Clément Ballabriga 
  
Julien Forget 
  
Laure Gonnord 
email: laure.gonnord@ens-lyon.fr
  
Giuseppe Lipari 
  
Jordy Ruiz 
  
Vmcai 
  
Static Analysis Of Binary Code With Memory Indirections Using Polyhedra

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

In real time systems, checking that computations complete before their deadlines under all possible contexts is a crucial activity. Worst-Case Execution Time (WCET) analysis consists in computing an upper bound to the longest execution path in the code. It is usually performed on the binary code, because it needs information on the low-level instructions executed by the hardware processor.

In this paper, we propose a static analysis of binary code based on abstract interpretation using a polyhedra-based abstract domain. Our motivation is the need to enhance existing WCET analysis by improving the computation of upper bounds on the number of iterations in loops. However, our abstract domain has other potential applications (not developed in this paper), such as buffer-overflow analysis, unfeasible paths analysis or symbolic WCET computation [START_REF] Ballabriga | Symbolic wcet computation[END_REF].

Most analyses by abstract interpretation proposed in the literature are performed on source code. On the contrary, as it is usually the case for WCET analysis, we propose to analyze binary code. There are several important advantages in performing static analysis of binary code: 1) we analyze the code that actually runs on the machine, hence no need for additional assumptions on how the compiler works; 2) in presence of undefined behaviors (of source code), the analysis is more accurate; 3) we can perform the analysis even without access to the source code.

The main problem is that, in higher-level representations, the variables, addresses and values are well identified. In binary code, the notion of program variable is lost, so we can only analyze processor registers and memory locations. We propose to identify the subset of registers and memory locations to be represented in the abstract state as the analysis progresses. This representation enables us to design a relational analysis on binary code, which is the main contribution of the paper.

Motivating example

As a motivating example, we present a snippet of C code, inspired from packet processing network drivers in Figure 1 3 . We remind however that our methodology addresses (disassembled) binary code.

The send_request function sends a request in some application-layer protocol that runs over UDP/IP. Lines 12-13 build a packet composed of a variablelength IP header, a fixed-length UDP header, and a variable-length UDP payload (some operations on IP or UDP fields have been omitted). Note that the starting address of the UDP header depends on the size of the IP header (h1->hdr_len). At line 17, we call the function responsible for putting the useful data (payload) into the packet. At line 18, the packet is sent using the send_packet function, which belongs to the lower-level network layer API. This function does not take the packet size as parameter, since it can be deduced from the header: in lines 2-3, the function parses the packet to obtain the UDP payload size, and the UDP checksum is computed by iterating over the payload.

To automatically compute a bound on the number of iterations of the loop at line 4, the analysis has to discover that udp_l equals udp_size (due to line 16). This can be done with an appropriate use of a relational abstract domain. However, very few of the existing analyses running on binary code use a relational domain, and to the best of our knowledge, none support relations between addresses that are not know statically (udp_l, udp_size). Let us emphasize that such a use of pointers and memory buffers is typical of many embedded systems: for instance in network packet processing, but also in many device drivers.

Contribution

The contributions of the paper are:

-A new relational abstract domain POLYMAP, which consists of a polyhedron and two mappings that track the correspondence between data locations (registers or memory) and polyhedra variables; -An abstract interpretation procedure, which computes abstract states of POLYMAP for a small assembly language, and which we prove to be sound; -An experimental evaluation of our prototype called Polymalys. It implements the previous procedure and computes upper bounds to loop iterations. We compare Polymalys with other existing tools on a set of classic benchmarks.

Language definition

In this section, we define the analyzed language, called MEMP, a simplified assembly language where we focus on memory indirection operators.

Syntax

In order to simplify the presentation, we make the following assumptions: all data locations have the same size, memory accesses are aligned to the word size, there are no integer overflows, and function calls are inlined (these limitations could be lifted using for instance [START_REF] Bygde | Fully bounded polyhedral analysis of integers with wrapping[END_REF][START_REF] Sharir | Two approaches to interprocedural data flow analysis[END_REF]). We also reduce the set of instructions to a minimum (Polymalys actually supports the ARM A32 instruction set). The syntax of MEMP is defined in Figure 2. A program is a sequence of labeled instructions. Instructions operate on registers, labels or constants. Concerning memory instructions, if r contains value c, then * (r) denotes the content at address r (below, we overload the notation and also denote * (c) for this content).

OP c denotes the concrete semantics of operation OP. RAND emulates undefined registers, to represent e.g. function parameters. Other instructions are directly commented in the figure (on the left of each instruction). :

:= r1 ← OP c (r2, r3) | OP r1 r2 r3 r ← c | SET r c Emulate undefined r | RAND r r1 ← * (r2) | LOAD r1 r2 * (r1) ← r2 | STORE r1 r2 Branch to l if r = 0 | BR r l Halt | END Fig. 2. Syntax of MEMP

Formal semantics

The small-steps semantics of MEMP is defined below. The semantics of data and arithmetic/logic operations is defined in Figure 3 by function i -→, which operates in a context (R, * ) consisting of two mappings where:

-R : R → Z is the registers content, which maps registers to their values. We assume that it is initially empty; - * : Z → Z is the memory content, which maps memory addresses to their values. We assume that it is also initially empty. Note that integer wrapping could be used to restrain addresses to be in N instead of Z [START_REF] Bygde | Fully bounded polyhedral analysis of integers with wrapping[END_REF].

For a given mapping m, we denote m[x : y] the mapping m such that m (x) = y and, for every register x = x, m (x ) = m(x ). In other words, m[x : y] denotes a single mapping substitution (or mapping addition if x was previously unmapped). We also denote m\(x 1 : x 2 ) the mapping such that the association

x 1 : x 2 is removed from m.
The semantics of control flow operations is defined in Figure 4, by the function c →, which adds a program counter pc to the previous context. We use e → to denote the last transition of the program.

Abstract domain

The abstract domain we propose is based on the polyhedral abstract domain [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF], to which we add information to track relations between polyhedra variables and registers or memory addresses.

(SET r c, R, * ) i -→ (R[r : c], * ) c = random() (RAND r, R, * ) i -→ (R[r : c], * ) R(r2) = c2 R(r3) = c3 c1 = OP c (c2, c3) (OP r1 r2 r3, R, * ) i -→ (R[r1 : c1], * ) R(r2) = c2 * (c2) = c1 (LOAD r1 r2, R, * ) i -→ (R[r1 : c1], * ) R(r1) = c1 R(r2) = c2 (STORE r1 r2, R, * ) i -→ (R, * [c1 : c2])
Fig. 3. Semantics of data and arithmetic operations. 

P [pc] = BR r l R(r) = 0 P (pc, R, * ) c → (pc + 1, R, * ) P [pc] = BR r l R(r) = 0 P (pc, R, * ) c → (l,

Polyhedra

A polyhedron p denotes a set of points in a Z vector space bounded by linear constraints (equalities or inequalities). More formally, let |S| denote the cardinality of set S. Let C n denote the set of linear constraints in Z n on the set of variables V n , where |V n | = n. Then c 1 , c 2 , ..., c m denotes the polyhedron p consisting of all the vectors in Z n that satisfy constraints c 1 , c 2 , . . ., c m , where c i ∈ C n for 1 ≤ i ≤ m (n and m are unrelated). We denote dim(p) = n the dimension of p. In the rest of the paper, the term variable implicitly refers to polyhedron variables. We denote:

-P the set of polyhedra; s ∈ p when s (with s ∈ Z dim(p) ) satisfies the constraints of polyhedron p; p p iff ∀s ∈ p, s ∈ p ; p = p p the convex hull of p and p ; p = p p the union of the constraints of p and p ; vars(p) the set of variables of p, where |vars(p)| = dim(p) by definition; proj (p, x 1 . . . x k ) the projection of p on space x 1 . . . x k , with k < |dim(p)|; p[x i /x j ] the substitution of variable x j by x i in p.

Abstract States

In polyhedral analysis of source code, variables of the polyhedra are related to variables of the source code. In our case, polyhedra variables are related to registers and memory contents. We use the term data location to refer indistinctly to registers or memory addresses. Let V denote the set of polyhedra variables.

The set of abstract states POLYMAP is defined as

A = P × (R → V) × (V → V).
An abstract state a ∈ A, with a = (p, R , * ), consists of a polyhedron p, a register mapping R and an address mapping * . We have R (r) = v iff variable v represents the value of register r in p. We have * (x 1 ) = x 2 iff variable x 2 represents the value at the memory address represented by variable x 1 . We denote vars R (p) the codomain of R (i.e. register content variables), vars A (p) the domain of * (i.e. address variables) and vars C (p) the codomain of * (i.e. address content variables). Sets vars R (p), vars A (p) and vars C (p) are disjoint and are all subsets of vars(p).

Example 1. In the following abstract state, register r 0 contains value 2, and address 2 contains value 1:

({x 1 = 2, x 2 = x 1 , x 3 = 1}, {r 0 : x 1 }, {x 2 : x 3 })
The usual operators on the abstract domain (inclusion, join and widening), and its least and greatest elements are presented in Section 4.4.

Aliasing

In a general sense, aliasing occurs in a program when a data location can be accessed through several symbolic names. As we will see in Section 4, aliases play an important role in our analysis. In fact, we introduce mechanisms that prevent their occurrence in the abstract state (see Section 4.2), so as to simplify the analysis. We define the aliasing relation between two variables x 1 and x 2 of a polyhedron p as follows:

-Cannot alias: whenever

x 1 = x 2 ∩ p = ∅; -May alias: whenever x 1 = x 2 ∩ p = ∅; -Must alias, denoted x 1 ≡ x 2 : whenever p x 1 = x 2 .
The aliasing relation between a register r and a variable x is defined by the aliasing relation between R (r) and x. Similarly, the aliasing relation between two registers r 1 , r 2 is defined by the aliasing relation between R (r 1 ) and R (r 2 ).

To avoid ambiguities with notations on constraints, let same(x 1 , x 2 ) denote the fact that x 1 and x 2 are the same polyhedron variables (not just equivalent variables). There is no need to check register aliases, because a single register cannot be mapped to two different variables (R is a function). The absence of aliases can thus be stated as follows.

Definition 1. Let s = (p, R , * ) be an abstract state. We say that s is alias free iff:

∀x 1 , x 2 ∈ vars A (p), x 1 ≡ x 2 ⇒ same(x 1 , x 2 )

Computing abstract states

Our analysis follows the abstract interpretation framework proposed in [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF], adapted to our setting with non-local control-flow, following the technique proposed in Astrée [START_REF] Kästner | Astrée: Proving the absence of runtime errors[END_REF] and MOPSA [START_REF] Miné | Design of a Modular Platform for Static Analysis[END_REF]. An important singularity of our analysis is that polyhedral variables are progressively created or removed during the analysis. Whenever a new polyhedron variable is introduced, we assume it is a fresh variable that has never been used at any other point during the analysis.

Interpretation algorithm

We use (p , [r i :

x i ], [x j : x k ])(•) as a shorthand for λ(p, R , * ).(p p , R [r i : x i ], * [x j : x k ]
), and denote -when a state component remains unchanged. Procedures to compute the join ( ), widening ( ) and antialias of abstract states, and the transfer function (I ) of instruction I are detailed in the remainder of this section. The complete interpretation procedure is described in Algorithm 1. It applies to a program P of MEMP. During the interpretation, we keep a subset L of labels of interest. Abstract values are stored in a map M from labels to abstract values. We assume that loop header labels L W of P have previously been identified using an existing analysis (e.g. Tarjan's algorithm [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF]). Figure 5 reports a running example of this analysis, that will be used throughout the rest of the section.

Algorithm 1 Interpret(P)

1: procedure update( , a, L)

Auxiliary procedure 2:

a ← antialias(a) 

3: if ∈ LW then Check if l is a loop header 4: new ← M [l ] (M [l ] a 5: else 6: new ← M [ ] a 7: end if 8: if new M [ ]
5 p1 = x1 = 4, x2 = 5 R 1 = {r0 : x0, r1 : x1, r2 : x2, r7 : x7} 6 p2 = p1 x3 = x0 + x1 R 2 = R 1 [r3 : x3] 7 p3 = p2 x4 = x3, x5 = x1 R 2 * 1 = {x4 : x5} 8 p4 = p3 x8 = x7 -x1 R 3 = R 2 [r5 : x8] * 1 10 (from 9) p5 = p4 x9 = x2 R 3 * 2 = {x4 : x9} 10 (from 8) p6 = p4 x8 = 0 R 3 * 1 unify(10, 10 ) p7 = p6[x9/x5] R 3 * 3 = {x4 : x9} 10 10 p8 = p2 x4 = x3, x8 = x7 -x1, R 3 * 3 x1 ≤ x9 ≤ x2 11 p8 x10 = x9 R 3 [r6 : x10] * 3
Fig. 5. Running example of analysis

Anti-aliasing

Whenever updating an abstract state, we immediately remove aliases (line 2), because the absence of aliases significantly simplifies the analysis in places where we need to check the equivalence of two variables (LOAD, STORE, and ). In practice, aliases are introduced when encountering a conditional branching (see Section 4.3). We remove an alias using procedure antialias, which relies on the procedure Merge defined below. It is based on the following observation: if two addresses are equal, then the values stored at these addresses must be equal too. Let x 1 , x 2 be two variables of vars A (p) such that:

¬same(x 1 , x 2 ) ∧ x 1 ≡ x 2 . Merge((p, R , * ), x 1 , x 2 ) = (p , R , * ) with p = (p[x 1 /x 2 ])[ * (x 1 )/ * (x 2 )] and * = * \ (x 2 : * (x 2 ))
Function antialias : A → A applies Merge for each pair of distinct equivalent address variables of an abstract state.

Example 2. In state a below, address x 2 is an alias on address x 1 . Thus, x 4 must be equal to x 3 , so Merge(a, x 1 , x 2 ) replaces x 2 by x 1 and x 4 by x 3 . In the result, x 3 is constrained by the original constraints of x 3 and x 4 , and the memory mapping x 2 : x 4 is discarded.

a = ( x 1 = x 2 , x 3 ≥ 4, x 4 ≤ 5 , -, * = {x 1 : x 3 , x 2 : x 4 }) Merge(a, x 1 , x 2 ) = ( 4 ≤ x 3 ≤ 5 , -, * = {x 1 : x 3 })

Transfer functions

We now define the constraints generated for the analysis of each instruction of our language. We denote (I ) : A → A the transfer function of instruction I.

Binary operation If the relation r 1 = OP c (r 2 , r 3 ) is linear, we map the target register to a new variable, subject to the corresponding linear constraint in the polyhedron. The memory mapping is unchanged. Otherwise, the target register is mapped to a new unconstrained variable.

(OP r 1 r 2 r 3 ) = ( x = OP c (R (r 2 ), R (r 3 )) , [r 1 : x], -)(•) if linear(OP c ) (-, [r 1 : x], -)(•) otherwise
Example 3. In Figure 5, at label 6 (i.e. the label immediately following the ADD operation) we introduce the constraint x 3 = x 0 + x 1 and the register mapping

R 1 (r 3 ) = x 3 .
Set The impact of the immediate load instruction is straightforward:

(SET r 1 c) = ( x = c , [r 1 : x], -)(•)
Rand The random instruction maps a register to an unconstrained variable:

(RAND r 1 ) = (-, [r 1 : x], -)(•)
Load If the input state contains a memory address variable that is equivalent to the load address (note that for alias free states, if such a variable exists, it is unique), then in the output state the value of the destination register is the value of the memory value mapped to this address. Otherwise, the value of the destination register is undefined:

(LOAD r 1 r 2 ) = ( x = * (a) , [r 1 : x], -)(•) if a ≡ r 2 (-, [r 1 : x], -)(•) otherwise 
Example 4. In Figure 5, at label 10 we have x 4 ≡ r 3 and * (x 4 ) = x 9 , so at label 11 we introduce the constraint x 10 = x 9 and the mapping R 3 [r 6 ] = x 10 .

Store Again, we need to consider the impact of aliases. If there exists an address variable equivalent to the target register, then there already exists a memory mapping for this address. 

Replace(a) = ( x = R (r 2 ) , -, [a : x])(•) Create = ( x i = R (r 1 ), x j = R (r 2 ) , -, [x i : x j ])(•) May = {a∈A|a may-alias r1}
λs.(Replace(a)(s) s)

Example 5. In Figure 5, at label 7, we create a new memory mapping * 1 (x 4 ) = x 5 and we introduce the constraints x 4 = x 3 , x 5 = x 1 .

Example 6. In Figure 5, at label 10, when coming from label 9, we replace a previous mapping, x 4 is mapped to x 9 (instead of x 5 previously), and we introduce the constraint x 9 = x 2 .

Branching In Algorithm 1, when branching to a target label ( ) the branching condition holds (r = 0). We add no constraint for the otherwise case because it cannot be encoded using a linear relation.

Example 7. In Figure 5, at label 10, when coming from label 6, we add the constraint x 8 = 0.

Abstract domain operators, least and greatest elements

Our analysis introduces new variables and removes old ones as it progresses.

There is no predefined correspondence between variables and data locations, because the set of data locations used by the program is unknown a priori. As a consequence, it may happen that two abstract states use different variables to designate the same data location. This implies that to compare two states we first need to check whether some variables of the two states actually correspond to the same data location. This verification relies on a unification procedure, presented below. Unification is used for inclusion testing, and also in the join and widening operators.

Unification Unification checks for the equivalence of two variables in two polyhedra, p 1 and p 2 . Intuitively, we try to express each variable as a linear expression of a well-chosen set of variables to conveniently check their equivalence.

Let V c = vars(p 1 ) ∩ vars(p 2 ) and p = proj (p 1 , V c ) proj (p 2 , V c ). We denote npiv (p ) the set of non-pivot variables discovered by Gauss-Jordan elimination performed on the system of equality constraints of p (we exclude inequalities). Then, npiv (p ) is such that, in p :

no variable in npiv (p ) is equivalent to a linear expression of other variables of npiv (p ); each variable in vars(p )\npiv (p ) is equivalent to a linear expression of variables from npiv (p ).

Let linexpr (x, p 1 , npiv (p )) denote the linear expression representation of variable x ∈ vars(p 1 ) in terms of variables in npiv (p ), represented as the vector of the linear expression coefficients. Let C be the constraint system of proj (p 1 , x∪npiv (p )). If C contains an equality constraint involving x, then computing linexpr (x, p 1 , npiv (p )) is straightforward. Otherwise, the empty vector is returned. If several (non-equivalent) equality constraints appear, we arbitrarily pick one. Note that, even though our unification can miss equivalent variables, this does not jeopardize the soundness of the analysis (see Section 5.3 and in particular Lemma 3).

Algorithm 2 describes our unification procedure. We directly modify the second state to unify it with the first one. First, we compute set of non-pivot variables (line 4). Then, we check for the equivalence of address variables according to their linear expression representation, and we perform variable substitutions in p 2 , R 2 and * 2 in case of equivalence (line 8). Register unification is simpler, we just replace the bindings in R 2 by those of R 1 (line 12). Example 8. In Figure 5, when computing unify(10, 10 ), s 1 corresponds to the state of 10 and s 2 to the state of 10 . A possible set of non-pivot variables is {x 0 , x 7 }. In s 1 (and in s 2 ), we have x 4 -x 0 + 0 • x 7 -4 = 0, so linexpr (x 4 ) = [1; -1; 0; -4] (corresponding, respectively, to the coefficients of x 4 , x 0 , x 7 , and the constant). Since * 2 (x 4 ) = x 9 (in s 1 ) and * 1 (x 4 ) = x 5 (in s 2 ), we replace x 5 by x 9 in s 2 .

Algorithm 2 unify((p

1 , R 1 , * 1 ), (p 2 , R 2 , * 2 )) 1: (p 2 , R 2 , * 2 ) ← (p2,
Inclusion Let us now define formally the partially ordered set (A, ). Given two functions f and g, we denote f ⊆ g when Dom(f ) ⊆ Dom(g) and ∀x ∈ Dom(f ) : f (x) = g(x). Introducing new mappings in R or * (i.e. enlarging their domains) actually removes feasible concrete states, thus we define abstract states inclusion as follows (see lemma 4 for more details):

Definition 2. Let a 1 = (p 1 , R 1 , * 1 ) and a 2 = (p 2 , R 2 , * 2 )
. The ordering operator is defined as follows:

a 1 a 2 ⇔p 1 p 2 ∧ R 2 ⊆ R 1 ∧ * 2 ⊆ * 1 with (p 1 , R 1 , * ) = unify(a 2 , a 1 )
There exists several equivalent representations of the greatest and least elements of (A, ). We define them as follows: Definition 3. The greatest element of (A, ) is denoted , with = ( , ∅, ∅). Definition 4. The least element of (A, ) is denoted ⊥ and defined as ⊥ = (p ⊥ , R ⊥ , * ⊥ ), where p ⊥ is the empty polyhedron and R ⊥ , * ⊥ are such that every data location is mapped to a variable.

Join Algorithm 3 describes our join procedure. It unifies the input states (line 1), then computes the convex hull on the unified states (line 2). Then, if a memory location or register is bound in one input state and unbound in the other, it is unbound in the result state. Example 9. In Figure 5, when computing 10 10 , we obtain identical register and memory mappings for 10 and unify [START_REF] Bygde | Fully bounded polyhedral analysis of integers with wrapping[END_REF][START_REF] Bygde | Fully bounded polyhedral analysis of integers with wrapping[END_REF]. The convex hull p 5 p 7 groups the constraints on x 9 (x 1 ≤ x 9 ≤ x 2 ) and lifts those on x 8 .

Algorithm 3 (p 1 , R 1 , * 1 ) (p 2 , R 2 , * 2 ) 1: (p 2 , R 2 , * 2 ) = unify((p1, R 1 , * 1 ), (p2, R 2 , * 2 )) 2: p ← p1 p 2 3: R ← ∅; * ← ∅ 4: for all r ∈ Dom(R 1 ) do 5: if R 1 (r) = R 2 (r) then R (r) ← R 1 (
Widening Due to the presence of loops, the widening operator is used to ensure that our analysis reaches a fixpoint. is defined just like , except that we use a polyhedra widening operator in place of .

Loop bounds

To compute loop bounds, for each loop header label we create a "virtual" register r , to count the number of iterations of . We instrument the program so that the register r is set to 0 when entering loop , and incremented at each iteration of (which is fairly classic, see e.g. [START_REF] Gulwani | Speed: precise and efficient static estimation of program computational complexity[END_REF]). Finally, let P a program of MEMP and M = interpret(P ). Let e be the label of instruction

END in P . Let (p f , R f , * f ) = M [ e ].
Then the loop bound for a loop header is computed as max(p f , R f [r ]) (where max(p, x) denotes the greatest value of variable x satisfying the constraints of p).

Soundness

In this section, we prove the soundness of our analysis. We first establish a set of important lemmas on our abstract domain operators, and then prove soundness with respect to the concretization function.

Join

Operator is not commutative. We establish that it does however compute an upper bound of its operands, with respect to our inclusion definition (Lemma 1). The proof is based on two auxiliary properties on mapping inclusions:

Property 1. Let a 1 = (p 1 , R 1 , * 1 ), a 2 ∈ A, a 3 = (p 3 , R 3 , * 3 ) = a 1 a 2 . We have: (p 1 p 3 ) ∧ (R 3 ⊆ R 1 ) ∧ ( * 3 ⊆ * 1 )
Proof. Considering Algorithm 3: (p 1 p 3 ) follows from line 2, (R 3 ⊆ R 1 ) from line 5, and ( * 3 ⊆ * 1 ) from line 8.

Property 2. Let a 1 , a 2 , a 1 ∈ A, with a 1 = (p 1 , R 1 , * 1 ) = unify(a 2 , a 1 ). Then: (R 2 ⊆ R 1 ) ∧ ( * 2 ⊆ * 1 ) ⇒ (R 2 ⊆ R 1 ) ∧ ( * 2 ⊆ * 1 ) Proof. Obvious from Algorithm 2. Lemma 1. Let a 1 , a 2 ∈ A. We have: (a 1 a 1 a 2 ) ∧ (a 2 a 1 a 2 ).
Proof. Polyhedron inclusion follows from the polyhedra join operator. We must also prove the inclusion of register and memory mappings (after unification).

Case for a 1 follows from Properties 1 and 2. Concerning the case for a 2 , let a 3 = a 1 a 2 . When computing a 3 , a variable v of a 2 falls into one of three categories: 1) v is also in vars(p 1 ), it remains in a 3 ; 2) v is equivalent to a variable v 1 of vars(p 1 ), it is replaced by v 1 in a 3 (Algorithm 2, line 8); 3) otherwise, it is removed (Algorithm 3). Then, let a 2 = unify(a 3 , a 2 ). When computing a 2 , variables that fell in category 2 at the previous step (when computing a 3 ) will be replaced by their equivalent in a 3 , because they fall again in category 2. Thus we obtain R 3 ⊆ R 2 , * 3 ⊆ * 2 , which concludes the proof.

Widening

Lemma 2 establishes that operator is indeed a widening operator.

Property 3. Let a 1 , a 2 ∈ A. We have: (a 1 a 2 ) (a 1 a 2 ).
Proof. The property holds because and use the same unification procedure, and because we assume that is a valid polyhedra widening operator.

Property 4. Let a 1 = (p 1 , R 1 , * 1 ), a 2 ∈ A, a 3 = (p 3 , R 3 , * 3 ) = a 1 a 2 . We have: (p 1 p 3 ) ∧ (R 3 ⊆ R 1 ) ∧ ( * 3 ⊆ * 1 )
Proof. Same as for Property 1.

Property 5. Let (b n ) n∈N be a non decreasing infinite sequence in A. Then, the sequence a 0 = b 0 and a n+1 = a n b n+1 converges in a finite number of steps.

Proof. Thanks to Property 4, and considering that there is a finite quantity of data locations, there exists N ∈ N such that for all i > N , R i+1 = R i and * i+1 = * i . Thus, a i+1 = (p i q i+1 , R i , * i ), where q i+1 is the polyhedron of b i+1 and p i that of a i .

Assuming that is a valid polyhedra widening operator, there exists m > N such that p m+1 = p m . Since m > N we also have R m+1 = R m and * m+1 = * m , which concludes the proof. Lemma 2. Operator is a widening operator.

Proof. Follows from Properties 3 and 5.

Concrete and abstract states

Let C = ((R → Z) × (Z → Z)) denote the set of concrete states (pairs of registers contents and memory contents). Data locations are mapped to values in a concrete state, while they are mapped to polyhedra variables in the abstract state. The concretization function γ relates data location values to data location variables as follows:

Definition 5. Let a = (p, R , * ) be an abstract state. The concretization function γ is defined as follows:

γ : A -→ P(C) (p, R , * ) -→ ( * , R) | ∃f : Dom( * ) → Dom( * ),   r∈Dom(R ) R (r) = R(r) x∈Dom( * ) x = f (x), * (x) = * (f (x))   p
More intuitively, we build a polyhedron p with the following constraints: 1) register values of the concrete state (R(r)) must be equal to the corresponding variable in the abstract state (R (r)); 2) we try to find a function f that maps address variables to addresses (x = f (x)), then the content of each address variables ( * (x)) must be equal to the memory value ( * (f (x))). If p p then the concrete state satisfies the constraints of p and belongs to the concretization.

Example 10. a = ({1 ≤ x 1 ≤ 2, x 2 = x 1 , x 3 = 1}, {r 0 : x 1 }, {x 2 : x 3 }) γ(a) = {({r 0 = 1}, { * (1) = 1}}), (f (x 2 ) = 1) ({r 0 = 2}, { * (2) = 1})} (f (x 2 ) = 2) Let c - → * denote the transitive closure of c →.
The soundness of our abstract interpretation is established as follows:

Theorem 1. Let P be a MEMP program. Let M = Interpret(P ). Then, for any concrete state s init :

(P (l 1 , s init ) c - → * ( , s)) =⇒ (s ∈ γ(M [ ]))
Proof. The proof of soundness follows from the structure of Algorithm 1, and from the following lemmas, which establish the soundness of each operator used in the algorithm. Lemma 3. Let a 1 , a 2 ∈ A. We have: γ(a 1 ) = γ(unify(a 2 , a 1 )).

Proof. Let a 1 = unify(a 2 , a 1 ). Since we assume that a 1 and a 2 are alias free (recall Section 4.2), any two non-equivalent variables in a 1 are also replaced by non-equivalent variables in a 1 (or unchanged). Thus a 1 is a simple renaming of a 1 , and so a 1 and a 1 have the same concretization.

Lemma 4. Let a 1 , a 2 ∈ A. We have: (a 1 a 2 ) ⇒ γ(a 1 ) ⊆ γ(a 2 )
Proof. Let s ∈ γ(a 1 ). Let a 1 = (p 1 , R 1 , * 1 ) = unify(a 2 , a 1 ). From Lemma 3, s ∈ γ(a 1 ), thus there exists a function f for s satisfying the property of Definition 5 with a = a 1 . Now, assume that p 1 p 2 ∧ R 2 ⊆ R 1 ∧ * 2 ⊆ * 1 (i.e. a 1 a 2 ). Then there exists a function f for s that satisfies Definition 5, with a = a 2 : just take f such that it is the restriction of f to Dom( * 2 ). So s ∈ γ(a 2 ).

Several other abstract domains other that polyhedra, capable of representing linear constraints between variables, have been proposed, such as for instance [START_REF] Karr | Affine relationships among variables of a program[END_REF][START_REF] Venet | The gauge domain: Scalable analysis of linear inequality invariants[END_REF][START_REF] Miné | Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics[END_REF]. Choosing the most appropriate domain boils down to a trade-off between the execution time and the precision of the analysis. In our work we chose the polyhedra domain and thus favored precision. However, we think that it would be simple to adapt our work to another domain (e.g. to reduce analysis time), because our computation of memory and register mappings does not depend on how constraints between variables are represented and computed.

Several works address static analysis of binary code [START_REF] Balakrishnan | Analyzing memory accesses in x86 executables[END_REF][START_REF] Djoudi | Binsec: Binary code analysis with low-level regions[END_REF][START_REF] Reps | Improved memory-access analysis for x86 executables[END_REF][START_REF] Sepp | Precise static analysis of binaries by extracting relational information[END_REF][START_REF] Bardin | Refinement-based CFG reconstruction from unstructured programs[END_REF], however they do not consider the problem of identifying memory locations of interest. In contrast, we identify these locations during the analyses.

An important problem when dealing with binary code analysis is to figure out the set of interesting data locations used by the program. This is related to pointer analysis (the so-called aliasing problem), and has been extensively studied [START_REF] Hind | Pointer analysis: Haven't we solved this problem yet?[END_REF][START_REF] Hardekopf | The ant and the grasshopper: fast and accurate pointer analysis for millions of lines of code[END_REF]. While the majority of pointer analyses have been proposed in the context of compiler optimizations, a certain number of ideas can be borrowed and applied to binary code analysis.

In this paper, our approach is applied to static loop bound estimation, in the context of WCET analysis, so we compare our results with other loop bound estimation tools. The oRange tool [START_REF] Bonenfant | oRange: A tool for static loop bound analysis[END_REF] is based on an abstract interpretation method defined in [START_REF] Ammarguellat | Automatic recognition of induction variables and recurrence relations by abstract interpretation[END_REF]. It provides a very fast estimation of loop bounds, but it is restricted to C source code. SWEET [START_REF] Ermedahl | Loop bound analysis based on a combination of program slicing, abstract interpretation, and invariant analysis[END_REF] features a loop bound estimator, which works on an intermediary representation (ALF format). The approach is based on slicing and abstract interpretation and it generally provides very tight loop bounds even in complex cases, but the running time of the analysis seems to depend on the loop bound values, and in our experience for large loop bounds the analysis did not terminate.

KTA [START_REF] Broman | A brief overview of the KTA WCET tool[END_REF] is a static WCET analysis tool based on abstract interpretation and path exploration of binary code. As its purpose is to compute a WCET, it does not directly provide information on loop bounds and we could not find documentation on the method used to compute these bounds. Thus, KAT was not included in our benchmarks. Furthermore, the analysis time seems to depend on the loop bound values.

Compared to these existing works, our approach combines the polyhedral domain with binary code analysis, taking into account memory accesses and supporting analysis of relations between unknown memory addresses; moreover our method is proved to be sound and to always terminate.

Experimental results

Our methodology is implemented in a prototype called Polymalys. Our experiments consist of two parts. First, we validate our approach by comparing Polymalys with other existing loop bound analysis tools on classic benchmarks. Then, we provide detailed examples of programs for which Polymalys successfully estimates loops bounds, while the other tools fail to do so.

Implementation

Polymalys is implemented as a plugin of OTAWA (version 2.0), an open source WCET computation tool [START_REF] Ballabriga | OTAWA: An open toolbox for adaptive WCET analysis[END_REF]. Polymalys relies on OTAWA for control-flow analysis and manipulation, and on PPL [START_REF] Bagnara | The Parma polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems[END_REF] for polyhedra operations. Polymalys implements several optimizations to reduce the number of variables and constraints of an abstract state (p, R , * ), most notably:

-Unmapped variables: any variable that is not in R or in * can be safely removed from the polyhedron by performing a projection on the remaining (used) variables; -Dead registers: we remove dead register variables by perform a preliminary liveness analysis, using classic data-flow analysis methods [START_REF] Aho | Compilers: Principles, Techniques, and Tools[END_REF]; -Out-of-scope variables: whenever modifying the stack pointer register (SP ), assuming that the stack grows downwards, for each pair of variables (x i , x j ) such that * (x i ) = x j , if p x i < R [SP ] then x i and x j can be removed.

Benchmarks

The analyses have been executed on a PC with an Intel core i5 3470 at 3.2 Ghz, with 8 GB of RAM. Every benchmark has been compiled with ARM crosstool-NG 1.20.0 (gcc version 4.9.1), using the -O1 optimization level. First, we report the results of our experiments on the Mälardalen benchmarks [START_REF] Gustafsson | The Mälardalen WCET benchmarks: Past, present and future[END_REF] and on PolyBench [START_REF] Pouchet | Polybench: The polyhedral benchmark suite[END_REF] in Table 1. The benchmarks gemver, covariance, correlation, nussinov and floyd-warshall are from PolyBench, while the others are from Mälardalen. We exclude benchmarks that are not supported by OTAWA, mainly due to floating point operations or indirect branching (e.g. switch). We compare Polymalys with SWEET [START_REF] Lisper | SWEET-a tool for WCET flow analysis[END_REF], PAGAI [START_REF] Henry | Pagai: A path sensitive static analyser[END_REF] and oRange [START_REF] Bonenfant | oRange: A tool for static loop bound analysis[END_REF]. For each benchmark, we report: the number of lines of code (in the C source), the total number of loops, the number of loops that are correctly bounded by each tool, and the computation time. We do not report the computation time for SWEET because we only had access to it through an online applet. For oRange, computation time is below the measurement resolution (10ms), except for edn, where it reaches 50ms. We ran PAGAI with the -d pk -t lw+pf options. For the PolyBench benchmarks, we did not succeed in running them with SWEET due to the online applet limitation. For the correlation benchmark, we did not succeed in running it with PAGAI, it terminates without giving any result.

The execution time of Polymalys is typically higher than that of PAGAI because we introduce more variables and constraints. We believe that we can reduce the gap with additional optimizations, however Polymalys will probably remain more costly , because it works at a lower level of abstraction.

Cases where tools fail to analyze some loop bounds are depicted in bold. There is only one benchmark for which Polymalys did not find a loop bound: for janne complex. The difficulty is that it contains complex loop index updates inside a if-then-else. On the contrary, there are several cases where Polymalys successfully estimates loops bounds, while the other tools fail to do so. Note that PAGAI does not specifically compute loop bounds, instead it computes loop invariants. We deduced loop bounds from these invariants. 

Loop bounds examples

We further illustrate the differences between tool capabilities on some synthetic program examples. The off-by-one error (lines 5-6) may cause the array cell assignment (line 7) to overwrite the bound variable with the value 100. Polymalys correctly detects that the loop may iterate 100 times, while oRange and SWEET detect a maximum of 10 iterations. PAGAI also bounds to 10 iterations, but warns about a possible undefined behavior and unsafe result. Note that the bound depends on the stack variable allocation layout. In our experiments, the compiler allocates the bound variable next to the array. Such an information is much easier to analyze at the binary code level than at the source code level.

Example 13. The following example shows the benefits of a relational domain: for (i = base; i < end; i++); } Here, we do not know statically the value of end and base. However, due to the if statement (line 4), Polymalys introduces the constraint endbase ≤ 10. Thus, Polymalys bounds the loop correctly (10 iterations), while PAGAI, oRange and SWEET do not.

Example 14. Finally, we report analysis results for the motivational example of Figure 1. Polymalys correctly finds that the loop bound is equal to the maximum size of the UDP payload; PAGAI, oRange and SWEET fail to provide any bound.

Conclusion

In this paper we propose a novel technique for performing abstract interpretation of binary code using polyhedra. It consists in adding new variables to the polyhedra as the analysis progresses, and maintaining a correspondence with registers and memory addresses. Thanks to the relational properties of polyhedra, our technique naturally provides information on pointer relations when compared to other techniques based on non-relational domains. While the complexity of our method is currently still higher than other existing techniques, we believe that there is room for improvement. In particular, we are planning to extend our work with a modular procedure analysis and a data-structure analysis.

Fig. 1 .

 1 Fig. 1. Network-inspired benchmark

  l1 : I1, l2 : I2, . . . , ln : END Labels (L) ::= {l1, l2, . . .} Registers (R) ::= {r1, r2, . . .} Constants (C) ::= {c1, c2, . . .} Instructions (I)

Fig. 4 .

 4 Fig. 4. Semantics of control-flow operations.

r) end if 6: end for 7 :

 7 for all a ∈ Dom( * 1 ) do 8: if * 1 (a) = * 2 (a) then * (a) ← * 1 (a) end if 9: end for 10: return (p, R , * )

Example 11 . 1 #Author

 111 The following example contains pointer aliasing and pointer arithmetic: foo() { int i, bound = 10; int *ptr = &bound; ptr++; ptr--; *ptr = 15; k = 0; for (i = 0; i < bound; i++); } PAGAI does not find the loop bound (the loop is considered unbounded), because it does not infer that ptr = &bound when executing the instruction *ptr=15. Other tools bound the loop correctly (15 iterations). Example 12. The following example contains an off-by-one array access: Version of « Static Analysis Of Binary Code With Memory Indirections Using Polyhedra», Clément Ballabriga, Julien Forget, Laure Gonnord , Giuseppe Lipari, Jordy Ruiz accepted at VMCAI'19 int tab[SIZE]; if ((offset > SIZE) || (offset < 0)) return -1; tab[offset] = 100; for (i = 0; i < bound; i++); }

  end, i; if (end -base > MAXSIZE) end = base + MAXSIZE;

  The previous content at this address is replaced by the content of the source register (see Replace below). Otherwise, we create a new memory mapping (see Create below). An alias free state contains at most one address variable that must-alias with r 1 . It may however contain several mayalias address variables a . For each such a , this means that a either equals r 1 , which requires a Replace, or is different from r 1 , which has no impact. We apply operator on both cases to manage this uncertainty, and add the constraints for each may-alias address (see May below).

	(STORE r 1 r 2 ) =	λs.Replace(a)(May(s)) if ∃a ∈ vars A (p), a ≡ r 1 λs.Create(May(s)) otherwise
	With ( denotes function composition):

  (r) by R 1 (r) in p 2 , R 2 ,and * 2 13: end for 14: return (p 2 , R 2 , * 2 )

			R 2 , * 2 )
	2: Vc ← vars(p1) ∩ vars(p2)	common variables
	3: p ← proj (p1, Vc)	proj (p2, Vc)
	4: B ← npiv (p )
	5: for all (xi, xj) ∈ varsA(p1) × varsA(p2) do
	6:	
			2
	9:	end if
	10: end for
	11: for all r ∈ Dom(R 1 ) ∩ Dom(R 2 ) do	variables are trivially equivalent
	12:	Replace R 2

vi = linexpr (xi, p1, B); vj = linexpr (xj, p2, B) 7: if vi = [] and vj = [] and vi = vj then variables are equivalent 8: Replace xj by xi and * (xj) by * (xi) in p 2 , R 2 , and *

Table 1 .

 1 Benchmark results.

				Loops Correctly Bounded	Time (ms)
	Benchmark	LoC Loops Polymalys SWEET PAGAI oRange Polymalys PAGAI
	crc	16	1	1	1	1	1	150	40
	fibcall	22	1	1	1	1	1	230	50
	janne complex 26	2	1	2	1	1	870	140
	expint	56	3	3	2	3	3	732	9140
	matmult	84	5	5	5	5	5	3455	1380
	fdct	149	2	2	2	2	2	7421	2150
	jfdctint	165	3	3	3	3	3	10660	1960
	fir	189	2	2	2	2	1	4989	390
	edn	198	12	12	12	9	12	21356	15660
	ns	414	4	4	4	4	4	1700	380
	gemver	186	10	10	N/A	10	10	12136	6029
	covariance	138	11	11	N/A	11	11	7248	836
	correlation	168	13	13	N/A N/A	13	9129	25062
	nussinov	143	8	8	N/A	8	8	7272	2811
	floyd-warshall 112	7	7	N/A	2	7	2904	468

Partially funded by the French National Research Agency, Corteva project (ANR-17-CE25-0003), and CODAS project (ANR-17-CE23-0004-01)

Author Version of « Static Analysis Of Binary Code With Memory Indirections Using Polyhedra», Clément Ballabriga, Julien Forget, Laure Gonnord , Giuseppe Lipari, Jordy Ruiz accepted at VMCAI' [START_REF] Hind | Pointer analysis: Haven't we solved this problem yet?[END_REF] Author Version of « Static Analysis Of Binary Code With Memory Indirections Using Polyhedra», Clément Ballabriga, Julien Forget, Laure Gonnord , Giuseppe Lipari, Jordy Ruiz accepted at VMCAI'19 Lemma 5. Let a 1 , a 2 ∈ A. We have: γ(a 1 ) ∪ γ(a 2 ) ⊆ γ(a 1 a 2 ).

Proof. From Lemma 1 and Lemma 4. Lemma 6. Let a 1 , a 2 ∈ A. We have: γ(a 1 ) ∪ γ(a 2 ) ⊆ γ(a 1 a 2 ) Proof. From Lemma 5, Lemma 4 and Property 3.

Lemma 7. Let a ∈ A. We have: γ(a) ⊆ γ(antialias(a))

The soundness of antialias follows.

Lemma 8. Let P be a MEMP program. Let M = Interpret(P ). Then, for all labels , of P :

Proof. Trivially follows from the formal semantics and from the definition of transfer functions, except for STORE. Let a = (p , R , * ) = (STORE r 1 r 2 ) (a). The proof follows from noting that: 1) Both in the Create and Replace cases, we obtain * (R (r 1 )) = R (r 2 ), which is coherent with the formal semantics of STORE;

2) The soundness of May follows from the soundness of and Replace.

Lemma 9. Algorithm 1 terminates.

Proof. Because is applied on loop headers and is a valid widening operator.

Related works

Abstract interpretation using polyhedra has been first described in [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF]. Static analysis tools such as Astree [START_REF] Kästner | Astrée: Proving the absence of runtime errors[END_REF], Frama-C [START_REF] Correnson | Combining analyses for c program verification[END_REF] or PAGAI [START_REF] Henry | Pagai: A path sensitive static analyser[END_REF] use various abstract domains (including polyhedra) to generate invariants for proving various properties, such as the absence of array out-of-bounds accesses for instance. While Astree and Frama-C work on the Abstract Syntax Tree, PAGAI processes LLVM Intermediate Representation (IR). Compared to our approach, both the AST and LLVM representations are closer to the source code, and contain information on variables and their types, and also a precise control flow. This makes the analysis easier to design, but less precise as far as WCET is concerned.