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Abstract. In this paper we propose a new abstract domain for static
analysis of binary code. Our motivation stems from the need to im-
prove the precision of the estimation of the Worst-Case Execution Time
(WCET) of safety-critical real-time code. WCET estimation requires
computing information such as upper bounds on the number of loop
iterations, unfeasible execution paths, etc. These estimations are usually
performed on binary code, mainly to avoid making assumptions on how
the compiler works. Our abstract domain, based on polyhedra and on
two mapping functions that associate polyhedra variables with registers
and memory, targets the precise computation of such information. We
prove the correctness of the method, and demonstrate its effectiveness
on benchmarks and examples from typical embedded code.

1 Introduction

In real time systems, checking that computations complete before their deadlines
under all possible contexts is a crucial activity. Worst-Case Execution Time
(WCET) analysis consists in computing an upper bound to the longest execution
path in the code. It is usually performed on the binary code, because it needs
information on the low-level instructions executed by the hardware processor.

In this paper, we propose a static analysis of binary code based on abstract
interpretation using a polyhedra-based abstract domain. Our motivation is the
need to enhance existing WCET analysis by improving the computation of upper
bounds on the number of iterations in loops. However, our abstract domain has
other potential applications (not developed in this paper), such as buffer-overflow
analysis, unfeasible paths analysis or symbolic WCET computation [6].

Most analyses by abstract interpretation proposed in the literature are per-
formed on source code. On the contrary, as it is usually the case for WCET
analysis, we propose to analyze binary code. There are several important advan-
tages in performing static analysis of binary code: 1) we analyze the code that
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1 void send_packet(char *buf) {

2 int iphdr_l = ((struct ip*)buf)->hdr_len;

3 int udp_l = ((struct udp*)(buf + iphdr_l))->len;

4 for (int i = 0; i < udp_l; i++) { /* do CRC */ }

5 ethernet_write(buf);

6 }

7

8 void send_request(int iphdr_size, int udp_size) {

9 char buf[1024];

10 if ((iphdr_size >= 20) && (iphdr_size <= 60) &&

11 (udp_size >= 4) && (udp_size <= 100)) {

12 struct ip *h1 = buf;

13 struct udp *h2 = buf + iphdr_size;

14

15 h1->hdr_len = iphdr_size;

16 h2->len = udp_size;

17 fill_packet_payload(buf);

18 send_packet(buf);

19 }

20 }

Fig. 1. Network-inspired benchmark

actually runs on the machine, hence no need for additional assumptions on how
the compiler works; 2) in presence of undefined behaviors (of source code), the
analysis is more accurate; 3) we can perform the analysis even without access to
the source code.

The main problem is that, in higher-level representations, the variables, ad-
dresses and values are well identified. In binary code, the notion of program
variable is lost, so we can only analyze processor registers and memory loca-
tions. We propose to identify the subset of registers and memory locations to
be represented in the abstract state as the analysis progresses. This representa-
tion enables us to design a relational analysis on binary code, which is the main
contribution of the paper.

1.1 Motivating example

As a motivating example, we present a snippet of C code, inspired from packet
processing network drivers in Figure 13. We remind however that our method-
ology addresses (disassembled) binary code.

The send_request function sends a request in some application-layer proto-
col that runs over UDP/IP. Lines 12-13 build a packet composed of a variable-
length IP header, a fixed-length UDP header, and a variable-length UDP payload
(some operations on IP or UDP fields have been omitted). Note that the starting

3 The original bench listing is available here: https://pastebin.com/C5UPYRx3
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address of the UDP header depends on the size of the IP header (h1->hdr_len).
At line 17, we call the function responsible for putting the useful data (payload)
into the packet. At line 18, the packet is sent using the send_packet function,
which belongs to the lower-level network layer API. This function does not take
the packet size as parameter, since it can be deduced from the header: in lines
2-3, the function parses the packet to obtain the UDP payload size, and the
UDP checksum is computed by iterating over the payload.

To automatically compute a bound on the number of iterations of the loop at
line 4, the analysis has to discover that udp_l equals udp_size (due to line 16).
This can be done with an appropriate use of a relational abstract domain. How-
ever, very few of the existing analyses running on binary code use a relational
domain, and to the best of our knowledge, none support relations between ad-
dresses that are not know statically (udp_l, udp_size). Let us emphasize that
such a use of pointers and memory buffers is typical of many embedded systems:
for instance in network packet processing, but also in many device drivers.

1.2 Contribution

The contributions of the paper are:

– A new relational abstract domain POLYMAP, which consists of a polyhedron
and two mappings that track the correspondence between data locations
(registers or memory) and polyhedra variables;

– An abstract interpretation procedure, which computes abstract states of
POLYMAP for a small assembly language, and which we prove to be sound;

– An experimental evaluation of our prototype called Polymalys. It implements
the previous procedure and computes upper bounds to loop iterations. We
compare Polymalys with other existing tools on a set of classic benchmarks.

2 Language definition

In this section, we define the analyzed language, called MEMP, a simplified assem-
bly language where we focus on memory indirection operators.

2.1 Syntax

In order to simplify the presentation, we make the following assumptions: all
data locations have the same size, memory accesses are aligned to the word size,
there are no integer overflows, and function calls are inlined (these limitations
could be lifted using for instance [10,28]). We also reduce the set of instruc-
tions to a minimum (Polymalys actually supports the ARM A32 instruction set).
The syntax of MEMP is defined in Figure 2. A program is a sequence of labeled
instructions. Instructions operate on registers, labels or constants. Concerning
memory instructions, if r contains value c, then ∗(r) denotes the content at ad-
dress r (below, we overload the notation and also denote ∗(c) for this content).

Page 3 of 22Author Version of « Static Analysis Of Binary Code With Memory Indirections Using Polyhedra»,
Clément Ballabriga, Julien Forget, Laure Gonnord , Giuseppe Lipari, Jordy Ruiz accepted at VMCAI’19



OPc denotes the concrete semantics of operation OP. RAND emulates undefined
registers, to represent e.g. function parameters. Other instructions are directly
commented in the figure (on the left of each instruction).

Programs (P) ::= l1 : I1, l2 : I2, . . . , ln : END
Labels (L) ::= {l1, l2, . . .}
Registers (R) ::= {r1, r2, . . .}
Constants (C) ::= {c1, c2, . . .}
Instructions (I) ::=
r1 ← OPc(r2, r3) | OP r1 r2 r3

r ← c | SET r c

Emulate undefined r | RAND r

r1 ← ∗(r2) | LOAD r1 r2

∗(r1)← r2 | STORE r1 r2

Branch to l if r = 0 | BR r l

Halt | END

Fig. 2. Syntax of MEMP

2.2 Formal semantics

The small-steps semantics of MEMP is defined below. The semantics of data and

arithmetic/logic operations is defined in Figure 3 by function
i−→, which operates

in a context (R, ∗) consisting of two mappings where:

– R : R 7→ Z is the registers content, which maps registers to their values. We
assume that it is initially empty;

– ∗ : Z 7→ Z is the memory content, which maps memory addresses to their
values. We assume that it is also initially empty. Note that integer wrapping
could be used to restrain addresses to be in N instead of Z [10].

For a given mappingm, we denotem[x : y] the mappingm′ such thatm′(x) =
y and, for every register x′ 6= x, m′(x′) = m(x′). In other words, m[x : y]
denotes a single mapping substitution (or mapping addition if x was previously
unmapped). We also denote m\(x1 : x2) the mapping such that the association
x1 : x2 is removed from m.

The semantics of control flow operations is defined in Figure 4, by the function
c→, which adds a program counter pc to the previous context. We use

e→ to denote
the last transition of the program.

3 Abstract domain

The abstract domain we propose is based on the polyhedral abstract domain [12],
to which we add information to track relations between polyhedra variables and
registers or memory addresses.
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(SET r c,R, ∗) i−→ (R[r : c], ∗)

c = random()

(RAND r,R, ∗) i−→ (R[r : c], ∗)

R(r2) = c2 R(r3) = c3 c1 = OPc(c2, c3)

(OP r1 r2 r3,R, ∗)
i−→ (R[r1 : c1], ∗)

R(r2) = c2 ∗(c2) = c1

(LOAD r1 r2,R, ∗)
i−→ (R[r1 : c1], ∗)

R(r1) = c1 R(r2) = c2

(STORE r1 r2,R, ∗)
i−→ (R, ∗[c1 : c2])

Fig. 3. Semantics of data and arithmetic operations.

P [pc] = BR r l R(r) 6= 0

P ` (pc,R, ∗) c→ (pc + 1,R, ∗)
P [pc] = BR r l R(r) = 0

P ` (pc,R, ∗) c→ (l,R, ∗)

P [pc] = END

P ` (pc,R, ∗) e→ (R, ∗)
P [pc] = I I 6∈ {END, BR} (I,R, ∗) i−→ (R′, ∗′)

P ` (pc,R, ∗) c→ (pc + 1,R′, ∗′)

Fig. 4. Semantics of control-flow operations.

3.1 Polyhedra

A polyhedron p denotes a set of points in a Z vector space bounded by linear con-
straints (equalities or inequalities). More formally, let |S| denote the cardinality
of set S. Let Cn denote the set of linear constraints in Zn on the set of variables
Vn, where |Vn| = n. Then 〈c1, c2, ..., cm〉 denotes the polyhedron p consisting
of all the vectors in Zn that satisfy constraints c1, c2, . . ., cm, where ci ∈ Cn

for 1 ≤ i ≤ m (n and m are unrelated). We denote dim(p) = n the dimension
of p. In the rest of the paper, the term variable implicitly refers to polyhedron
variables. We denote:

– P the set of polyhedra;
– s ∈ p when s (with s ∈ Zdim(p)) satisfies the constraints of polyhedron p;
– p v� p′ iff ∀s ∈ p, s ∈ p′;
– p′′ = p t� p′ the convex hull of p and p′;
– p′′ = p u� p′ the union of the constraints of p and p′;
– vars(p) the set of variables of p, where |vars(p)| = dim(p) by definition;
– proj (p, x1 . . . xk) the projection of p on space x1 . . . xk, with k < |dim(p)|;
– p[xi/xj ] the substitution of variable xj by xi in p.

3.2 Abstract States

In polyhedral analysis of source code, variables of the polyhedra are related
to variables of the source code. In our case, polyhedra variables are related to
registers and memory contents. We use the term data location to refer indistinctly
to registers or memory addresses. Let V denote the set of polyhedra variables.

The set of abstract states POLYMAP is defined as A = P × (R 7→ V)× (V 7→
V). An abstract state a ∈ A, with a = (p,R], ∗]), consists of a polyhedron

Page 5 of 22Author Version of « Static Analysis Of Binary Code With Memory Indirections Using Polyhedra»,
Clément Ballabriga, Julien Forget, Laure Gonnord , Giuseppe Lipari, Jordy Ruiz accepted at VMCAI’19



p, a register mapping R] and an address mapping ∗]. We have R](r) = v iff
variable v represents the value of register r in p. We have ∗](x1) = x2 iff variable
x2 represents the value at the memory address represented by variable x1. We
denote varsR(p) the codomain of R] (i.e. register content variables), varsA(p)
the domain of ∗] (i.e. address variables) and varsC(p) the codomain of ∗] (i.e.
address content variables). Sets varsR(p), varsA(p) and varsC(p) are disjoint
and are all subsets of vars(p).

Example 1. In the following abstract state, register r0 contains value 2, and
address 2 contains value 1:

({x1 = 2, x2 = x1, x3 = 1}, {r0 : x1}, {x2 : x3})

The usual operators on the abstract domain (inclusion, join and widening),
and its least and greatest elements are presented in Section 4.4.

3.3 Aliasing

In a general sense, aliasing occurs in a program when a data location can be
accessed through several symbolic names. As we will see in Section 4, aliases
play an important role in our analysis. In fact, we introduce mechanisms that
prevent their occurrence in the abstract state (see Section 4.2), so as to simplify
the analysis. We define the aliasing relation between two variables x1 and x2 of
a polyhedron p as follows:

– Cannot alias: whenever 〈x1 = x2〉 ∩ p = ∅;
– May alias: whenever 〈x1 = x2〉 ∩ p 6= ∅;
– Must alias, denoted x1 ≡ x2: whenever p v� 〈x1 = x2〉.

The aliasing relation between a register r and a variable x is defined by the
aliasing relation between R](r) and x. Similarly, the aliasing relation between
two registers r1, r2 is defined by the aliasing relation between R](r1) and R](r2).

To avoid ambiguities with notations on constraints, let same(x1, x2) denote
the fact that x1 and x2 are the same polyhedron variables (not just equivalent
variables). There is no need to check register aliases, because a single register
cannot be mapped to two different variables (R] is a function). The absence of
aliases can thus be stated as follows.

Definition 1. Let s = (p,R], ∗]) be an abstract state. We say that s is alias
free iff:

∀x1, x2 ∈ varsA(p), x1 ≡ x2 ⇒ same(x1, x2)

4 Computing abstract states

Our analysis follows the abstract interpretation framework proposed in [12], ada-
pted to our setting with non-local control-flow, following the technique proposed
in Astrée [21] and MOPSA [23]. An important singularity of our analysis is
that polyhedral variables are progressively created or removed during the anal-
ysis. Whenever a new polyhedron variable is introduced, we assume it is a fresh
variable that has never been used at any other point during the analysis.
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4.1 Interpretation algorithm

We use (p′, [ri : xi], [xj : xk])(·) as a shorthand for λ(p,R], ∗]).(p u� p′,R][ri :
xi], ∗][xj : xk]), and denote − when a state component remains unchanged. Pro-
cedures to compute the join (t), widening (O) and antialias of abstract states,
and the transfer function (I )] of instruction I are detailed in the remainder of
this section. The complete interpretation procedure is described in Algorithm 1.
It applies to a program P of MEMP. During the interpretation, we keep a subset
L of labels of interest. Abstract values are stored in a map M from labels to
abstract values. We assume that loop header labels LW of P have previously
been identified using an existing analysis (e.g. Tarjan’s algorithm [29]). Figure
5 reports a running example of this analysis, that will be used throughout the
rest of the section.

Algorithm 1 Interpret(P)

1: procedure update(`, a, L) . Auxiliary procedure
2: a← antialias(a)
3: if ` ∈ LW then . Check if l is a loop header
4: new ← M [l ]O(M [l ] t a

)
5: else
6: new ←M [`] t a
7: end if
8: if new 6vM [`] then . Abstract value for ` changed, propagate
9: M [`]← new ; L← L ∪ `

10: end if
11: end procedure
12:
13: for all (`, I) ∈ P do . Start of main procedure
14: M [`]← ⊥ . Begin with empty abstract states
15: end for
16: M [`1]← >; L← {`1} . Program starting label
17: while L 6= ∅ do . Fixpoint iteration
18: Pick and remove ` from L
19: match P [`]
20: with BR r `′

21: update(`′, (〈r = 0〉,−,−)(M [`]), L) . Branching case
22: update(` + 1, (−,−,−)(M [`]), L) . Not branching case

23: with END

24: skip

25: with
26: update(` + 1, ((P [`])])(M [`]), L) . Abstract semantics of I

27: end while
28: return M
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1: RAND r0

2: RAND r7

3: SET r1 4

4: SET r2 5

5: ADD r3 r0 r1

6: STORE r3 r1

7: SUB r5 r7 r1

8: BR r5 10

9: STORE r3 r2

10: LOAD r6 r3

11: END

Label Polyhedron Registers Memory

5 p1 = 〈x1 = 4, x2 = 5〉 R]
1 = {r0 : x0, r1 : x1,
r2 : x2, r7 : x7}

6 p2 = p1 u� 〈x3 = x0 + x1〉 R]
2 = R]

1[r3 : x3]

7 p3 = p2 u� 〈x4 = x3, x5 = x1〉 R]
2 ∗]1 = {x4 : x5}

8 p4 = p3 u� 〈x8 = x7 − x1〉 R]
3 = R]

2[r5 : x8] ∗]1
10 (from 9) p5 = p4 u� 〈x9 = x2〉 R]

3 ∗]2 = {x4 : x9}
10′ (from 8) p6 = p4 u� 〈x8 = 0〉 R]

3 ∗]1
unify(10, 10′) p7 = p6[x9/x5] R]

3 ∗]3 = {x4 : x9}

10 t 10′
p8 = p2 u� 〈x4 = x3, x8 = x7 − x1, R]

3 ∗]3x1 ≤ x9 ≤ x2〉
11 p8 u� 〈x10 = x9〉 R]

3[r6 : x10] ∗]3

Fig. 5. Running example of analysis

4.2 Anti-aliasing

Whenever updating an abstract state, we immediately remove aliases (line 2),
because the absence of aliases significantly simplifies the analysis in places where
we need to check the equivalence of two variables (LOAD, STORE, t and O). In
practice, aliases are introduced when encountering a conditional branching (see
Section 4.3). We remove an alias using procedure antialias, which relies on the
procedure Merge defined below. It is based on the following observation: if two
addresses are equal, then the values stored at these addresses must be equal too.
Let x1, x2 be two variables of varsA(p) such that: ¬same(x1, x2) ∧ x1 ≡ x2.

Merge((p,R], ∗]), x1, x2) = (p′,R], ∗]
′
)

with p′ = (p[x1/x2])[∗](x1)/ ∗] (x2)]

and ∗]
′

= ∗] \ (x2 : ∗](x2))

Function antialias : A → A applies Merge for each pair of distinct equivalent
address variables of an abstract state.

Example 2. In state a below, address x2 is an alias on address x1. Thus, x4
must be equal to x3, so Merge(a, x1, x2) replaces x2 by x1 and x4 by x3. In
the result, x3 is constrained by the original constraints of x3 and x4, and the
memory mapping x2 : x4 is discarded.

a = (〈x1 = x2, x3 ≥ 4, x4 ≤ 5〉, −, ∗] = {x1 : x3, x2 : x4})

Merge(a, x1, x2) = (〈4 ≤ x3 ≤ 5〉, −, ∗]
′

= {x1 : x3})

Page 8 of 22Author Version of « Static Analysis Of Binary Code With Memory Indirections Using Polyhedra»,
Clément Ballabriga, Julien Forget, Laure Gonnord , Giuseppe Lipari, Jordy Ruiz accepted at VMCAI’19



4.3 Transfer functions

We now define the constraints generated for the analysis of each instruction of
our language. We denote (I )] : A → A the transfer function of instruction I.

Binary operation If the relation r1 = OPc(r2, r3) is linear, we map the target
register to a new variable, subject to the corresponding linear constraint in the
polyhedron. The memory mapping is unchanged. Otherwise, the target register
is mapped to a new unconstrained variable.

(OP r1 r2 r3)
] =

{
(〈x = OPc(R](r2),R](r3))〉, [r1 : x], −)(·) if linear(OPc)

(−, [r1 : x], −)(·) otherwise

Example 3. In Figure 5, at label 6 (i.e. the label immediately following the ADD

operation) we introduce the constraint x3 = x0 + x1 and the register mapping

R]
1(r3) = x3.

Set The impact of the immediate load instruction is straightforward:

(SET r1 c)] = (〈x = c〉, [r1 : x],−)(·)

Rand The random instruction maps a register to an unconstrained variable:

(RAND r1)
] = (−, [r1 : x],−)(·)

Load If the input state contains a memory address variable that is equivalent
to the load address (note that for alias free states, if such a variable exists, it
is unique), then in the output state the value of the destination register is the
value of the memory value mapped to this address. Otherwise, the value of the
destination register is undefined:

(LOAD r1 r2)
] =

{
(〈x = ∗](a)〉, [r1 : x], −)(·) if a ≡ r2
(−, [r1 : x], −)(·) otherwise

Example 4. In Figure 5, at label 10 we have x4 ≡ r3 and ∗](x4) = x9, so at

label 11 we introduce the constraint x10 = x9 and the mapping R]
3[r6] = x10.

Store Again, we need to consider the impact of aliases. If there exists an address
variable equivalent to the target register, then there already exists a memory
mapping for this address. The previous content at this address is replaced by
the content of the source register (see Replace below). Otherwise, we create a new
memory mapping (see Create below). An alias free state contains at most one
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address variable that must-alias with r1. It may however contain several may-
alias address variables a′. For each such a′, this means that a′ either equals r1,
which requires a Replace, or is different from r1, which has no impact. We apply
operator t on both cases to manage this uncertainty, and add the constraints
for each may-alias address (see May below).

(STORE r1 r2)
] =

{
λs.Replace(a)(May(s)) if ∃a ∈ varsA(p), a ≡ r1
λs.Create(May(s)) otherwise

With (© denotes function composition):

Replace(a) = (〈x = R](r2)〉, −, [a : x])(·)
Create = (〈xi = R](r1), xj = R](r2)〉,−, [xi : xj ])(·)

May = ©
{a∈A|a may-alias r1}

λs.(Replace(a)(s) t s)

Example 5. In Figure 5, at label 7, we create a new memory mapping ∗]1(x4) = x5
and we introduce the constraints x4 = x3, x5 = x1.

Example 6. In Figure 5, at label 10, when coming from label 9, we replace a pre-
vious mapping, x4 is mapped to x9 (instead of x5 previously), and we introduce
the constraint x9 = x2.

Branching In Algorithm 1, when branching to a target label (`′) the branching
condition holds (r = 0). We add no constraint for the otherwise case because it
cannot be encoded using a linear relation.

Example 7. In Figure 5, at label 10, when coming from label 6, we add the
constraint x8 = 0.

4.4 Abstract domain operators, least and greatest elements

Our analysis introduces new variables and removes old ones as it progresses.
There is no predefined correspondence between variables and data locations,
because the set of data locations used by the program is unknown a priori. As
a consequence, it may happen that two abstract states use different variables to
designate the same data location. This implies that to compare two states we
first need to check whether some variables of the two states actually correspond
to the same data location. This verification relies on a unification procedure,
presented below. Unification is used for inclusion testing, and also in the join
and widening operators.

Unification Unification checks for the equivalence of two variables in two poly-
hedra, p1 and p2. Intuitively, we try to express each variable as a linear expression
of a well-chosen set of variables to conveniently check their equivalence.
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Let Vc = vars(p1)∩ vars(p2) and p′ = proj (p1, Vc)t� proj (p2, Vc). We denote
npiv(p′) the set of non-pivot variables discovered by Gauss-Jordan elimination
performed on the system of equality constraints of p′ (we exclude inequalities).
Then, npiv(p′) is such that, in p′:

– no variable in npiv(p′) is equivalent to a linear expression of other variables
of npiv(p′);

– each variable in vars(p′)\npiv(p′) is equivalent to a linear expression of vari-
ables from npiv(p′).

Let linexpr(x, p1,npiv(p′)) denote the linear expression representation of
variable x ∈ vars(p1) in terms of variables in npiv(p′), represented as the
vector of the linear expression coefficients. Let C ′ be the constraint system of
proj (p1, x∪npiv(p′)). If C ′ contains an equality constraint involving x, then com-
puting linexpr(x, p1,npiv(p′)) is straightforward. Otherwise, the empty vector is
returned. If several (non-equivalent) equality constraints appear, we arbitrarily
pick one. Note that, even though our unification can miss equivalent variables,
this does not jeopardize the soundness of the analysis (see Section 5.3 and in
particular Lemma 3).

Algorithm 2 describes our unification procedure. We directly modify the sec-
ond state to unify it with the first one. First, we compute set of non-pivot vari-
ables (line 4). Then, we check for the equivalence of address variables according
to their linear expression representation, and we perform variable substitutions

in p′2, R]′

2 and ∗]
′

2 in case of equivalence (line 8). Register unification is simpler,

we just replace the bindings in R]′

2 by those of R]
1 (line 12).

Algorithm 2 unify((p1,R]
1, ∗

]
1), (p2,R]

2, ∗
]
2))

1: (p′2,R]′

2 , ∗
]′

2 )← (p2,R]
2, ∗

]
2)

2: Vc ← vars(p1) ∩ vars(p2) . common variables
3: p′ ← proj (p1, Vc) t� proj (p2, Vc)
4: B ← npiv(p′)
5: for all (xi, xj) ∈ varsA(p1)× varsA(p2) do
6: vi = linexpr(xi, p1, B); vj = linexpr(xj , p2, B)
7: if vi 6= [] and vj 6= [] and vi = vj then . variables are equivalent

8: Replace xj by xi and ∗](xj) by ∗](xi) in p′2, R]′

2 , and ∗]
′

2

9: end if
10: end for
11: for all r ∈ Dom(R]

1) ∩Dom(R]
2) do . variables are trivially equivalent

12: Replace R]
2(r) by R]

1(r) in p′2, R]′

2 , and ∗]
′

2

13: end for
14: return (p′2,R]′

2 , ∗
]′

2 )

Example 8. In Figure 5, when computing unify(10, 10′), s1 corresponds to the
state of 10 and s2 to the state of 10′. A possible set of non-pivot variables is
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{x0, x7}. In s1 (and in s2), we have x4 − x0 + 0 · x7 − 4 = 0, so linexpr(x4) =
[1; − 1; 0; − 4] (corresponding, respectively, to the coefficients of x4, x0, x7,

and the constant). Since ∗]2(x4) = x9 (in s1) and ∗]1(x4) = x5 (in s2), we replace
x5 by x9 in s2.

Inclusion Let us now define formally the partially ordered set (A,v). Given
two functions f and g, we denote f ⊆ g when Dom(f) ⊆ Dom(g) and ∀x ∈
Dom(f) : f(x) = g(x). Introducing new mappings in R] or ∗] (i.e. enlarging
their domains) actually removes feasible concrete states, thus we define abstract
states inclusion as follows (see lemma 4 for more details):

Definition 2. Let a1 = (p1,R]
1, ∗

]
1) and a2 = (p2,R]

2, ∗
]
2). The ordering opera-

tor v is defined as follows:

a1 v a2 ⇔p′1 v� p2 ∧R
]
2 ⊆ R

]′

1 ∧ ∗
]
2 ⊆ ∗

]′

1

with (p1
′,R]′

1 , ∗]
′
) = unify(a2, a1)

There exists several equivalent representations of the greatest and least ele-
ments of (A,v). We define them as follows:

Definition 3. The greatest element of (A,v) is denoted >, with > = (〈〉, ∅, ∅).

Definition 4. The least element of (A,v) is denoted ⊥ and defined as ⊥ = (p⊥,

R]
⊥, ∗

]
⊥), where p⊥ is the empty polyhedron and R]

⊥, ∗]⊥ are such that every data
location is mapped to a variable.

Join Algorithm 3 describes our join procedure. It unifies the input states (line 1),
then computes the convex hull on the unified states (line 2). Then, if a memory
location or register is bound in one input state and unbound in the other, it is
unbound in the result state.

Algorithm 3 (p1,R]
1, ∗

]
1) t (p2,R]

2, ∗
]
2)

1: (p′2,R]′

2 , ∗
]′

2 ) = unify((p1,R]
1, ∗

]
1), (p2,R]

2, ∗
]
2))

2: p← p1 t� p′2
3: R] ← ∅; ∗] ← ∅
4: for all r ∈ Dom(R]′

1 ) do

5: if R]
1(r) = R]′

2 (r) then R](r)← R]
1(r) end if

6: end for
7: for all a ∈ Dom(∗]

′

1 ) do

8: if ∗]1(a) = ∗]
′

2 (a) then ∗](a)← ∗]1(a) end if
9: end for

10: return (p,R], ∗])
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Example 9. In Figure 5, when computing 10 t 10′, we obtain identical register
and memory mappings for 10 and unify(10, 10′). The convex hull p5t� p7 groups
the constraints on x9 (x1 ≤ x9 ≤ x2) and lifts those on x8.

Widening Due to the presence of loops, the widening operator O is used to
ensure that our analysis reaches a fixpoint. O is defined just like t, except that
we use a polyhedra widening operator O� in place of t�.

4.5 Loop bounds

To compute loop bounds, for each loop header label ` we create a “virtual”
register r`, to count the number of iterations of `. We instrument the program
so that the register r` is set to 0 when entering loop `, and incremented at each
iteration of ` (which is fairly classic, see e.g. [15]).

Finally, let P a program of MEMP and M = interpret(P ). Let `e be the label of

instruction END in P . Let (pf ,R]
f , ∗

]
f ) = M [`e]. Then the loop bound for a loop

header ` is computed as max(pf ,R]
f [r`]) (where max(p, x) denotes the greatest

value of variable x satisfying the constraints of p).

5 Soundness

In this section, we prove the soundness of our analysis. We first establish a set of
important lemmas on our abstract domain operators, and then prove soundness
with respect to the concretization function.

5.1 Join

Operator t is not commutative. We establish that it does however compute an
upper bound of its operands, with respect to our inclusion definition (Lemma 1).
The proof is based on two auxiliary properties on mapping inclusions:

Property 1. Let a1 = (p1,R]
1, ∗

]
1), a2 ∈ A, a3 = (p3,R]

3, ∗
]
3) = a1 t a2. We have:

(p1 v� p3) ∧ (R]
3 ⊆ R

]
1) ∧ (∗]3 ⊆ ∗

]
1)

Proof. Considering Algorithm 3: (p1 v� p3) follows from line 2, (R]
3 ⊆ R

]
1) from

line 5, and (∗]3 ⊆ ∗
]
1) from line 8. ut

Property 2. Let a1, a2, a′1 ∈ A, with a′1 = (p′1,R
]′

1 , ∗
]′

1 ) = unify(a2, a1). Then:

(R]
2 ⊆ R

]
1) ∧ (∗]2 ⊆ ∗

]
1)⇒ (R]

2 ⊆ R
]′

1 ) ∧ (∗]2 ⊆ ∗
]′

1 )

Proof. Obvious from Algorithm 2.

Lemma 1. Let a1, a2 ∈ A. We have: (a1 v a1 t a2) ∧ (a2 v a1 t a2).
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Proof. Polyhedron inclusion follows from the polyhedra join operator. We must
also prove the inclusion of register and memory mappings (after unification).

Case for a1 follows from Properties 1 and 2. Concerning the case for a2,
let a3 = a1 t a2. When computing a3, a variable v of a2 falls into one of three
categories: 1) v is also in vars(p1), it remains in a3; 2) v is equivalent to a variable
v1 of vars(p1), it is replaced by v1 in a3 (Algorithm 2, line 8); 3) otherwise, it
is removed (Algorithm 3). Then, let a′2 = unify(a3, a2). When computing a′2,
variables that fell in category 2 at the previous step (when computing a3) will
be replaced by their equivalent in a3, because they fall again in category 2. Thus

we obtain R]
3 ⊆ R

]′

2 , ∗]3 ⊆ ∗
]′

2 , which concludes the proof. ut

5.2 Widening

Lemma 2 establishes that operator O is indeed a widening operator.

Property 3. Let a1, a2 ∈ A. We have: (a1 t a2) v (a1 O a2).

Proof. The property holds because t and O use the same unification procedure,
and because we assume that O� is a valid polyhedra widening operator. ut

Property 4. Let a1 = (p1,R]
1, ∗

]
1), a2 ∈ A, a3 = (p3,R]

3, ∗
]
3) = a1 O� a2. We

have: (p1 v� p3) ∧ (R]
3 ⊆ R

]
1) ∧ (∗]3 ⊆ ∗

]
1)

Proof. Same as for Property 1.

Property 5. Let (bn)n∈N be a non decreasing infinite sequence in A. Then, the
sequence a0 = b0 and an+1 = an O bn+1 converges in a finite number of steps.

Proof. Thanks to Property 4, and considering that there is a finite quantity of
data locations, there exists N ∈ N such that for all i > N , R]

i+1 = R]
i and

∗]i+1 = ∗]i . Thus, ai+1 = (pi O� qi+1,R]
i , ∗

]
i), where qi+1 is the polyhedron of bi+1

and pi that of ai.
Assuming that O� is a valid polyhedra widening operator, there exists m > N

such that pm+1 = pm. Since m > N we also have R]
m+1 = R]

m and ∗]m+1 = ∗]m,
which concludes the proof. ut

Lemma 2. Operator O is a widening operator.

Proof. Follows from Properties 3 and 5.

5.3 Concrete and abstract states

Let C = ((R 7→ Z) × (Z 7→ Z)) denote the set of concrete states (pairs of
registers contents and memory contents). Data locations are mapped to values
in a concrete state, while they are mapped to polyhedra variables in the abstract
state. The concretization function γ relates data location values to data location
variables as follows:
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Definition 5. Let a = (p,R], ∗]) be an abstract state. The concretization func-
tion γ is defined as follows:

γ : A −→ P(C)

(p,R], ∗]) 7−→
{

(∗,R) | ∃f : Dom(∗])→ Dom(∗), �l

r∈Dom(R])

〈R](r) = R(r)〉 u�
�l

x∈Dom(∗])

〈x = f(x), ∗](x) = ∗(f(x))〉

 v� p}
More intuitively, we build a polyhedron p′ with the following constraints: 1)
register values of the concrete state (R(r)) must be equal to the corresponding
variable in the abstract state (R](r)); 2) we try to find a function f that maps
address variables to addresses (x = f(x)), then the content of each address
variables (∗](x)) must be equal to the memory value (∗(f(x))). If p′ v� p then
the concrete state satisfies the constraints of p and belongs to the concretization.

Example 10.

a = ({1 ≤ x1 ≤ 2, x2 = x1, x3 = 1}, {r0 : x1}, {x2 : x3})
γ(a) = {({r0 = 1}, {∗(1) = 1}}), (f(x2) = 1)

({r0 = 2}, {∗(2) = 1})} (f(x2) = 2)

Let
c−→∗ denote the transitive closure of

c→. The soundness of our abstract
interpretation is established as follows:

Theorem 1. Let P be a MEMP program. Let M = Interpret(P ). Then, for any

concrete state sinit : (P ` (l1, sinit)
c−→∗(`, s)) =⇒ (s ∈ γ(M [`]))

Proof. The proof of soundness follows from the structure of Algorithm 1, and
from the following lemmas, which establish the soundness of each operator used
in the algorithm.

Lemma 3. Let a1, a2 ∈ A. We have: γ(a1) = γ(unify(a2, a1)).

Proof. Let a′1 = unify(a2, a1). Since we assume that a1 and a2 are alias free
(recall Section 4.2), any two non-equivalent variables in a1 are also replaced by
non-equivalent variables in a′1 (or unchanged). Thus a′1 is a simple renaming of
a1, and so a1 and a′1 have the same concretization. ut

Lemma 4. Let a1, a2 ∈ A. We have: (a1 v a2)⇒ γ(a1) ⊆ γ(a2)

Proof. Let s ∈ γ(a1). Let a′1 = (p′1,R
]′

1 , ∗
]′

1 ) = unify(a2, a1). From Lemma 3, s ∈
γ(a′1), thus there exists a function f for s satisfying the property of Definition 5

with a = a1. Now, assume that p′1 v� p2 ∧ R
]
2 ⊆ R

]′

1 ∧ ∗
]
2 ⊆ ∗

]
1 (i.e. a1 v a2).

Then there exists a function f ′ for s that satisfies Definition 5, with a = a2: just
take f ′ such that it is the restriction of f to Dom(∗]2). So s ∈ γ(a2). ut
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Lemma 5. Let a1, a2 ∈ A. We have: γ(a1) ∪ γ(a2) ⊆ γ(a1 t a2).

Proof. From Lemma 1 and Lemma 4.

Lemma 6. Let a1, a2 ∈ A. We have: γ(a1) ∪ γ(a2) ⊆ γ(a1 O a2)

Proof. From Lemma 5, Lemma 4 and Property 3.

Lemma 7. Let a ∈ A. We have: γ(a) ⊆ γ(antialias(a))

Proof. Let (p,R], ∗]) = a. Let x1, x2 ∈ varsA(p) be such that ¬same(x1, x2) ∧
x1 ≡ x2. Then:

s ∈ γ(a)⇒ s ∈ γ(p u� 〈x1 = x2, ∗](x1) = ∗](x2)〉,R], ∗])
⇒ s ∈ γ((p[x1/x2])[∗](x1)/ ∗] (x2)],R], ∗])
⇒ s ∈ γ(Merge(a1, x1, x2))

The soundness of antialias follows. ut

Lemma 8. Let P be a MEMP program. Let M = Interpret(P ). Then, for all labels
`, `′ of P :

(P ` (`,R, ∗) c→ (`′,R′, ∗′)) =⇒ ((R, ∗) ∈ γ(M [`])⇒ (R′, ∗′) ∈ γ(M [`′]))

Proof. Trivially follows from the formal semantics and from the definition of
transfer functions, except for STORE. Let a′ = (p′,R]′ , ∗]′) = (STORE r1 r2 )](a).
The proof follows from noting that: 1) Both in the Create and Replace cases,
we obtain ∗]′(R]′(r1)) = R]′(r2), which is coherent with the formal semantics of
STORE; 2) The soundness of May follows from the soundness of t and Replace.

ut

Lemma 9. Algorithm 1 terminates.

Proof. Because O is applied on loop headers and O is a valid widening operator.
ut

6 Related works

Abstract interpretation using polyhedra has been first described in [12]. Static
analysis tools such as Astree [21], Frama-C [11] or PAGAI [18] use various ab-
stract domains (including polyhedra) to generate invariants for proving various
properties, such as the absence of array out-of-bounds accesses for instance.

While Astree and Frama-C work on the Abstract Syntax Tree, PAGAI pro-
cesses LLVM Intermediate Representation (IR). Compared to our approach, both
the AST and LLVM representations are closer to the source code, and contain
information on variables and their types, and also a precise control flow. This
makes the analysis easier to design, but less precise as far as WCET is concerned.
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Several other abstract domains other that polyhedra, capable of representing
linear constraints between variables, have been proposed, such as for instance
[20,30,24]. Choosing the most appropriate domain boils down to a trade-off be-
tween the execution time and the precision of the analysis. In our work we chose
the polyhedra domain and thus favored precision. However, we think that it
would be simple to adapt our work to another domain (e.g. to reduce analy-
sis time), because our computation of memory and register mappings does not
depend on how constraints between variables are represented and computed.

Several works address static analysis of binary code [4,13,26,27,7], however
they do not consider the problem of identifying memory locations of interest. In
contrast, we identify these locations during the analyses.

An important problem when dealing with binary code analysis is to figure
out the set of interesting data locations used by the program. This is related
to pointer analysis (the so-called aliasing problem), and has been extensively
studied [19,17]. While the majority of pointer analyses have been proposed in
the context of compiler optimizations, a certain number of ideas can be borrowed
and applied to binary code analysis.

In this paper, our approach is applied to static loop bound estimation, in the
context of WCET analysis, so we compare our results with other loop bound
estimation tools. The oRange tool [8] is based on an abstract interpretation
method defined in [2]. It provides a very fast estimation of loop bounds, but it is
restricted to C source code. SWEET [14] features a loop bound estimator, which
works on an intermediary representation (ALF format). The approach is based
on slicing and abstract interpretation and it generally provides very tight loop
bounds even in complex cases, but the running time of the analysis seems to
depend on the loop bound values, and in our experience for large loop bounds
the analysis did not terminate.

KTA [9] is a static WCET analysis tool based on abstract interpretation
and path exploration of binary code. As its purpose is to compute a WCET,
it does not directly provide information on loop bounds and we could not find
documentation on the method used to compute these bounds. Thus, KAT was
not included in our benchmarks. Furthermore, the analysis time seems to depend
on the loop bound values.

Compared to these existing works, our approach combines the polyhedral
domain with binary code analysis, taking into account memory accesses and
supporting analysis of relations between unknown memory addresses; moreover
our method is proved to be sound and to always terminate.

7 Experimental results

Our methodology is implemented in a prototype called Polymalys. Our experi-
ments consist of two parts. First, we validate our approach by comparing Poly-
malys with other existing loop bound analysis tools on classic benchmarks. Then,
we provide detailed examples of programs for which Polymalys successfully esti-
mates loops bounds, while the other tools fail to do so.
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7.1 Implementation

Polymalys is implemented as a plugin of OTAWA (version 2.0), an open source
WCET computation tool [5]. Polymalys relies on OTAWA for control-flow analy-
sis and manipulation, and on PPL [3] for polyhedra operations. Polymalys imple-
ments several optimizations to reduce the number of variables and constraints
of an abstract state (p,R], ∗]), most notably:

– Unmapped variables: any variable that is not in R] or in ∗] can be safely
removed from the polyhedron by performing a projection on the remaining
(used) variables;

– Dead registers: we remove dead register variables by perform a preliminary
liveness analysis, using classic data-flow analysis methods [1];

– Out-of-scope variables: whenever modifying the stack pointer register (SP),
assuming that the stack grows downwards, for each pair of variables (xi, xj)
such that ∗](xi) = xj , if p v� 〈xi < R][SP ]〉 then xi and xj can be removed.

7.2 Benchmarks

The analyses have been executed on a PC with an Intel core i5 3470 at 3.2 Ghz,
with 8 GB of RAM. Every benchmark has been compiled with ARM crosstool-
NG 1.20.0 (gcc version 4.9.1), using the -O1 optimization level.

First, we report the results of our experiments on the Mälardalen bench-
marks [16] and on PolyBench [25] in Table 1. The benchmarks gemver, covari-
ance, correlation, nussinov and floyd-warshall are from PolyBench, while the
others are from Mälardalen. We exclude benchmarks that are not supported
by OTAWA, mainly due to floating point operations or indirect branching (e.g.
switch). We compare Polymalys with SWEET [22], PAGAI [18] and oRange [8].
For each benchmark, we report: the number of lines of code (in the C source),
the total number of loops, the number of loops that are correctly bounded by
each tool, and the computation time. We do not report the computation time for
SWEET because we only had access to it through an online applet. For oRange,
computation time is below the measurement resolution (10ms), except for edn,
where it reaches 50ms. We ran PAGAI with the -d pk -t lw+pf options. For the
PolyBench benchmarks, we did not succeed in running them with SWEET due to
the online applet limitation. For the correlation benchmark, we did not succeed
in running it with PAGAI, it terminates without giving any result.

The execution time of Polymalys is typically higher than that of PAGAI be-
cause we introduce more variables and constraints. We believe that we can reduce
the gap with additional optimizations, however Polymalys will probably remain
more costly , because it works at a lower level of abstraction.

Cases where tools fail to analyze some loop bounds are depicted in bold.
There is only one benchmark for which Polymalys did not find a loop bound:
for janne complex. The difficulty is that it contains complex loop index updates
inside a if-then-else. On the contrary, there are several cases where Polymalys
successfully estimates loops bounds, while the other tools fail to do so. Note
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that PAGAI does not specifically compute loop bounds, instead it computes loop
invariants. We deduced loop bounds from these invariants.

Loops Correctly Bounded Time (ms)

Benchmark LoC Loops Polymalys SWEET PAGAI oRange Polymalys PAGAI

crc 16 1 1 1 1 1 150 40
fibcall 22 1 1 1 1 1 230 50

janne complex 26 2 1 2 1 1 870 140
expint 56 3 3 2 3 3 732 9140

matmult 84 5 5 5 5 5 3455 1380
fdct 149 2 2 2 2 2 7421 2150

jfdctint 165 3 3 3 3 3 10660 1960
fir 189 2 2 2 2 1 4989 390

edn 198 12 12 12 9 12 21356 15660
ns 414 4 4 4 4 4 1700 380

gemver 186 10 10 N/A 10 10 12136 6029
covariance 138 11 11 N/A 11 11 7248 836
correlation 168 13 13 N/A N/A 13 9129 25062
nussinov 143 8 8 N/A 8 8 7272 2811

floyd-warshall 112 7 7 N/A 2 7 2904 468
Table 1. Benchmark results.

7.3 Loop bounds examples

We further illustrate the differences between tool capabilities on some synthetic
program examples.

Example 11. The following example contains pointer aliasing and pointer arith-
metic:

foo() {

int i, bound = 10;

int *ptr = &bound;

ptr++; ptr--; *ptr = 15; k = 0;

for (i = 0; i < bound; i++);

}

PAGAI does not find the loop bound (the loop is considered unbounded),
because it does not infer that ptr = &bound when executing the instruction
*ptr=15. Other tools bound the loop correctly (15 iterations).

Example 12. The following example contains an off-by-one array access:

1 #define SIZE 10

2 foo(int offset) {

3 int i, bound = 10;

Page 19 of 22Author Version of « Static Analysis Of Binary Code With Memory Indirections Using Polyhedra»,
Clément Ballabriga, Julien Forget, Laure Gonnord , Giuseppe Lipari, Jordy Ruiz accepted at VMCAI’19



4 int tab[SIZE];

5 if ((offset > SIZE) || (offset < 0))

6 return -1;

7 tab[offset] = 100;

8 for (i = 0; i < bound; i++);

9 }

The off-by-one error (lines 5-6) may cause the array cell assignment (line 7) to
overwrite the bound variable with the value 100. Polymalys correctly detects that
the loop may iterate 100 times, while oRange and SWEET detect a maximum
of 10 iterations. PAGAI also bounds to 10 iterations, but warns about a possible
undefined behavior and unsafe result. Note that the bound depends on the stack
variable allocation layout. In our experiments, the compiler allocates the bound

variable next to the array. Such an information is much easier to analyze at the
binary code level than at the source code level.

Example 13. The following example shows the benefits of a relational domain:

1 #define MAXSIZE 10

2 foo() {

3 int base, end, i;

4 if (end - base > MAXSIZE)

5 end = base + MAXSIZE;

6 for (i = base; i < end; i++);

7 }

Here, we do not know statically the value of end and base. However, due to
the if statement (line 4), Polymalys introduces the constraint end− base ≤ 10.
Thus, Polymalys bounds the loop correctly (10 iterations), while PAGAI, oRange
and SWEET do not.

Example 14. Finally, we report analysis results for the motivational example of
Figure 1. Polymalys correctly finds that the loop bound is equal to the maximum
size of the UDP payload; PAGAI, oRange and SWEET fail to provide any bound.

8 Conclusion

In this paper we propose a novel technique for performing abstract interpretation
of binary code using polyhedra. It consists in adding new variables to the polyhe-
dra as the analysis progresses, and maintaining a correspondence with registers
and memory addresses. Thanks to the relational properties of polyhedra, our
technique naturally provides information on pointer relations when compared
to other techniques based on non-relational domains. While the complexity of
our method is currently still higher than other existing techniques, we believe
that there is room for improvement. In particular, we are planning to extend our
work with a modular procedure analysis and a data-structure analysis.
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