function of the driving field.
The study of the system at finite sizes [24] gives access
to the dynamical correlation length, both in the shear-
thinning and the shear-thickening regimes. The distribu-
tion of current in a confined system is investigated as well
in [24].

4 Realistic glassy models

It was already conjectured in [27, 28] that the glassy state
of a supercooled liquid is characterized by the onset of the

coexistence between active and inactive space-time trajec-
tories. In these studies, this concept is illustrated by the
study of the 1d FA model, where such coexistence was
shown, and probability distribution functions of the activ-
ity were computed using TPS and umbrella sampling. The
glassiness of the model can then be illustrated by the low
activity tails in those pdfs.

A challenging question is whether the behaviour ob-
served in non-driven or driven KCMs (see previous sec-
tions) is representative of what can be observed in real
glasses. Experimental evidence is for the moment lack-
ing. However, on the numerical side, new results have
emerged, which seem promising though technically dif-
ficult. The study in [29] shows through simulations of a
mixture of N Lennard-Jones particles and TPS sampling
that coexistence between active and inactive trajectories
occurs at a critical value s = s∗ close to 0. In this case
the activity is defined as: K(t) = ∆t

∑tobs
t=0
∑N

j=1 |~r j(t +∆t)−
~r j(t)|2, where ∆t corresponds to the time needed for a parti-
cle to move a distance of the order of a molecular diameter.

Whether s∗ is stricly zero or not is still an open ques-
tion, which is difficult to confirm through numerical simu-
lations, since they require a very precise finite-size study.
In [25], the large deviation function for the activity was
computed, using a finite-size study and the cloning algo-
rithm. In this case, the activity, related to the escape rate
of a particle is defined as: K(t) =

∫ t

0
dt′Ve f f (t′) where

Ve f f (t) =
∑

i

[

β
4 |Fi|

2 + 1
2∇ri · Fi

]

and Fi = −
∑

j,i ∇V(ri −

r j) is the force acting on particle i given the interaction po-
tential V(ri − r j). Up to numerical limitations, the transi-
tion seems to occur at s∗ equal to zero (see Figure 4). How-
ever, the difference of definition of the activity observable
in [29] and [25] may explain the differences found in the
two studies.

In [30] a "softened" FA model was studied, designed
to be more realistic than the pure FA model, as it relaxes
the dynamical constraints so that motion is possible, at a
slow rate, even in blocked regions. In this model it can be
shown that the dynamical phase transition takes place at s∗

strictly positive.
Finally [31, 32] have investigated in more detail parti-

cle systems in order to understand the link between struc-
ture and activity in a given phase, and see how energy land-
scape and dynamical properties can be related (or not) in
realistic glasses. Many answers are however not clear and
further work will be needed to clarify the existence of a dy-
namical phase transition in realistic models of glasses; this
will in particular include a comparison between numerical
methods in the perspective of reducing long computation
times.
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Figure 4. Large deviation function for the activity in a 3d mix-
ture of Lennard-Jones particles, from ref [25]. The finite size
study hints at a transition at s = 0.
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