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Abstract: 

Variable-geometry structures are useful in aerospace applications since they are adaptable, 

from a compact configuration (launch phase) to a spread geometry (operational phase). They 

may also benefit from the use of flexible joints, which store elastic energy for automatic 

deployment. Following the development of a self-deploying antenna frame structure with 

scissors, we propose in this article the geometrical configuration of a new kind of structure, 

simpler and lighter, minimizing mechanical joints between elements. This topology can form 

a circular plane or a three-dimensional structure when partially opened. The applications 

concern auto-tensioning structures such as meshed space antenna, deorbiting sails and also 

solar panels support structures. 
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rigid structure. 

Introduction 

Variable-geometry structures are widely used in aerospace applications. Indeed, they go 

through different configurations, from a compact geometry during the launch phase to a large 

one in operational phase. There exist solutions with several modules that allow to form linear 

truss (Chu et al. 2014) in order to deploy Large Deployable Reflector (LDR). Many systems 

have also been developed like inflatable beams or tape booms for solar sails (Jianzheng et al. 

2014), conical V-fold bar ring with flexible pre-stressed center for space antenna (Fraux et al. 

2014) and using flexible connections in order to deploy optical reflectors (Wang et al. 2016). 

For large space reflectors, the Astromesh (Thomson 2000) is a widely used solution. It 

consists in a circular rim which is tight by wires that are actuated using electrical motors. To 

avoid this motorization, a family of solutions based on a scissor (Fig. 1) structure and flexible 

joints has been developed at LMGC (Quirant 2011) using flexible joints that deploy the 

structure automatically by releasing elastic energy. 

 

Fig. 1. Self-deployable scissor structure module using flexible joints deployment 
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By increasing the number of scissors, it is possible to generate a circular structure that can 

tense a parabolic network of cables, realizing a mesh reflector. Following numerical 

simulations (statics, kinematics, modal analysis), a prototype (Fig. 2) was realized at LMGC 

to validate the concept (Morterolle et al. 2015). 

 

Fig. 2. Deployment of a structure made of scissors with flexible joints (LMGC) 

To minimize the complexity of the articulation between elements in scissor, thus simplifying 

the structure and reducing the weight, we developed a new solution based on the same 

deployment principle, using stored elastic energy. The basic module is constituted by 4 linear 

beams, 4 short flexibles ones used as flexible joints, and 4 tensile wires limiting the 

deployment, the whole forming a “tetrahedron” (Fig. 3). 

 

Fig. 3. Initial and last step (ω fixed) of the deployment of a basic tetrahedron module 

The main interests of this new structure is that the deployment can be total (flat configuration) 

bar    

joint    

wire  

α 

ω 

Envelop of tetrahedron 
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or partial (volumic configuration), depending on the wire length. A physical model is 

presented in Fig. 4 with aluminum bars and flexible joints made of steel cables. 

    

 

Fig. 4. Basic module – Phases of deployment, stowed, volumic and flat configurations 

In the following, we study in the case of a volumic configuration, the juxtaposition of basic 

elements allow to generate stiff structures. For flat configuration, important surfaces can be 

occupied while minimizing the initial dimensions in the folded state. 

Geometry and configurations 

According to the desired geometry, the structure can be adapted. Two solutions may be 

envisaged: 

 Volumic shape, which can be used to form a grid by repetition and juxtaposition, to 

create the support of a space antenna or solar panels. 

 

 Outer ring structure for solar sails or space antenna applications. The number and the 

size of bars are optimized to generate the targeted area. 
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General parameters of the deployment 

As seen in Fig. 3, the elementary module is made of 4 bars, 4 joints and 4 wires. The 

parameters that determine the geometry of the deployment are   and  , where   is the angle 

between two consecutive bars, and   the angle between the planes defined by the joints. The 

relation between   and   is given by Eq.1. 

              
 

 
    (1) 

Other parameters define the geometry: 

    is the length of the bars, 

        is the developed length of the joints, 

                 is the radius of joint in folded configuration. 

In the aim of controlling the deployment, it is needed to determine the angle of aperture   

according to the length     of control (Fig. 5) that maintain the module partially open. 

 

 

 

Fig. 5. Geometrical parameters in the stowed (     and partially open configurations. 

We define by Eq.2 the radius of the circular arc of the joint in the deployed configuration.  
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 (2) 

The length of the wire maintaining the module is obtained by Eq.3. 

         
 

 
         

 

 
  (3) 

Given the radius    and the length    of bars, we can, demonstrate that    is a monotic 

function of         which means that the length    can be defined uniquely of the desired 

configuration, characterized by a unique  .  

  

Volumic deployment 

In space applications, it is essential to know at every step of the deployment the volume of the 

structure to control the kinetics and avoiding collisions. In function of the aperture of the 

structure, defined by the parameter α or   , it is possible to obtain either a volume or either a 

flat surface when fully deployed. The volume of the structure can be approximated by an 

enveloping tetrahedron (Fig. 3), or truncated forms when taking into consideration the volume 

corresponding to the connections (Fig. 6). 

 

  

 

Fig. 6. Different approaches to determine the volume of a module. 

 

The 3 corresponding expressions are given by Eq.4 to Eq.6. 
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 (12) 

 

Fig. 7 illustrates the variation of these 3 expressions in function of the angle  , in the case of 



 

8 

 

                      . For small angles,           overestimates to a great extent the 

real volume of the module. So we therefore consider that a good approximation of the volume 

of the tetrahedron is ranged by            . We observe also that the maximum volume is 

obtained for      . Naturally, the flat configuration corresponds to      . 

 

 

Fig. 7. Tetrahedron envelop volume 

By duplicating tetrahedrons, a self-deployable grid can be formed. Similarly, Zhang (Zhang et 

al. 2016) presents a single truss layer made of triangular modules where each bar is made of 

two equal articulated parts that deploy using a flexible joint (torsional spring). In our case, the 

assembly of several tetrahedrons forms an auto-deployable structure usable as plan support 

for reflectors or solar panels (Fig. 8) choosing or not the maximum of the volume for the 

structure. 

 

 

Fig. 8. Assembly of tetrahedrons 
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Deployment of an assembly of 4 modules 

Compared to a module, the assembly of several modules permits to expand the usable area. 

Using numerical simulations, we chose as geometrical convergence parameter        .  

        

Fig. 9. Progressive steps in the deployment of an assembly of 4 modules  

Fig. 9 shows the steps of the deployment of an assembly of 4 tetrahedron. As shown in Fig. 

10,   this kind of structure can be used as support for solar panel, or space antenna. 

 

 

Fig. 10. Assembly of 4 modules and grid usable area. 

 

Circular deployment 

By lengthening the restraining wire of a module at its maximum, we obtain a flat square as 

presented in Fig. 4 (right). Using the same structural principle, we can generate a quasi-

circular shape by increasing the number of bar-joint sets, so as to form a regular polygonal 
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ring           (Fig. 11) with N sides. Actually, larges spaces antennas are composed of a circular 

rim that allows to put in tension a cable net. Xu (Xu 2012) has developed a structure made by 

many trusses forming a toroidal rim at the deployed configuration. Viquerat (Viquerat et al. 

2013) also proposes rings with a flat polygon shape and oriented joints, which differs from 

our polygonal structure composed of non-oriented flexible connections. Mouthuy (Mouthuy 

et al. 2012) presents an analytical model of the buckling and folding of a ring made of only 

one flexible element, presenting a low rigidity for space applications. In order to obtain a 

folding symmetry and a sufficient rigidity, we propose self-deployable polygonal ring with 

several bars and flexible connections. 

        

Fig. 11. Steps of deployment for a N-bars flat structure 

Number of bars for a desired area 

In the flat geometry, the polygonal area A can be estimated as: 

  
   

 

     
 
  

 
(13) 

In order to determine the necessary number of bars N necessary to cover a required area, and 

using bars with a given length   we use a Taylor-3
rd

 order limited development of     
 

 
 , 

which leads to an approximation          of the desired area A, (Eq.14). 

         
    

 

    
  

 

 
(14) 

From this equation, we can deduce the expression of the number of bars N in function of   
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and    (Eq.15). 

     

 
 
 
 
 
  

 
      

  

 
 

 
 
 
 
 (15) 

In this expression,         and     denotes the integer part of   rounded up to the superior 

unit. To insure the folding, other required conditions are that this number of bars needs to be 

even and strictly upper than 2.  

For a prescribed bar length   , the relative approximation error (  -        )/   can be 

estimated by Eq.16. 

       
    

    
  

 

    
 

 
  (16) 

Eq.16 is usable for any    and any    . The value e(N) never exceed 5.6%, and stays 

below 1% from    , demonstrating high confidence in Eq.14 and Eq.15. For the design, we 

present in Fig.12 the desired bar number in function of A and   , permitting to find the 

appropriate dimensions for the structure. 

 

Fig. 12. Number of bars N in function of A and    
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Optimization of the compactness 

In order to get more compactness, it is possible to pack the bars in two different arrangements. 

In a first configuration (Fig. 13.a), bars are distributed along a circle, and deploy themselves 

in one phase, as in Fig. 11. A second possibility is the case where bars are arranged on two 

concentric circles (Fig. 13.b), which necessitates a two-phase deployment as presented in the 

following paragraph. 

 

               

 

(a)     (b)          

Fig. 13. Schema for a “one circle” configuration (a) “two circles” configuration (b)  

To permit the deployment of the (b) configuration, the number of bar has to be a multiple of 

4. 

 

 

 “One circle” configuration 

To insure that the structure is not too voluminous, some geometrical constraints about the 

stowed configuration are to be considered.  

 

In this case, we suppose that the structure is stowed inside a cylinder or radius storage (Fig. 
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14). 

 

Fig. 14. Cross section of the stowed structure 

Besides, the angle between two sides of the polygon is given by Eq.17. 

   
   

 
            (17) 

Fig. 15 represents an expansion of a portion of Fig. 14 where the radius       of the stowed 

structure, which is expressed by Eq.18, is imposed. 

 

 

Fig. 15. Portion of the cross section of the stowed structure 
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   (18) 

 

A first condition is given by the needed clearance ( ) between the radius of the storage area 

(        ) and (       of the folded structure: 

                        (19) 

The second condition imposed a maximum radius for bars and joint, in order to avoid contact 

between the bars (        . We deduce the inequation of the geometrical constraint of the 

radius of a bar: 

          
         

 
  

      
 
  

 (20) 

An application to a CubeSat’s deorbiting sail and a coverable surface of 1m² with a storage 

volume authorized, of          ,     and N=36, the maximal radius of a bar is              

       .  

 

 “Two circles” configuration 

For a same bar number, the radius of a 1-circle configuration is noted     and that of a 2-

circles stowed configuration is      as shown in Fig. 16.  

 

Analytically     and     are expressed by Eq.21 and Eq.22, respectively 

    
      

   
 
 

 (21) 

 

             
 

   
  
 

   

 

   (22) 
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Fig. 16. Geometry of the 2-circles arrangement 

Numerically, (see Fig. 17), we demonstrate that        when N=12 and           when 

N gets higher than 12. We can demonstrate analytically that the ratio tends toward 0 when N 

tends to infinity. For a higher number of bars, the 2-circle configuration is more efficient in 

term of initial compacteness than the 1-circle one. For a structure made of 24 bars, the 2-

circles arrangement allows 25% lower of stowed radius than 1-circle configuration. 

 

  

Fig. 17. Ratio of the radiuses of 2-circle configuration by 1-circles configuration in function 

of N 
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As defined previously, the geometrical constraint on the radius of a bar for a 2-circles 

configuration is given by Eq.23. 

           
       

    
 

    
  
  

   

 

  

 

(23) 

                         . 

 

  

Fig. 18. Comparison between the maximum radiuses of the bars for the two configurations 

with        

  =maximum radius of a bar of 1-circle configuration 

  =maximum radius of a bar of 2-circle configuration 

As seen Fig. 18, for the same initial compactness, the geometrical constraint equation of the 

radius of a bar    is more restrictive than for   .  

 

For illustration of this packing solution, we consider a 16 bars structure distributed on 2 

circles. The deployment begins in a first step (Fig. 19 Step 1) by an alignment of the bars 

present on the first circle with the other bars. The second step consist in an unlocking of all 

nodes (Fig. 19 Step 2) to finally obtain a ring. In this case, the packed radius     is 75% of 
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the    the same N bars.  

  

Step 1 

 

Step 2 

 

Fig. 19. Two stage of deployment of the ring for a 2 circle configuration 

Static and dynamic analysis 

In order to get insights on internal forces and design conditions, we study the equilibrium of a 

module during the deployment. 

Tetrahedron equilibrium 

Let   , defined by             the canonical basis of    and        the orthogonal group of 

the direct rotations, with the origin positioned at the center of the structure defined by the 

center of the square formed by the wire (Fig. 20). 

 

Since there exists two planes of symmetry         and (      , we can consider only the 

equilibrium of two consecutive bars. Using the notations introduced in Fig. 3 and Eq. 1,           
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                                is the oriented aperture angle and                                 the oriented angle 

between two consecutives bars. 

 

Fig. 20. Parameters for static equilibrium study 

 

In the    global coordinate system, we denote by    
        

 respectively the effort and the 

moment supported by    where          . The torsor of cohesion in the joint cut at node PA 

by plane         is given by: 

          

   
   

   
   

   
   

  (24) 

Similarly, and due to the symmetry        , the torsor of cohesion at node PB is: 

 

With   the tension in wire, the force vectors    and    introduced by wires at nodes OA and 

OB  (in the middle of the bars) are: 

           

   
    

   
   

   
    

  (25) 



H   

, 

PB 

PA 



  

PL 

      

   

P0 


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  (26) 

When cutting by vertical plane (      , these torsors and forces are presented in Fig. 21. 

 

Fig. 21. Side view of the tetrahedron 

 

There is a symmetry by rotation of 180° around    that can be represented by matrix     
 : 

    
   

    
    
   

  ,       
        (27) 

The mechanical consequences are: 

    
       

     
      

    
     

  
 
 (28) 

Where     is the transposed operator. 

 

Eq. 25 and Eq. 28 give: 

   
     

         
     

    (29) 

For the moments, the symmetry leads to: 

    
       

     
      

    
     

 
 
 (30) 

Eq. 25 and Eq. 30 then provide: 

   
     

   (31) 

The equilibrium of the forces as presented in Fig. 21 gives on   : 

PA PB Plane of symmetry 



  

, 

        

        

OB 

   

OA 
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   (32) 

The equilibria of the moments on    is: 

    
   

 

 
             

   
 

 
  (33) 

The local moment in joints is carried by   , the normal vector to the plane defined by two 

successive bars (Fig. 20), and its expression is: 

       
            

  
  (34) 

Where        is the Young modulus of the joint,        the flexural moment of inertia of the 

joint and    the radius of the joint defined by Eq.2. 

This moment is projected on the vectors    and    as follows:  

   
           

 

 
    (35) 

and 

   
           

 

 
  (36) 

We deduce that: 

      

 
 

 

     
 
  

 (37) 

Effort and moment relations 

Using relations Eq.34 through Eq.37, it is then possible to calculate the bending moment in 

the joints as well as the tension in the wires at every step of the deployment. These 

expressions depends at the same time on characteristics of materials and of the geometry 

(aperture). For a given configuration, by developing Eq. 37, the static equilibrium results in 

Eq.38. 

        

   
  

 

 
   

      

   
       

 

 
        

 

 
  (38) 
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In Fig. 22 a representation of the tension in the wire in function of   is given for      , 

       joint diameter           ,        
   

  
, and              . Eq. 40 gives also 

the moment in function of   in the joint for the same parameters. 

The analytical relation of the tension is given by: 

  
            

     

   
 
  

 
  

 
 

      

   
       

 
 
        

 
 
 

 (39) 

In the same way, we define the moment in the joint by: 

       
            

     
   

 

 
  (40) 

           

 

Fig. 22. Tension in wires and bending moment in joints for a given configuration 
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Where    is the ratio between   and the maximum value of   denoted by    
 

   
 

 
  

. 

As shown in Fig. 22, for all N,   and        are decreasing in function of   .  

 

 

 

Comparison between analytical model and Ansys® model 

In order to predict the behavior of the deployment of the module, we model it analytically and 

numerically by a FEM analysis using ANSYS® software. This permits to verify the accuracy 

of the FEM prestressing process.  The system is initially in a stowed configuration.  In the 

simulation, every bar is split into 8 elements, flexible connections are made of 20 elements of 

type “Beam4” (3D elastic Beam with 6 nodal DOF) and wires are elements "Link10" (3 nodal 

DOF). The resolution of the kinematic process is the same as described in . The principle is to 

solve the transient equilibrium equation: 

    u       u              (41) 

Where,    ,    , and     are respectively the matrices of the structural mass, damping and 

stiffness with    ,     ,     , the nodal displacement, velocity and acceleration vectors; {f} the 

applied load vector. In our case,        , and we chose  C    .       as presented by 

Morterolle (Morterolle et al. 2015). Equations are solved by the Newmark’s time integration 

method. The convergences criterions are those usually used in the literature in Force, 

Moment, Rotation, and Displacement. At the first step of the dynamic calculus, the locked 

nodes are released in rotation and displacement. The predefined length of the wire cables, 

representing cerclage cables permits to control the aperture of the rim. 

 

The physical and geometrical properties of the elements for this simulation are shown in        

Tab. 1. Modeling was completed with various numbers of bars for different    angles 
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(Table.2). The results are very satisfactory. Indeed, the modeling difference with respect to 

analytical model defined by Eq.39 and Eq.40 does not exceed 0.87 % for the moment and 

0.65% for the tension in the cable (Tab.2). 

 

 

Table 1. Modeling of elements 

 

Geometry Mechanicals properties 

Length 

(cm) 

Diameter 

(mm) 

Thickness 

(mm) 

Inertia 

 moment 

     

Density 

        

Poisson  

ratio 

Young  

Modulus 

(N/m²) 

tube (aluminum)  40 6 1.5 51.05E-06 2700 0.346 70E+09 

joint (steel cable) 2.5 3 - 0.042E-12  7500 0.3 125E+09 

wire (steel cable) vary 1 - - 7500 0.3 125E+09 

 

Table 2. Comparison between analytical and ANSYS® results for different number of bars N 

and angle of aperture  . 

  N                                                           α    (m)   (N)      (N)    (%)        (Nm)       
   (Nm)    (%) 

4 45 ° 0.173 2.593 2.610 0.65 0.495 0.499 0.76 

8 60 ° 0.221 2.466 2.477 0.43 0.440 0.444 0.87 

12 90 ° 0.305 2.279 2.277 0.11 0.330 0.333 0.79 

16 120 ° 0.370 2.165 2.160 0.21 0.220 0.221 0.67 

20 162 ° 0.420 2.098 2.092 0.30 0.066 0.066 0.19 

 

Modal analyses of the rim 

In order to verify the rigidity of the rim, modal analysis were performed. The rim is made of 

tubes that are end restraint node by node. The support is modeled by locking displacements 

and rotations in the middle of one bar.  

The rim is made of carbon-epoxy tubes, 1m long, for a 3 cm diameter and a 1.5mm thickness. 
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Fig. 23. Rim for different aperture angles 

Table 3. Modal analysis results 

   Stowed Partially open Plane 

N Mass (kg)   10° 20° 30° 40° 50° 60° 70° 80° 90° 

6 1.25 
1st frequency (Hz)  21.24 16.40 12.88 10.71 9.37 8.54 8.05 7.79 7.71 

Rim Diameter (m) 0.30 0.59 0.87 1.11 1.33 1.50 1.63 1.71 1.73 

8 1.67 
1st frequency (Hz)  14.59 9.98 7.44 6.05 5.23 4.74 4.45 4.29 4.24 

Rim Diameter (m) 0.42 0.83 1.21 1.55 1.85 2.09 2.27 2.38 2.41 

10 2.08 
1st frequency (Hz)  10.50 6.63 4.81 3.87 3.33 3.01 2.82 2.72 2.69 

Rim Diameter (m) 0.53 1.05 1.54 1.98 2.36 2.67 2.89 3.03 3.08 

12 2.50 
1st frequency (Hz)  7.84 4.69 3.36 2.69 2.31 2.08 1.94 1.88 1.86 

Rim Diameter (m) 0.65 1.28 1.87 2.40 2.86 3.23 3.51 3.68 3.73 

20 4.16 
1st frequency (Hz)  3.19 1.74 1.22 0.97 0.83 0.74 0.70 0.68 0.66 

Rim Diameter (m) 1.10 2.16 3.16 4.06 4.84 5.47 5.93 6.22 6.31 

 

Where   is the angle defined by Eq.42. 

       
   

 
 

   
 
 

  (42) 

 

As described in Table.3 and in Fig. 24, the first Eigen frequency value decreased in function 

of   and in function of the mass but it is also superior to 1Hz for         , that could 

qualify this rim for space applications.  
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Fig. 24. First Eigen frequency in function of the aperture angle   

Discussion 

This paper presents a new kind of deployable structure made of bars and flexibles joints. 

Some models were presented.  

The assembly of several modules form an auto-deployable structure (grid) which will be used 

as support plan of reflectors or solar panels. 

A geometrical analysis was done on the module and on the rim. We calculate the optimal 

surface, volume and the length of the elements exactly. For a flat geometry (full deployment), 

with a given surface, a length of bar fixed, an equation of the bar number is established. 

Finally, a static analytical model of the ring is proposed and validated using FEM analyses. 

Also two packing configurations are presented. 

A demonstrator of solar sail was built, with bars in glass fiber, steel compression springs and 

a 13   thick Mylar sheet (Fig. 25). It allowed testing the compactness and the folding of a 

complete set sail structure for a 1-circle configuration.  
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 Fig. 25. Physical demonstrator in initial and final step 

Another model made up of aluminum tubes and tension springs for connections was 

elaborated. Bars are 6mm diameter with a thickness of 1.5mm. Springs coming to insert into 

tubes are 3mm diameter, and are arranged so that their length between two bars is 1.4cm. We 

represent in       Fig. 26 several pictures of our 6 bars partially open structure. A crossing 

cable passing through the middle of the bars control the spread. 

 

   

Fig. 26. Physical rim model partially open 

Some additional works are currently performed to model the dynamic of the deployment of 

the structure from stowed configuration to operational phase. By taking into account 
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interaction between the structure and the payload (solar sail, antenna…), we will propose a 

completed solution for space applications. 
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