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Abstract. Large-scale and real-time transport mode detection is an open
challenge for smart transport research. Although massive mobility data
is collected from smartphones, mining mobile network geolocation is
non-trivial as it is a sparse, coarse and noisy data for which real transport
labels are unknown. In this study, we process billions of Call Detail
Records from the Greater Paris and present the first method for transport
mode detection of any traveling device. Cellphones trajectories, which
are anonymized and aggregated, are constructed as sequences of visited
locations, called sectors. Clustering and Bayesian inference are combined
to estimate transport probabilities for each trajectory. First, we apply
clustering on sectors. Features are constructed using spatial information
from mobile networks and transport networks. Then, we extract a subset
of 15% sectors, having road and rail labels (e.g., train stations), while
remaining sectors are multi-modal. The proportion of labels per cluster is
used to calculate transport probabilities given each visited sector. Thus,
with Bayesian inference, each record updates the transport probability of
the trajectory, without requiring the exact itinerary. For validation, we use
the travel survey to compare daily average trips per user. With Pearson
correlations reaching 0.96 for road and rail trips, the model appears
performant and robust to noise and sparsity.

Keywords: Mobile Phone Geolocation, Call Detail Records, Trajectory
Mining, Transport Mode, Clustering, Bayesian Inference, Big Data

1 Introduction

The growing use of smartphones generates massive ubiquitous mobility data.
With unprecedented penetration rates, mobile networks are supplying the
largest geolocation databases. Mobile phone providers collect real-time Call
Detail Records (CDR) from calls, text messages or data at no extra-cost for
billing purposes. Still, traditional transport planning models have so far re-
lied on expensive travel surveys, conducted once a decade. Consequently,



surveys are rapidly outdated, while suffering from sampling bias and biased
users’ responses. Past research used CDR to estimate travel demand [21], opti-
mal locations for new transport infrastructures [7], weekly travel patterns [9],
activity-based patterns [12], urban land-use [19], impact of major events or
incidents [6] and population dynamics [5, 14]. A few studies used triangulation,
based on signal strength e.g., in Boston U.S. [4, 20]. In Europe, privacy policies
restrict triangulation usage to police demands. CDR and GPS data both respect
privacy compliance for geolocation. Still GPS data collection requires users
to install tracking applications and activate GPS, which has greedy battery
consumption. Consequently, GPS samples represent subsets of users’ trips
while CDR generate locations from larger populations over longer time periods.
However CDR geolocation is coarse, noisy and affected by the usage frequency
of devices. Raw CDR provide approximate and partial knowledge of true users’
paths, hence requiring careful pre-processing. Past methods on transport mode
detection mainly involved GPS data and are hardly transposable to CDR. In
addition, these studies applied supervised learning [10, 18, 22] requiring a train-
ing dataset of trajectories with transport mode labels. Transport modes were
either collected via applications where users consent to enter their travel de-
tails, or manually identified using expert knowledge, which is a costly task. In
real world scenarios, transport modes of traveling populations are unavailable.
Therefore we need new unsupervised approaches to tackle this issue.
This paper presents the first unsupervised learning method for transport mode
detection from any CDR trajectory. As this is a first study, we focus on a bi-
modal separation between road and rail trips. In collaboration with a mobile
phone provider, we process one month trajectories from the Greater Paris, which
are anonymized and aggregated for privacy. Trajectories are represented as
sequences of visited mobile network areas, called sectors. Our model combines
clustering with Bayesian inference to determine the probability that cellphones
traveled by road or rail knowing their trajectories on the mobile network. The
transport probability of a trajectory is initialized with a prior obtained from the
travel survey and updated with each new visited sector. Transport probabilities
for sectors are derived after clustering sectors by transport type. Sectors features
are constructed using both mobile networks and transport networks spatial
properties. Then, for a subset of 15% sectors, we extract transport labels, being
road or rail, (e.g., equipments inside train stations, on highways etc.) while the
remaining sectors are multimodal. For each cluster, we use the binary labels to
calculate continuous transport probabilities as the proportion of labeled sectors
among total sectors. Trajectories are thus attributed the most probable mode
among road, rail or mixed (i.e., when probabilities are close). For validation, we
calculate daily average rail and road trip counts per user and obtain Pearson
correlations with the travel survey above 0.96, for the 8 departments of the
region. In the next sections, we review the literature in Sec. 2 and describe data
engineering in Sec. 3. The methodology steps are presented in Sec. 4. Eventually,
we discuss main results in Sec. 5 and provide conclusion.
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2 Related Work

Common applications for geolocation data mining are the identification of
travel patterns for personal travel recommendation [23, 24], anomalous behav-
ior detection[17] and transport planning [12]. Several works used supervised
transport mode learning from GPS trajectories. A multilayer perceptron was
used to identify car, bus and walkers modes for 114 GPS trajectories in [10].
Features were the average and maximum speed and acceleration, the total and
average travel distance, the number of locations divided by travel distance and
the number of locations divided by travel time. The best accuracy was 91%
using a 10-folds cross validation. In [18], speed and acceleration features were
collected from 16 GPS trajectories. Several classification models (Decision Tree,
Kmeans, Naïve Bayes, NNeighbor, SVM, Discrete and Continuous HMM) were
compared. The Decision tree with Discrete Hidden Markov Model obtained the
highest accuracy (74 %). Still, supervised approaches with GPS are constrained
by the small size of the training data. Moreover, although transport labels can
be collected for small GPS datasets, they are unavailable for CDR.
Meanwhile, few studies tackled unsupervised transport mode detection. In [8]
fuzzy logic was used as a scoring function calculated between consecutive GPS
traces. The transport score was calculated with boolean conditions on speed,
distances to transport network and previous mode. Still, this work lacked a
performance evaluation. In [15], base stations located inside Paris underground
were used to identify underground mode from CDR trips. A record detected by
an underground antenna was labeled accordingly. This approach is limited as it
relies exclusively on indoor equipment inside the underground. No additional
modes were identified. To our knowledge, only one work addressed unsuper-
vised transport mode learning for two modes, road and public transport, using
triangulated CDR [20]. The approach applies travel times clustering followed
by a comparison with Google travel times. Still, CDR low frequency induces
important incertitude and delay on start and end travel times of CDR trips.
Consequently a device may not be detected as traveling when the real trip
begins and ends. Moreover the presented approach was demonstrated on one
unique Origin and Destination (OD) pair which is not sufficient to validate the
method. In dense urban areas, travel times can be affected by traffic states (e.g.,
rush hours) and can be identical for several modes, depending on the OD.
Our work presents a novel method for transport mode detection by combining
two unsupervised techniques, namely clustering and Bayesian inference. This
model classifies millions of CDR trajectories into road and rail trips. Instead
of clustering trajectories with features such as speed or travel time, highly
impacted by the imprecision, sparsity and noise of CDR geolocation, we apply
clustering on sectors and build spatial features using transport networks. A
small subset of road and rail labels is collected for sectors in order to calculate
sectors transport probabilities. After the Bayesian inference step, we conduct
a large-scale validation for the complete region, using the travel survey. The
high Pearson correlations, obtained on daily average trips per user, proves the
method is generalizable, performant and robust to noise and sparsity.
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3 Data Engineering

For this study, we collect anonymized CDR trajectories from the Greater Paris
region, over one month. Sectors features are constructed using the base stations
referential jointly with transport networks infrastructures. For data normaliza-
tion, we introduce a specific procedure accounting for heterogeneous urban
density. Label extraction is realized to gather transport labels for a small subset
of sectors. For model validation we use the household travel survey from 2010
conducted by Île de France Mobilités-OMNIL-DRIEA [1].

3.1 Mobile Network

Fig. 1: schema of a tri-sector antenna.
The antenna is represented by
the black dot. Circular areas are
cells for 2G, 3G and 4G signals.

Fig. 2: Example of a voronoi sector and its as-
sociated shortest distance to transports
axes. Five roads (colored lines) and one
rail line (dashed line) intersect the sector.

Mobile providers do not have access to GPS coordinates of mobile phones.
Although we know which base station is connected to a device, it is unlikely
to encounter mobile users positioned exactly at the base station. Devices are
located inside mobile network areas covered by base stations signal range. For
this study, we use the mobile network referential of the Greater Paris region.
This region has a 12000 km2 area with more than 1200 cities and 12 millions
inhabitants. It is covered by thousands of mobile network antennas. Each base
station emits 2G, 3G or 4G radio signals. Cells are circular areas covered by
signals (see Fig. 1). Each cell equipment is oriented toward one direction. The
partitions of cells directions are called sectors. The average sector number per
antenna is 3 where one sector covers 120◦ around the base station. A cellular
tessellation is composed of a multitude of overlapping areas. We use the sector
tessellation to get rid of overlaps and create the voronoï partitions using sectors
centroids (see Fig. 2). We associate each mobile phone record to a sector location.
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3.2 Transport Networks

Transport networks are used to construct sectors features. We retrieve rails in-
frastructures for underground, overground, tramway and train stations shared
by Île-de-France Mobilité on their platform Open Data STIF [2]. In addition we
use OpenStreetMap (OSM) [3] to retrieve highspeed rails and road infrastruc-
tures. Roads are categorized by traffic importance. We filter residential roads
which have highest road count and lowest traffic.

3.3 Raw Features Construction

We construct our dataset D = {drail , droad, dstation, nroad, nrail , wstation} where
features stand for:

– droad: shortest distance between sector centroid and road (see Fig. 2).
– drail : shortest distance between sector centroid and rail network (see Fig. 2).
– dstation: shortest distance between sector centroid and train station centroid.
– nroad: number of roads intersecting the voronoi.
– nrail : number of rail lines intersecting the voronoi.
– wstation: weight of train stations calculated as the sum of stations area

intersecting the sector voronoi area.

3.4 Data Normalization

We aim to find transport mode usage in sectors. As our raw features are
built with spatial information they are impacted by urban density. In the city
center the density is higher than in the suburb. Consequently sector areas and
distances to transport networks are smaller while there are more transport hubs.
We normalize our features to reduce the bias induced by urban density over
transport usage. We introduce a normalization specific to our problem:

dnorm,m =
dm

∑i di
∈ [0, 1] (1)

nnorm,m =
nm

∑i ni
∈ [0, 1] (2)

wnorm,station =
wstation

Av
∈ [0, 1] (3)

where dm ∈ {droad, drail , dstation}, nm ∈ {nroad, nrail} and dnorm,m, resp. nnorm,m,
is the normalized vector for feature dm, resp. nm. Feature wnorm,station is the
normalization of wstation by voronoi area Av.

3.5 Sector Label Extraction

A few base stations are located on transport hubs, such as rail lines, train
stations, highways or tunnels. We process this information to construct labels
for a small subset of antennas. We assume that each sector inherits from its
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base station label. We attribute rail labels to indoor equipments located inside
the underground and train stations, which represent 4% sectors. We assign
road mode to indoor antennas in tunnels, constituting less than 1% sectors.
We add outdoor antennas on highways (11% sectors) to increase the size of
the road subset. In total we obtain 15% transport labels. In what follows, we
use our subset of sectors with categorical transport labels {road, rail}, as prior
knowledge. Still, categorical transport labels are not appropriate for most
sectors, including outdoor equipments. In urban areas, such as the Greater
Paris, the classic scenario is to encounter several transport modes inside an
outdoor sector because of mobile networks’ coarse granularity. Thus, we aim to
find continuous transport probabilities P ∈ [0, 1] for all sectors, where indoor
labeled equipments have maximal probabilities P ∈ {0, 1}.

3.6 Trajectories Pre-processing

For this study, the mobile provider pre-processed raw anonymized users’ posi-
tions using noise reduction and segmentation (see Fig. 3). For segmentation,
users’ locations were separated into stay points i.e., when users remain in
the same area, and moving points i.e., when users are assumed traveling. We
define a trajectory as a sequence of moving points Tu

j = {(X0, t0), ..., (Xl , tl)},
j being the jth trajectory of the user u. The ith position recorded at timestamp
ti is Xi = (xi, yi), where (xi, yi) are the centroid coordinates of the visited
sector. One trajectory corresponds to one user trip. We construct 95 millions
CDR trajectories from 2 millions anonymized users during one month. Similar
trajectories are aggregated to respect privacy policies. In order to compare our
results with household travel survey, which was conducted for residents of the
Greater Paris region, the mobile provider filters users by home department
(first two digits of billing address postcode) and exclude visitors.

4 Model

This section presents the unsupervised learning scheme combining clustering
and Bayesian inference to estimate transport modes of CDR trajectories. First,
the prior transport probability is obtained from the travel survey. Second, the
transport likelihood is calculated from the observed records, such as each new
visited sector updates the probability. In this perspective, we apply a clustering
on sectors. Then, our subset of sectors labels is used to calculate transport
probabilities within each cluster. Each sector is assigned a continuous score
in [0, 1] reflecting the real transport usage inside i.e., the probability to detect
more users on the roads or on the rails. For each trajectory, we assign the mode
with highest probability. Eventually, results are validated against the survey.

4.1 Clustering

We aim to find transport clusters for mobile network sectors with an underlying
hierarchical structure. Thus we use an agglomerative hierarchical clustering. The
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Fig. 3: Transport mode detection workflow applied for this case study. Pre-processing steps
annotated with (*) were performed by the mobile operator.

clustering starts with N clusters of size 1, N being the number of sectors. Each
sector is recursively merged with its closest neighbor according to a linkage
criterion and a distance function. We test three linkage types with three distance
functions (euclidean, Manhattan and cosine). Complete linkage minimizes the
maximal distance between two points from two clusters. Average linkage
minimizes the average distance between clusters points. Ward linkage, with
euclidean distance, minimizes the sum of squared error ESS = ∑k,i,j |Xijk− x̄kj|2,
where Xijk is the sample value for sector i, feature j and cluster k; x̄kj is the
mean value of feature j for cluster k. The agglomerative clustering applies until
all data points are merged into a single cluster of size N. A good clustering
solution should divide rail transport sectors from road sectors.

4.2 Evaluation Metrics

We use internal evaluation metrics to assess the clustering performance and
to identify the optimal cluster number. We used the Silhouette (S) to evaluate
clusters separability [13] (see Eq. 4).

sik =
b(i)− a(i)

max(b(i), a(i))
(4)

Sk =
1

Nk

Nk

∑
i=1

sik (5)

S =
1
N ∑

k
Sk (6)
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where a(i) is the average intra cluster distances for sector i and b(i) is the lowest
value among average inter cluster distances. Here Nk stands for the size of
cluster k. The number of samples equals N. The optimal number of clusters K
maximizes the silhouette [16]. In addition we used the Sdbw validity index.

Sdbw(k) = Scat(k) + Densdb(k) (7)

where Scat(k) =
1
k

k

∑
i=1

σ(νi)

σ(D)
(8)

and Densdb(k) =
1

k(k− 1)

k

∑
i,j=1

dens(uij)

max(dens(vi), dens(vj))
(9)

where νi denotes centroid of cluster i and uij is the middle point between
clusters i and j i.e., at mid distance from the two centroids (νi,νj). The scattering
index Scat is used to estimate the intra cluster compactness based on standard
deviations σ of clusters over total dataset D. The term Densdb represents clusters
densities. It calculates the average ratio of clusters middle point densities over
clusters centers densities. The underlying assumption is that well defined
clusters are denser around their centroids than at their mid distance. This index
is a trade-off between clusters densities and variances. It has been depicted as
the most performing among internal clustering evaluation metrics in [11, 16].
The optimal cluster number is found when the index reaches its minimum.

4.3 Probability Scores of Sectors Transport Mode

For each cluster k we calculate the score pk,m for transport mode m ∈ {rail, road}.

pk,m =
Nk,m

Nm
(10)

where Nk,m is the number of labeled sectors belonging to class m in cluster k
and Nm is the total number of sectors from class m in the dataset. We normalize
pk,m to obtain the probability P(m|Si) ∈ [0, 1] of using mode m given a visited
sector Si, belonging to a cluster k.

P(m|Si) =
pk,m

∑j pk,j
(11)

Unlabeled sectors obtain transport probabilities according to their cluster. In
addition we update the probabilities of outdoor labeled sectors (i.e., highways)
using Eq. 10 and 11. Indoor labeled sectors have binary probabilities in {0, 1}.

4.4 Bayesian Inference of Trajectories Transport Mode

Bayesian inference is used to determine the main transport mode associated
to mobile phone trajectories. In this perspective, we calculate the probability
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P(m|Tu
j ) to take a mode m ∈ {rail, road} knowing the trajectory Tu

j , using
Bayes theorem:

P(m|Tu
j ) =

P(Tu
j |m) ∗ P(m)

P(Tu
j )

(12)

Trajectories are sequences of sectors {S0, ..., Sl} visited by mobile phone holders.
Thus we have P(Tu

j |m) = P(S0, ..., Sl |m). We assume independence between sec-
tors probabilities such as P(Si, Si+1|m) = P(Si|m)P(Si+1|m). This assumption
is motivated by the need to reduce the computational cost of the calculation.
Thus we can rewrite P(Tu

j |m) = ∏l
i=0 P(Si|m). Eq. 12 becomes:

P(m|Tu
j ) =

P(m)

P(Tu
j )

l

∏
i=0

P(Si|m) (13)

The term P(m|Si), previously calculated with Eq.11, is introduced by applying
Bayes theorem a second time, to Eq. 12:

P(m|Tu
j ) =

∏l
i=0 P(Si)

P(Tu
j )

P(m)1−l
l

∏
i=0

P(m|Si) (14)

The term ∏l
i=0 P(Si)
P(Tu

j )
does not influence the mode choice. The prior transport prob-

ability P(m) can be seen as the initial guess, before observing records. The prior
probability is obtained from the travel survey and is calculated as the average
trip counts per user given the home location of cellphone holders, here at the de-

partment scale. For rail mode we have prail,dep =
AVGdep(crail)

AVGdep(crail)+AVGdep(croad)
∈ [0, 1]

and prail,dep = 1− proad,dep, where crail and croad are the rail and road trip counts,
for the day of survey, per user living in the department dep. At last we normalize
the posterior transport probability to be in range [0, 1].

P(m|Tu
j )←

P(m|Tu
j )

P(rail|Tu
j ) + P(road|Tu

j )
(15)

Finally we affect the mode obtaining the higher probability to each trajectory.
When probabilities are in [0.4, 0.6] the mode is considered mixed.

5 Results

This section summarizes our main results. For the clustering we demonstrate
how we determine the number of clusters. We describe clusters according to
transport probabilities. From the Bayesian inference of trajectories’ transport
modes, we visualize transport flows per week day and observe the travel
patterns. We provide detailed results comparison with survey, at department
scale, using Pearson correlations as evaluation metric.

9



5.1 Clustering Evaluation

We first compare the three linkage types. Average and complete linkage fail to
separate sectors in the city center, with any distance metric. One huge centered
cluster is produced with tiny clusters located at the region borders. We retain
ward linkage with euclidean distance which produce clusters of comparable
size, evenly present across the region. In order to find the optimal number of
cluster we draw the dendrogram of the ward agglomerative clustering (see
Fig. 4). The latter shows k = 2 is a good cluster number as it corresponds to
the highest distance gap between merges. A small k leads to a macroscopic
partitioning. We look for a higher k to detect finer transport modes tendencies.
A clear cut was possible for k ∈ {3, 4, 5, 9}, which were therefore also good
candidates. We decide to bound the cluster number between 2 and 10. We

Fig. 4: Dendrogram for k ∈ [2, 10]. The xaxis is
the height i.e., distances between clusters
leaves and nodes. The yaxis shows the
number of leaves per cluster.

Fig. 5: Silhouette (blue) and Sdbw validity index
(red) plotted in function of the number of
cluster k

Fig. 6: t-sne projection for dataset D after normalization and z-score transformation. Col-
ors represent clusters for k varying from 1 to 9. The parameters are ncomponent = 2,
perplexity = 30, learningrate = 200, niteration = 1000. Stars correspond to road labels,
Triangle to rails and crosses to unlabeled sectors.
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use additional intra-cluster metrics. We calculate S and Sdbw with several k
values (see Fig. 5). The silhouette reaches a maximum for k = 4, for which
separability is the highest. According to the Sdbw minimization criterion, the
optimal number of clusters is k = 9, for which clusters are the most compact
and dense. For k ∈ [5, 10] the silhouette reaches a local maximum for k = 9. For
our problem we favor the larger k hence we select k = 9. We visualize the 9
clusters with t-sne (see Fig.6) and project them on the sectors map (see Fig.7).

(a) C1 and C2 (b) C3 and C4

(c) C5 and C6 (d) C7, C8 and C9

Fig. 7: QGIS Clusters projection

5.2 Sectors Probabilities and Visualization

We calculate the transport probabilities per cluster (see Tab. 1). We describe
clusters regarding transport usage. Each cluster is displayed in Fig.6 and Fig.7.

Table 1: Transport Mode probabilities and cluster size for k = 9

Cluster C1 C2 C3 C4 C5 C6 C7 C8 C9

Size (%) 14.7 8.50 12.4 4.67 2.20 10.5 24.4 5.60 17.1
PRAIL 0.651 0.567 0.824 0.949 0.421 0.387 0.095 0.071 0.199
PROAD 0.348 0.432 0.176 0.051 0.579 0.613 0.905 0.929 0.801

– C1, C2: mixed-rail clusters with a higher probability for rails, depicted in
blue and cyan on Fig. 7a.

– C3, C4: rail dominated clusters with many underground sectors located in
the city center. It corresponds to the red and yellow cluster on Fig. 7b.

– C5, C6: mixed road clusters, shown in magenta and green on Fig. 7c.
– C7, C8, C9: road clusters represented in black, orange and purple on Fig. 7d.
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5.3 Trajectories

We infer transport probabilities for one month trajectories, filtering bank hol-
idays. We count the number of rail and road trips (see Fig. 8). Only 3% trips
have probabilities in range [0.4, 0.6]. We consider such trips have mixed (or
uncertain) mode. In Fig. 8 we observe hourly travel patterns for a typical week.
For business days, peak hours occur in the morning and early evening, with
a smaller midday peak at lunch time. Morning and evening peaks appear
unbalanced. One reason is that mobile phone usage tends to be more important
in the evening thus we detect more users and more trips. A second reason
could be that users travel more at the end of the day. This phenomenon is more
pronounced for road trips, the highest gap being on friday evening.

Fig. 8: Estimated trip counts are averaged per week day, per hour and per transport mode. Results
are given for 1 month data from the Greater Paris.

5.4 Comparison with Survey

We compare our results with the latest household travel survey, from 2010,
for the Greater Paris. About 43000 residents were asked about their travels
during their past day, outside holidays. We calculate mobility statistics from
survey and MP results (see Tab. 2). We average survey trip counts per res-

ident: CS = ∑k
i=1 Ni∗wi

∑k
i=1 wi

where an individual i of weight wi reported Ni trips

for the day he was questioned. The weight wi was calculated during survey
with socio-demographic information to rescale the individual to the entire
population. Similarly we average CDR trip counts per day and per device:
CMP = ∑U

i=1 ∑T
t=1

1
U

1
T nu,i where U is the number of phones, T is the number of

days and ni,t is the number of trips detected for phone i for day t. In the survey,
transport modes are separated in two categories, motorized modes including
public transport, cars and motorbikes, and unmotorized modes i.e., walk and
bike. Our model outputs the majority mode of a given CDR trajectory, between
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rail and road. We first examine results for all residents (see Tab. 2). The survey
indicates the average trip number per user during a business day is 4.16 for all
modes and 2.45 for motorized trips. We found an average of 2.10 daily trips per
person. It seems we were able to detect 86% motorized modes. Because of the
coarseness of the mobile network, walkers might be considered as non moving
as their movement occurs at a too microscopic scale. In addition, the detection
of travels is affected by CDR frequency. When a device is turned-off or unused
for a long period of time, users are undetected. Compared to the survey, 14%
daily motorized trips are undetected in average. We further analyze results
for residents aggregated by home given for the city center, first ring , second
ring and department scale (first two digits of postcode). We calculate Pearson
correlations between survey and CDR estimates for all trips, motorized, road
and rail trips. In addition we calculate the ratio between road and rail trips:
Cratio = Croad

Crail
. There is a negative correlation between total survey trips and

CDR trips, due to the possible undetection of unmotorized modes. Correlations
for rail, road and ratio are all above 0.96 for the three rings scale and the
department scale. Still we have smaller ratio than the survey. The department

Table 2: Mobility statistics for average trip number per user during a business day (Monday-
Friday). Results are given per home location (i.e., 2nd ring, 1st ring and the 8 depart-
ments including city center). Left: results for survey (source: EGT 2010-Île de France
Mobilités-OMNIL-DRIEA) Right: results with CDR

Survey (S) Mobile Phone (MP)

Home Scale CS
All CS

Motor CS
Rail CS

Road CS
Ratio CMP

All CMP
Rail CMP

Road CMP
Ratio

All population 4.16 2.45 0.61 1.85 3.03 2.10 0.80 1.30 1.62
City Center (CC) 4.37 1.93 1.11 0.83 0.75 1.94 1.22 0.72 0.59

1st Ring (R1) 4.03 2.25 0.61 1.64 2.69 2.07 0.80 1.27 1.60
2nd Ring (R2) 4.18 2.86 0.38 2.49 6.55 2.24 0.50 1.74 3.45
Dep 77 (D2) 4.12 2.90 0.30 2.60 8.79 2.37 0.49 1.88 3.83
Dep 78 (D3) 4.23 2.88 0.41 2.47 6.03 2.21 0.52 1.69 3.28
Dep 91 (D4) 4.30 3.07 0.34 2.73 7.91 2.15 0.44 1.71 3.92
Dep 92 (D5) 4.18 2.22 0.62 1.60 2.56 1.98 0.83 1.15 1.38
Dep 93 (D6) 3.84 2.20 0.62 1.58 2.57 2.15 0.80 1.35 1.69
Dep 94 (D7) 4.05 2.34 0.60 1.74 2.91 2.11 0.75 1.35 1.79
Dep 95 (D8) 4.06 2.57 0.45 2.13 4.76 2.21 0.57 1.65 2.90

Table 3: Pearson correlation coefficients between survey and results. We calculate correlations
across the 3 rings (city center, rings 1 and 2) and across the 8 departments.

Home Scale (CS
All , CMP

All ) (C
S
Motor, CMP

All ) (C
S
Road, CMP

Road) (C
S
Rail , CMP

Rail) (C
S
Ratio, CMP

Ratio)

Rings (CC, R1-2) −0.496 0.993 0.995 0.990 0.999
Deps (CC, D2-8) −0.348 0.751 0.960 0.986 0.978
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obtaining results most similar with the survey is the city center (Paris). For
the latter we detect the same number of motorized trips. This means that all
users’ trips were detected, suggesting that mobile phone activity of travelers
is more important in the city center. From these observations we emit several
hypothesis to explain remaining differences. First, because of their cost, surveys
are performed on small population samples. Despite the use of weights to scale
the sample to the total population, results can still contain sampling bias in
addition with users’ responses bias. Second, travel surveys are performed every
10 years because of their high cost. The latest complete survey is anterior to
our study (seven years difference) which can lead to differences in results. In
particular, transport policies over the past years were oriented to favor public
transport in the Greater Paris (e.g., introduction of a unique price for transport
pass that reduced the price for suburbs). This could have influenced users to
take public transports, especially in the suburb. In our opinion trips segmenta-
tion might impact results. Indeed our trajectories are segmented based on stay
times. Public transport users sometimes experiment waiting times in stations
e.g., when users change lines, and signals loss when entering the underground.
This could cause higher trip segmentation for CDR rail trips. At last we detect
100% trips in the city center versus 80% in the suburb. In parallel the city center
has the highest rail transport usage. This could indicate a bias in mobile phone
usage i.e., public transport users are more likely to call, text or navigate on the
web than drivers. Therefore some road trips could possibly be undetected.

6 Conclusion

From mobile phone data mining we can capture travel behavior of urban
populations on multimodal transport networks. Compared to traditional travel
surveys, Call Detail Records are a low-cost and up-to-date knowledge base for
smart transport research. In this paper, we have introduced a novel transport
mode detection method using CDR trajectories from the Greater Paris. Our
model uses three data sources: mobile network data, transport networks and
household travel survey. After significant data pre-processing, we combine
clustering on mobile network areas, called sectors, with Bayesian inference for
trajectories. From the clustering we find 9 clusters best described transport
usage in the region. Three clusters exhibit high road probabilities, two had
high rail probabilities while four had mixed usage. We compare our final
results on trajectories with the household travel survey. Trips are aggregated
by users’ home location, at the department scale. We calculate the average
number of trips per day for each user, averaged over all users. We obtain
Pearson correlations above 0.96 for motorized, rail and road modes. It seems we
detect exclusively motorized trips, as walkers movements are too microscopic
regarding the mobile network scale. To our knowledge this is the first method
separating road from rail trips considering all CDR trajectories from all users,
with substantial comparison with survey data. Still it is hard to obtain exact
same results as the survey. First we might have a different trip segmentation.
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When users travel, their path on the network are likely to be segmented into
subtrips because CDR are affected by waiting times and signals loss. This
phenomenon could be more pronounced for public transport travels, as users
often change lines and wait in stations. In addition, the detection of travels is
impacted by usage frequency of phones. We observe that trips are most likely to
be undetected when road usage is predominant. At last, surveys might contain
bias, be outdated and miss particular events. This makes validation a difficult
task as no available data source is a perfect ground truth. Our work shows
encouraging results yet we have several pending issues we want to address in
future works. First, although our model proved to be robust to noisy locations,
oscillations filtering could be enhanced during CDR pre-processing. Second,
as our model outputs one dominant mode, we need to address multi-modal
and uncertain behaviors. For future work, we will extend model evaluation
with finer scale Origin-Destination trips. We look forward to adding a fourth
data source (e.g., travel cards data) for validation. We aim to enrich our model
with additional transport modes. Our final model will be implemented by the
mobile phone provider for B-2-B with transport operators and urban planners.
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