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ABSTRACT
Pan Assays Interference Compounds (PAINS) are a significant prob-
lem in modern drug discovery: compounds showing non-target
specific activity in high-throughput screening can mislead medici-
nal chemists during hit identification, wasting time and resources.
Recent work has shown that existing structural alerts are not up to
the task of identifying PAINS. To address this short-coming, we are
in the process of developing a tool, PrePeP, that predicts PAINS,
and allows experts to visually explore the reasons for the predic-
tion. In the paper, we discuss the different aspects that are involved
in developing a functional tool: systematically deriving structural
descriptors, addressing the extreme imbalance of the data, offering
visual information that pharmacological chemists are familiar with.
We evaluate the quality of the approach using benchmark data sets
from the literature and show that we correct several short-comings
of existing PAINS alerts that have recently been pointed out.
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1 INTRODUCTION/MOTIVATION
Modern drug development follows what is arguably a four-step
progress: 1) high-throughput screening (HTS) to find compounds
showing activity regarding a therapeutic target or its surrogates
(so-called “hits”), 2) more fine-grained evaluation and limited opti-
mization to identify promising “leads”, 3) additional optimization
and pre-clinical testing, 4) clinical testing.
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Depending on the test readout used during the first step, certain
molecules can emerge as hits that do not actually interact with
the target, e.g. reduction in harmful cells in a cell culture can be
achieved by peroxide production. Such false positives are impossi-
ble to optimize for the therapeutic target and therefore do not lead
to successful drug development, wasting time and resources. A par-
ticularity of non-specific interaction is that such compounds seem
to show activity in different, potentially independent biochemical
assays, hence their name “frequent hitters” (FHs). Filtering out FHs
at an early step is clearly desirable to avoid leading drug developers
down dead ends. The problem has been identified in the literature
by Baell et al. [6], where those compounds have been dubbed “Pan-
Assay INterference compoundS” (PAINS), and subsequent studies
have shown their repeated presence in publications introducing
supposed leads [33, 36]. A recent joint editorial of the editors-in-
chief of journals of the American Chemical Society [4] has drawn
special attention to this problem.

Baell et al. also introduced a number of structural alerts, based
on their analysis of a proprietary compound database, which have
since found ample use in PAINS detection. Yet as shown in [17] and
[26], those alerts suffer from low recall – missing many FHs – while
at the same time sweeping up many “infrequent hitters” (iFHs).
Capuzzi et al. [17] indicate that one possible issue with existing
PAINS alerts is that they are based on very few FHs, in some cases
as few as a single one. An alternative method to identify PAINS is
therefore clearly needed.

Pattern mining techniques, taking inspiration from statistics,
have always allowed to constrain the minimum empirical support
or effect size [44]. Using quality measures that contrast two classes
against each other, e.g. growth rate [29, 31] or statistical measures
[15, 46], allows to mine substructures that are representative of FHs
or iFHs.

We propose to use such techniques to derive new structural
alerts, which we combine with machine learning models to predict
PAINS. To develop the approach, we had to address three issues:
1) the extreme imbalance of the underlying data, which by nature
contains very few FH examples, 2) how to derive a small set of
meaningful structural descriptors, and 3) how to create an accurate
predictive model that is at the same time interpretable, to facilitate
acceptance by researchers in medicinal chemistry and aid further
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scientific research in the field. We have validated our goals and
design choices with our partners and co-authors from ICOA and
CERMN, two medicinal chemistry laboratories in Orléans and Caen,
respectively, and evaluated the approach on recent benchmark data
sets from the literature.

PrePeP, of which we describe the prototype in this paper, con-
tains three ingredients: 1) representative subgraphs mined off-line,
2) decision tree classifiers that have also been learned off-line, and
3) a graphical interface that allows to explore the predictions for
unseen molecules as well as which subgraphs were involved in the
prediction.

The rest of the paper is structured as follows: in the following
section we provide definitions and notation. We touch on related
work in Section 3 and we discuss data preparation in Section 4.
In Section 5, we explain how the structural descriptors have been
derived and the model built, which we evaluate in Section 6. In
Section 7, we describe the tool we have developed before concluding
in Section 8 and providing perspectives.

2 DEFINITIONS
We begin by formally defining the concepts that we have informally
introduced in the introduction.

Definition 2.1. Let ℳ a set of molecules, with each m ∈ ℳ
of the form (x , y), x being the representation of the molecule and
y ∈ {0, 1}d its activity profile.

Note, that we do not concretely specify the molecule representa-
tion – different options will be discussed in Section 4. The activity
profile results from the (post-processed) outcomes of different HTS
assays, with d the number of bioassays in which a compound has
been tested.

Definition 2.2. A frequent hitter (FH) is a molecule (x , y) ∈ ℳ :
| |y| | ≥ θ , with θ a user-specified threshold. In addition, we call
molecules (x , y) ∈ ℳ : | |y| | < θ infrequent hitters (iFH), and
(x , y) ∈ ℳ : | |y| | = 1 one-hitters (1H).

The user-defined threshold θ specifies how often a compound
needs to show activity to be considered FH. When appropriate,
we will refer to the subsets made up of FHs/iFHs/1Hs as ℳFH ,
ℳiFH , ℳ1H , respectively. Later on, we will speak – somewhat
informally – of Dark Chemical Matter (DCM), molecules for which
| |y| | = 0,d >> 10, i.e. compounds that have been assayed (very)
often.

In this work, we consider molecules as graphs, i.e. representing
them in terms of their 2D structure.

Definition 2.3. A graph is a tuple ⟨V ,E, λv , λe ⟩, with V a set of
vertices, E ⊆ V ×V a set of edges, λv : V 7→ 𝒜v a labeling function
mapping vertices to elements of an alphabet of possible vertex
labels, and λe : E 7→ 𝒜e a labeling function for edges.

Any given molecule can be represented as a graph of which the
vertices are labeled with atom names, and edges with atomic bonds.

Definition 2.4. Given two graphs G = ⟨V ,E, λv , λe ⟩,
G ′ = ⟨V ′,E ′, λv ′ , λe ′⟩, G ′ is a subgraph of G iff V ′ ⊆ V ∧ E ′ ⊆

E ∧ ∀v ∈ V ′ : λv ′(v) = λv (v) ∧ ∀e ∈ E ′ : λe ′(e) = λe (e). We also
say that G ′ matches G (G ′ ⪯ G). Given a set of graphs 𝒢 , we also

define the cover of G ′: cov(G ′,𝒢 ) = {G ∈ 𝒢 | G ′ ⪯ G} and its
support: supp(G ′,𝒢 ) = |cov(G ′,𝒢 )|.

In addition, we require of our subgraphs that they be connected.

Definition 2.5. A graphG = ⟨V ,E, λv , λe ⟩ is connected iff ∀u,v ∈

V : ∃v1, . . . ,vn : v1 = u ∧vn = v ∧ (vi ,vi+1) ∈ E.

3 RELATEDWORK
3.1 PAINS identification/characterization
The terms PAINS has been coined in [6], the authors of which
proposed a set of structural alerts to identify and exclude PAINS.
Following work has mainly focused on identifying PAINS mistak-
enly published in the literature and identifying their mechanisms
[7, 8, 20, 33, 36, 40, 41].

Criticism of Baell et al.’s filters is more muted, with one notable
publication [30] arriving at conclusions contrary to those of [41].
Recently, two publications [17, 26] have called the usefulness of
existing structural alerts into question. Capuzzi et al. show existing
alerts miss a large proportion of FHs in an independently curated
molecular data set, yet match a large proportion of iFHs, success-
fully marketed drugs (arguably a subset of 1Hs), and even DCM
compounds. In trying to understand this behaviour, they illustrate
that many (190 of 480) of the original alerts have been derived from
a single compound each.

Alternatives are, to the best of our knowledge, rare so far, with
the exception of [45], which proposes tagging compounds with
different scaffolds, each of which has a Bayesian-inspired FH score.

3.2 (Q)SAR modeling
(Quantitative) structure activity relationship modeling is concerned
with using statistical or machine learning models to predict a com-
pounds’ activity w.r.t. a given target, based on its structural proper-
ties. Work in this field is well-established [39] and on-going [19, 42].
Several authors [23, 27] have drawn attention to the importance
of the interpretability of derived models – black box classifiers do
not help in isolating and optimizing effective components – and
to the unavoidable trade-off with accuracy that will result from it.
(Q)SAR methods typically assume a previously defined therapeutic
target for which bioassay data exists.

3.3 Pattern mining
Transactional graph mining has often been motivated with (fre-
quent) substructure discovery in molecular data. The probably
best-known algorithm is gSpan [44] but there exist alternatives
[25, 28, 35], and experimental studies [34, 43] have shown incon-
clusive results regarding their relative merits. By using the result
presented in [32], which exploits the convexity of certain quality
measures, such approaches can be used to find discriminative sub-
structures for the (Q)SAR problem [15, 46]. Alternatively, one can
use the classic frequent pattern mining approach and combine the
results to arrive at discriminative conjunctions of patterns [29, 31].

4 DATA PREPARATION
The data we base our model on have been curated by Capuzzi et
al. for their publication [17]. As usual in that community, the data
are publicly available in the form of PubChem IDs and SMILES
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strings [24] at http://pubs.acs.org/doi/abs/10.1021/acs.jcim.6b00465.
Following Baell et al. [6], each compound in the data set has been
evaluated in six assays, and the activity threshold for declaring a
compound FH has been set to θ = 2.

Molecules were standardised using the tool VSPrpep [22], giving
rise to a graph representation. Starting from that representation,
each chemical compound was described using the RDKit Morgan
fingerprint implemented in Knime [9] with a radius of three chem-
ical bonds [3] as used in a previous study [12]. The fingerprint
composed of 0 and 1 bits takes into account the neighborhood of
each atom by exploring the adjacent atoms in a three connected
bounds. Numerical molecular 0D-descriptors were derived using
Pipeline Pilot [10], giving rise to 192 numerical descriptors. In other
words, each compound is available in the form of a graph, a bitstring
of fingerprints, and a set of numerical descriptors.

Additional data that we use in Section 6 for evaluation is available
in graph form. All data can be downloaded at https://zimmermanna.
users.greyc.fr/supplementary-material.html.

5 SUBSTRUCTURE MINING AND MODEL
LEARNING

As shown in Section 4, the options for representing molecules are
plentiful. So plentiful, in fact, that the sheer number of chemical fin-
gerprints – 107k – threatens to introduce a curse-of-dimensionality
issue, as well as significantly slow down any learner used to induce
a model. In addition, the available data is highly imbalanced, a prob-
lem that needs to be addressed to enable feature construction and
model learning. The model itself, finally, should be interpretable,
both to convince experts to accept the predictions and to facilitate
further scientific progress on the application side. In this section,
we discuss how we addressed those three challenges.

5.1 Discriminative subgraph mining
Chemical fingerprints are derived from chemical background knowl-
edge and usually based on a very low minimum support in the data,
hence their large number. Quality measures that score how well
subgraphs discriminate between two classes, on the other hand,
can capture much more information in a smaller set of patterns.
We therefore chose to use gSpan, augmented with the capability
to use the information gain measure via upper-bound pruning, to
mine discriminative subgraphs.

Definition 5.1. Let the data set ℳ consist of two subsets ℳFH ,
ℳiFH : ℳFH ∩ ℳiFH = ∅ ∧ ℳFH ∪ ℳiFH =ℳ . The entropy
of the data set is:

H (ℳ ) = −
|ℳFH |

|ℳ |
· log2

|ℳFH |

|ℳ |
−

|ℳiFH |

|ℳ |
· log2

|ℳiFH |

|ℳ |
,

and the information gain of a subgraph G w.r.t. ℳ :

IG(G,ℳ ) = H (ℳ ) −
supp(G,ℳ )

|ℳ |
· H (cov(G,ℳ ))

−
|ℳ |−supp(G,ℳ )

|ℳ |
· H (ℳ \ cov(G,ℳ ))

Information gain rewards subgraphs that change the distribution
in the covered and uncovered subsets towards one of the two classes.
Our hypothesis is that there are shared structural characteristics of
FHs that can be quantified via information gain, whereas iFHs are
too heterogeneous for shared patterns to appear. There are other

convex quality measures that could be chosen but there are no
well-founded selection criteria, apart from the fact that normalized
measures, like information gain, are preferable to unnormalized
ones, such as χ2, which overly reward patterns with very small
effects if the effect size is large.

The decision for gSpan is mainly a practical one: with an imple-
mentation for discriminative pattern mining provided by Siegfried
Nijssen, there was no need to implement a miner ourselves. The de-
cision to mine graphs instead of sequences, which work as well and
are easier to mine [15], was deliberate, however: when presenting
results to domain experts, graph patterns, particularly those includ-
ing cycles, are more informative. We represented all molecules in
the form of hydrogen-suppressed graphs, i.e. all vertices labeled
with “H” were removed from the graphs.We havemined the top-100
subgraphs according to information gain.

5.2 Balancing the data
The data set described in Section 4 has size |ℳ | = 153539, of which
only a very small subset are FHs: |ℳFH | = 902 when using the
threshold θ = 2 (meaning that molecules are active on at least
two assays). Such an imbalance will have a negative impact both
on subgraph mining, and on model learning. On subgraph mining
because subgraphs that split off a certain amount of iFHs while
present in a majority of iFHs and all FHs would receive elevated
information gain scores without being representative of FHs. On
model learning because a model that always predicts the majority
class, i.e. iFHs, will achieve an accuracy of 99.41%.

The recommended solution for such a setting is to undersample
the majority class to create a balanced data set. In our case, creating
a single undersample would remove the overwhelming majority
of iFHs, without any guidance regarding which instances to keep.
We elected therefore to perform repeated sampling, using all FHs
every time and randomly sampling an equal amount of iFHs from
the data. To ensure that we use every iFH at least once, we need
at least 171 samples but since we would like to contrast different
combinations of iFHs against the FHs in the data, we scaled up to
200 samples.

5.3 The predictive model
The task that the predictive model is supposed to address is a form
of SAR – instead of having a single therapeutic target, the target
class is that of frequent hitters, i.e. molecules that show activity
regarding different targets. The general setting remains the same,
however: given molecules described in terms of their structure and
labeled by an activity indicator, find a model that reliably predicts
the latter based on the former.

As indicated in Section 3, an important aspect of SAR models
is interpretability. Experts are more likely to accept predictions
when they are presented with explanations for those predictions in
a language they understand, an issue not limited to the SAR setting
[37], and SAR models are, after all, only a means to an end, that end
being an understanding of biochemical mechanisms and further
scientific progress in the domain.

The interpretability constraint rules out powerful non-symbolic
learners such as support vector machines [18], or neural networks,
particularly those used in deep learning approaches [38]. Decision

http://pubs.acs.org/doi/abs/10.1021/acs.jcim.6b00465
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tree learners are prime representatives of interpretable models,
even if using them would theoretically trade-off accuracy against
interpretability. Practically, on the other hand, combining decision
trees into an ensemble using Bagging [13] has been shown to lead
to very good results. The resampling described in the preceding
section is similar to Bagging – not identical, because the instances
of one class remain fixed – so we would expect good performance
of an ensemble of decision tree classifiers as well.

The full workflow is therefore as follows: 1) we create 200 data
sets with equal amounts of FHs and iFHs by sampling fromℳFH , 2)
we mine the top-100 discriminative subgraphs from each data set, 3)
we encode each molecule with the numerical descriptors described
in Section 4 and a hundred-dimensional bit-vector indicating the
presence/absence of the subgraphs mined from this data set, 4) we
learn one decision tree classifier (DT) for each data set. An unseen
molecule is encoded in terms of its numerical descriptors and the
discriminative subgraphs for each of the 200 training sets and clas-
sified by the respective decision trees. The final classification is
derived as a majority vote of all 200 DTs’ predictions, in case of a
tie the majority class (iFH) is predicted. A schema of the process is
shown in Figure 1.

Figure 1: Schema of the model construction workflow.

6 EXPERIMENTAL EVALUATION
In this experimental evaluation, we evaluate the quality of themodel
described in the preceding section. Concretely, the first question
is which representation reveals itself to be most beneficial for the
prediction task, and whether decision tree classifiers can, as we
have reasoned above, deliver acceptable quality for FH prediction
in a well-curated data set. We then evaluate whether the model’s
performance transfers to other compounds, and compare to the
PAINS alerts criticized by Capuzzi et al..

6.1 Experimental setup
In total, we have used three data sets, all proposed by Capuzzi et al.
in [17]:

(1) The data set described in the preceding sections, comprised
of 902 FHs and 152,637 iFHs. We use these data for the proof-
of-concept experiment that evaluates whether a model accu-
rately predicting FHs and iFHs can be learned.

(2) A data set of 73,333 compounds that have each been eval-
uated in at least 25 separate bioassays, randomly sampled
from the PubChem database [2]. The data set is separated
into those compounds containing PAINS alerts as originally
defined in [6], hereafter referred to as Random-PAINS (14,611
compounds), and those not containing PAINS alerts (Random-
NoPAINS, 58,722 compounds). These data serve two purposes:
on the one hand they allow us to evaluate whether our model
presents a clear alternative to the PAINS alerts proposed in
[6]. On the other hand, we will assess whether a model de-
rived from a particular bioassay transfers to other settings.

(3) A data set of 3570 DCM compounds (tested in at least 100
bioassays) that contain PAINS alerts. Those data should ide-
ally never be classified as active, let alone FH, something
that existing PAINS alerts fail to do, and that we expect our
model to be able to do.

As mentioned above, we used Siegfried Nijssen’s gSpan im-
plementation for discriminative subgraph mining for the graph
mining step. Data sampling was implemented in Python 2.7, us-
ing the networkx library [5] (version 1.11) for subgraph match-
ing, and scikit-learn’s [16] (version 0.17.1) decision tree learner,
an implementation of CART [14]. After internal validation, mini-
mum leaf size for decision trees was fixed to 3% of training data.
The code for our experiments can also be downloaded at https:
//zimmermanna.users.greyc.fr/supplementary-material.html.

6.2 Performance evaluation for FH
classification

To assess the model’s performance, we performed three different
ten-fold cross-validations on the data set comprised of FHs and
iFHs: ℳFH was separated into 10 folds, and for each fold a corre-
sponding number of iFHs sampled. We evaluated three settings for
the test fold: 1) balanced data, 90/91 FHs : 90/91 iFHs, 2) slight
imbalance, 90/91 FHs : 900/910 iFHs, 3) severe imbalance, 90/91
FHs : 9000/9100 iFHs. The first setting is the ideal case in which
the distribution of classes in the test data is the same as in training
data, whereas the third setting is much closer to a real-life setting in
which iFHs will significantly outnumber FHs. For training folds, we
sample 200 times 812/811 iFHs from those not contained in the test
fold. As a side-effect, this means that different training samples for
the imbalanced test settings will be much more redundant, and that
the “independently and identically distributed” (i.i.d.) assumption
underlying inductive learning is violated for the test data.

We report several performance measures:

• Accuracy: the ratio of true positives (TP) – compounds cor-
rectly classified as FH– and true negatives (TN) – compounds
correctly classified as iFHs – over all predictions:

acc =
TP +TN

TP + FP +TN + FN

https://zimmermanna.users.greyc.fr/supplementary-material.html
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• Precision: the ratio of TP over all compounds classified as
FH:

prec =
TP

TP + FP
Precision measures whether a model is specific enough to
mainly classify instances of the positive class (FH) as positive.
This gives additional insight into the accuracy score.

• Recall: the ratio of TP over all FHs in the test data:

rec =
TP

TP + FN

A model that classifies very few instances as FH, e.g. by clas-
sifying almost all instances as iFHs, can achieve very good
accuracy and precision, especially on imbalanced data, while
failing at its final task: filtering out frequent hitters. Recall
measures whether a model is general enough to classify a
large proportion of the positive class as positive.

• Area under receiver operating curve (AUC): evaluateswhether
true positives are usually ranked above or below false posi-
tives when sorting predictions by confidence.

6.2.1 Classifying ℳFH vs ℳiFH . Table 1 shows the results for
three different representations: only discriminative subgraphs, only
numerical descriptors, combination of both. For each performance
measure, we report the average value over all ten folds and the stan-
dard deviation. In the case of the balanced data, all three feature
sets show good performance, with numerical descriptors improving
the performance of subgraphs. Precision and recall are high, indi-
cating that FHs are correctly classified and recovered. This changes
as soon as we pass to the imbalanced data sets: while using only
subgraphs gives similar results as before, including numerical de-
scriptors deteriorates performance. Not only are accuracies lower
than for subgraphs but precision drops precipitously while recall
stays high, which means that while those models do classify many
FHs as such, they also sweep up many iFHs and classify them incor-
rectly. Using only subgraphs does better at classifying iFHs as iFH
but loses some coverage on the FHs in the process. Results for the
latter also become more unstable while average accuracy increases
compared to the balanced setting, indicating that for certain test
folds the more redundant training data is not representative enough.
Yet a severe deterioration as a result of the violation of the i.i.d.
assumption cannot be observed.

6.2.2 Test of different classifiers. We did not only test decision
trees, though. Table 4 in the Appendix section shows evaluation
results for a number of different classifiers trained in the same
manner as the decision trees, and used in a majority vote. As can be
seen from comparison with Table 1, other techniques seem to better
exploit numerical features. Looking more carefully at precision and
recall results, however, shows that other classifiers do not manage
to improve on the low precision or recall values decision trees
suffer for imbalanced data. Furthermore, decision trees perform
consistently better when using only subgraphs and are, after all,
more easily interpretable.

6.2.3 Classifying ℳFH vs ℳ1H . As an additional evaluation,
we removed all compounds not showing activity at all and only
mined on the subset containing FHs and 1Hs. This data set is sig-
nificantly smaller, |ℳ1H | = 2358, |ℳFH | = 902, and much less

imbalanced than the full data (27.67% : 72.33%). We therefore do not
subsample but mine subgraphs and learn decision trees directly, in
the context of a stratified ten-fold cross-validation, i.e. enforcing
the same class distribution in test as in training data.

As Table 2 shows, the trends of the imbalanced test data can
also be found here: using only subgraphs gives better accuracy and
much better precision. At the same time, recall is clearly lower than
in the preceding experiments but this is an acceptable outcome:
while we want to filter out FHs, we want to avoid doing this at
the expense of 1Hs, which might be viable drug leads. The final
realization is that contrasting FHs and 1Hs apparently gives rise to
less discriminative subgraphs. This is an expected results since we
would assume that the differences between compounds showing
different levels of activity are less pronounced than between those
showing activity and no activity at all. Based on those results, we use
only discriminative subgraphs as compound representation going
forward, and the entire data set of FHs and iFHs as mining/training
base.

6.3 Model evaluation on randomly sampled
compounds

To evaluate the performance of our model on the Random-PAINS/
Random-NoPAINS data set, we used the full FH/iFH data set for
subgraph mining and model building. The resulting subgraphs
were used to encode the test data and majority vote classification
performed, as described in Section 5.

Rows two through five of Table 3 show the predictions of our
model on the Random-PAINS and Random-NoPAINS subsets, re-
spectively. The results show that the PAINS alerts proposed by
Baell et al. and our model are very much not in agreement, i.e. we
offer a clear alternative to existing filters. An additional question is,
however, if our model does indeed separate frequent hitters from
infrequent hitters. To this end, for the Random-PAINS classified as
FH, we plot a histogram for different percentages of activity over
all assays they have been tested in (Figure 2, left-hand side). The
same plot can be seen for Random-PAINS classified as iFH on the
right-hand side of Figure 2, and for Random-NoPAINS in Figure 3.

Ideally, wewould like compounds classified as iFH to be clustered
on the left of the plots, showing low activity, and FHs to be clustered
on the right. To illustrate this, we have also plotted lines in both
figures, showing this ideal behavior. As we can see, our model
does not yet achieve this ideal behavior. There are several possible
explanations: first, the data set used for subgraph mining learning
comes from a particular type of bioassay, AlphaScreen [21]. As
explained in the introduction, different assays use different readout
methods and offer therefore different conditions for PAINS to occur.
Second, we have used a hard threshold to define FHs but a relative
threshold, i.e. percentage of activity, might be more appropriate.
Third, some compounds do act on several different targets and are of
great interest in polypharmacology. Those three issues are inherent
in the application setting we address here: since the mechanisms for
the occurrence of PAINS are not yet clear, we cannot neatly resolve
or rule out any of those effects. We intend to continue working in
this direction, however.
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Table 1: Evaluation of the performance of the majority vote decision tree model for different feature sets and different ratios
of FHs and iFHs in the test data

Setting Features Accuracy AUC score Precision Recall
avg σ avg σ avg σ avg σ

Balanced subgraphs 80.00 16.67 0.80 0.17 0.94 0.19 0.70 0.04
numeric 84.89 3.06 0.85 0.03 0.86 0.04 0.84 0.04

subgraphs+numeric 85.39 14.96 0.85 0.15 0.89 0.15 0.87 0.04
Slight imbalance subgraphs 88.17 28.68 0.79 0.16 0.91 0.29 0.69 0.05

numeric 84.18 0.95 0.84 0.02 0.35 0.02 0.85 0.03
subgraphs+numeric 83.96 26.80 0.85 0.15 0.51 0.16 0.85 0.03

Severe imbalance subgraphs 89.81 31.28 0.80 0.15 0.90 0.31 0.71 0.05
numeric 84.36 0.65 0.84 0.03 0.05 0.003 0.84 0.06

subgraphs+numeric 84.59 29.43 0.85 0.14 0.12 0.05 0.86 0.05

Table 2: FHs vs 1Hs experiment results

Features Accuracy AUC score Precision Recall
avg σ avg σ avg σ avg σ

subgraphs 76.52 23.16 0.66 0.17 0.91 0.28 0.41 0.06
numeric 69.82 3.18 0.62 0.03 0.46 0.06 0.45 0.05

subgraphs+numeric 72.52 8.80 0.66 0.07 0.53 0.11 0.53 0.06

Figure 2: Activity histograms of Random-PAINS compounds from PubChem predicted as FH (left) and iFH (right).

Figure 3: Activity histogram of Random-NoPAINS compounds from PubChem predicted as FH (left) and iFH (right).
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Table 3: Model evaluation on Random-PAINS, Random-
NoPAINS compounds from PubChem and DCM possessing
PAINS alerts

Data Prediction
Random-PAINS FH 2638

iFH 11973
Random-NoPAINS FH 6405

iFH 52317
DCM FH 232

iFH 3338

6.4 Model evaluation on DCM
Rows six and seven of Table 3, finally, show the classification results
of our model on Dark Chemical Matter compounds. We recall that
those are compounds that over a large number of bioassays have
never shown activity and should therefore not be classified as active,
let alone FH. Yet all contain structural PAINS alerts as derived by
Baell et al.. We view the fact that our model only classifies 6.5% of
those compounds as FH as further evidence for its effectiveness. As
in the preceding section, reducing this classification error to zero
will probably require the use of data from different bioassays.

7 PREPEP – PREDICTION OF PAINS AND
EXPLANATIONS FOR THE PREDICTION

In its current form, the PrePeP prototype1 contains the discrimina-
tive subgraphs mined, the training data encoded in terms of those
subgraphs, the code for learning the decision tree classifiers and
performing the majority voting, as well as a visualization inter-
face for test instances. When launching the application, decision
trees are learned and are ready for prediction. To predict unseen
data, they need to be available in the SDF format [11], a format
widely used in the computational biology and chemistry commu-
nities, standardised in the same way as the training data. Once
loaded, the unseen data is encoded in terms of the subgraphs and
directly classified via majority vote. PrePeP’s workflow is shown
in Figure 4.

Figure 4: Schema of PrePeP’s workflow.

The visualization uses the Python interface of the OpenBabel
library [1] – the same library is also used to load SDF files. As in
the case of the use of SDF files, this is due to the familiarity of the
1Available at: https://zimmermanna.users.greyc.fr/software/prepep.zip

computational biology/chemistry communities with this type of
visualization. The initial visualization we proposed, based on the
networkx library, which inscribed discriminative subgraphs directly
into the molecule graphs, was rejected by our co-authors who are
more comfortable with a visualization adhering to chemical visual
standards.

A screen shot of the interface can be seen in Figure 5: molecules
to be predicted are shown in the left column. For each molecule
predicted as FH, such as molecule 3 in this case, the right-hand
column lists the discriminative subgraphs present in this molecule.
Subgraphs are sorted by how often they were part of the result set
of the mining operation, in descending order. Selecting a molecule
visualizes it using OpenBabel, selecting a subgraph indicates its
frequency in result sets at the bottom of the right-hand column,
and visualizes the subgraph.

Figure 5: Screen shot of PrePeP’s interface.

8 CONCLUSIONS AND PERSPECTIVES
The experimental results validate our approach and our design
choices. As we have shown on the FH/iFH data set, it is indeed
possible to build a model that predicts FHs with good accuracy, and,
more importantly, recovers a large amount of the FHs in the data.
Our results also show that our model is a clear improvement over
the structural alerts currently in use, particularly w.r.t. dark chemi-
cal matter, on which we have significantly better results. Using a
model that is not a black box allows us to present an explanation
for the prediction to experts, facilitating acceptance and adding to
scientific knowledge.

In its current form, PrePeP is ready for use but has some limita-
tions. As discussed throughout the experimental evaluation, having
used a data set evaluated on AlphaScreen assays seems to limit
PrePeP’s predictive power when it comes to compounds that show
frequent activity in other kinds of assays. This is not a problem per
se since we can extend our prototype with subgraphs and predictive
models derived from data stemming from other types of bioassays.
In that case, PrePeP will contain several predictive modules, each
of which can be used to predict whether a compound is FH or
not, depending on the assay type the expert is interested in, with
the option to perform a consensus prediction using all modules.
In practical terms, however, this requires extensive exploration of
PubChem to create appropriate data – an important reason for
our using the AlphaScreen data set is that it is already available in
curated form.

https://zimmermanna.users.greyc.fr/software/prepep.zip
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Related to this question is how one defines frequent hitters in
the first place. In the work of Baell et al., any compound showing
activity in two or more out of six assays was considered a frequent
hitter. In their critique, Capuzzi et al. adopted the same threshold,
and we therefore as well. It is not clear that this is an appropriate
definition, however, and characterizing FHs in terms of their activ-
ity percentage might be more informative. Changing the problem
setting in this way brings us into actual QSAR territory and with
regression arguably a more difficult problem setting than classifi-
cation, the effectiveness of our method is unclear. Addressing this
problem would also require extensive additional data acquisition.

The parameters we have chosen for the prototype – top-100
subgraphs, three percent minimum size for decision tree leaves,
two hundred samples – were selected as a result of the trade-off
of running times and performance on the FH/iFH data set but it
is not clear that they are the best choices in general terms. As a
comparison, there were 480 PAINS alerts proposed in [6]. As we
extend our approach to new data, it is possible that we will have to
adjust those parameter values, or make them data-dependent.

Finally, our evaluations so far have been performed entirely in
silico. To support our results, experimental biological assays are
necessary, i.e. classifying newmolecules and testing those classified
as FH in multiple assays to verify their activity. This task requires
deployment at our chemist partners to gather hands-on experience.

Even for the first two aspects, however, strong expertise and
knowledge in medicinal chemistry is needed, and we will address
them in close cooperation between the involved computer science
and medicinal chemistry laboratories. We intend nevertheless to
make PrePeP available to the wider community as soon as possible
and exploit their feedback. One option that we have explored but
not yet implemented consists of giving experts feedback options, e.g.
rejecting predictions or supposedly discriminative subgraphs. This
will require a more elaborate interface and user tests, which cannot
be outsourced to non-expert users. In addition, to take feedback
into account, PrePeP will need to become much more reactive,
moving away from the off-line mining and learning that it currently
performs.
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APPENDIX

Table 4: Evaluation of the performance of themajority vote of different classifiers for different feature sets and different ratios
of FHs and iFHs in the test data

Setting Algorithm Features Accuracy AUC score Precision Recall
avg σ avg σ avg σ avg σ

Balanced Random Forests subgraphs 37.72 2.49 0.3772 0.0249 0.4296 0.0158 0.7544 0.0498
numeric 81.67 2.92 0.8167 0.0292 0.855 0.0318 0.7633 0.0457

subgraphs+numeric 83.94 15.93 0.8394 0.1593 0.9024 0.1641 0.8144 0.0323
SVM subgraphs 78.5 16.8 0.785 0.168 0.9384 0.1949 0.67 0.0472

numeric 51.56 0.78 0.5156 0.0078 0.8667 0.322 0.0322 0.0143
subgraphs+numeric 52.22 1.26 0.5222 0.0126 0.8667 0.322 0.0456 0.0237

Naive Bayes subgraphs 61.83 16.59 0.6183 0.1659 0.9244 0.2392 0.3367 0.0832
numeric 68.83 2.32 0.6883 0.0232 0.6664 0.0257 0.7578 0.0335

subgraphs+numeric 68.67 16.32 0.6867 0.1632 0.9298 0.2132 0.4744 0.0859
Logistic Regression subgraphs 42.06 16.18 0.4206 0.1618 0.4824 0.1823 0.7411 0.0392

numeric 82.83 3.84 0.8283 0.0384 0.8283 0.0493 0.8311 0.0412
subgraphs+numeric 77.78 12.73 0.7778 0.1273 0.7685 0.1177 0.8467 0.0339

Stochastic Gradient subgraphs 38.56 2.69 0.3856 0.0269 0.4349 0.0166 0.7711 0.0537
Descent numeric 71.22 2.59 0.7122 0.0259 0.7154 0.0465 0.7156 0.0655

subgraphs+numeric 71.39 3.4 0.7139 0.034 0.7103 0.04 0.7256 0.0359
Slight Random Forests subgraphs 6.93 0.31 0.3811 0.0168 0.0708 0.0029 0.7622 0.0336

imbalance numeric 85.79 1.16 0.8133 0.0172 0.3656 0.0245 0.7589 0.0287
subgraphs+numeric 85.86 27.55 0.8387 0.1508 0.6068 0.1901 0.8144 0.024

SVM subgraphs 87.85 28.56 0.7817 0.1485 0.9067 0.2949 0.6633 0.0359
numeric 91.18 0.21 0.517 0.0113 0.8708 0.1889 0.0344 0.0225

subgraphs+numeric 91.29 0.28 0.5231 0.0148 0.8889 0.1712 0.0467 0.0295
Naive Bayes subgraphs 84.8 28.13 0.6139 0.1276 0.905 0.3005 0.3278 0.0911

numeric 63.29 1.45 0.6896 0.0214 0.1667 0.0095 0.7589 0.0396
subgraphs+numeric 85.8 28.2 0.6759 0.1336 0.8737 0.2881 0.4533 0.0828

Logistic Regression subgraphs 6.67 0.28 0.3667 0.0155 0.0683 0.0027 0.7333 0.031
numeric 81.62 0.79 0.8204 0.0193 0.3089 0.0141 0.8256 0.0363

subgraphs+numeric 71.81 22.46 0.7759 0.1208 0.2622 0.0688 0.8467 0.0286
Stochastic Gradient subgraphs 6.89 0.36 0.3789 0.0196 0.0704 0.0034 0.7578 0.0391

Descent numeric 71.66 4.76 0.7056 0.0189 0.2008 0.0223 0.6922 0.0505
subgraphs+numeric 71.8 4.38 0.7059 0.0241 0.201 0.0219 0.6911 0.0725

Severe Random Forests subgraphs 0.74 0.04 0.3728 0.0178 0.0074 0.0004 0.7456 0.0357
imbalance numeric 87.11 0.58 0.8189 0.0256 0.0566 0.0042 0.7656 0.0517

subgraphs+numeric 86.71 30.18 0.8383 0.1493 0.1681 0.0616 0.8089 0.0347
SVM subgraphs 89.77 31.31 0.7833 0.1593 0.9007 0.3141 0.6667 0.0392

numeric 99 0.03 0.5159 0.0096 0.4054 0.1554 0.0322 0.0192
subgraphs+numeric 98.99 0.02 0.5213 0.0112 0.3757 0.1309 0.0433 0.0225

Naive Bayes subgraphs 89.45 31.33 0.6222 0.173 0.9003 0.3153 0.3444 0.0856
numeric 62.73 0.67 0.6908 0.0361 0.0198 0.0019 0.7556 0.0699

subgraphs+numeric 89.39 31.28 0.6709 0.173 0.6487 0.2299 0.4433 0.074
Logistic Regression subgraphs 0.73 0.05 0.3683 0.023 0.0073 0.0005 0.7367 0.046

numeric 81.34 0.49 0.8199 0.0118 0.0424 0.0014 0.8267 0.0241
subgraphs+numeric 71.56 24.76 0.7788 0.12 0.0364 0.0108 0.8433 0.0231

Stochastic Descent subgraphs 0.74 0.04 0.3756 0.0213 0.0075 0.0004 0.7511 0.0426
Descent numeric 72.95 4.71 0.7078 0.0331 0.0249 0.0023 0.6856 0.0986

subgraphs+numeric 72.63 4.43 0.7116 0.032 0.0252 0.0038 0.6967 0.0759
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